
Proving bounds on locality
of distributed computing

Juho Hirvonen
IRIF, CNRS, and Université Paris Diderot

CoA, Lyon, 28 November 2017

Talk outline

• Sketch a lower bound proof technique for
distributed graph algorithms

• In general, simulation is a very powerful tool for
lower bounds

• We have the beginnings of a complexity theory:
can use heavy hammers in lower bound proofs

Modeling locality

Locality

Locality

Locality

Locality

Locality

Locality

Distributed computing

Locality

Locality

Output 1

Locality
• Everything proceeds in synchronous

communication rounds

• Abstract away other possible challenges like
failures, asynchrony, and congestion

In t communication rounds each node
can learn t-hop neighborhood

Locality

Locality

complexity =

mapping of t-neighbourhoods to
outputs (topology → color)

each node has to announce its own
local output (e.g. its own color)

number of rounds until all nodes have
announced output

output =

algorithm =

Locally checkable labelings

Locally checkable labelings

Details

• LCLs assume bounded maximum degree ∆ = O(1)

• Every node has a unique name in poly(n)
(except when they don’t!)

• Value of n is known to the nodes (strong models
imply stronger lower bounds)

Assuming standard LOCAL model

LCL complexity zoo

LCL complexity zoo
RAND

DET

O(1) Θ(log*n)

Θ(n)Θ(log*n)O(1)

complexity: t(n)

?

?

?

State of the art circa 2015

Θ(n)

?

∆-coloring: O(poly log n)
[Panconesi and Srinivasan,1995]

cycle 3-coloring cycle 2-coloring

Intermediate problems

Sinkless orientation requires
Ω(log∆ log n) randomized time

[Brandt et al., STOC 2016]

LCL complexity zoo
RAND

DET

O(1) Θ(log*n)

Θ(n)Θ(log*n)O(1)

complexity: t(n)

?

?

Θ(n)

sinkless orientation
Ω(log log n)

O(log n)

?

Implications

• Distributed Lovász local lemma at least as hard
as sinkless orientation

• ∆-coloring at least as hard as sinkless orientation

Lower bound:
sinkless orientation

Based on*
A lower bound for the distributed Lovász local lemma,
Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki,

Suomela, and Uitto, STOC 2016

An exponential separation between randomized and
deterministic complexity in the LOCAL model

Chang, Kopelowitz, and Pettie, FOCS 2016

The Complexity of Distributed Edge Coloring with Small
Palettes, Chang, He, Li, Pettie, and Uitto, SODA 2018

Sinkless orientation

All edges are oriented with no sinks

The lower bound

Sinkless orientation requires Ω(log∆ log n)
randomized time

Sinkless orientation requires Ω(log∆ n)
deterministic time

A (simple) deterministic
lower bound

We will start by proving a lower bound for a
simpler, deterministic model:

Finding a sinkless orientation requires Ω(log∆ n)
communication rounds in this model

Lower bound:
sinkless orientation

(simple) model:
d-regular graphs,

2-vertex col.
c-edge col.
(for c >> d)

graphs have large
(logarithmic) girth

(Very) high level proof

1. In high-girth graphs a o(log∆ n)-round algorithm
for sinkless orientation implies a 0-round
algorithm for sinkless orientation

2. There is no 0-round algorithm for sinkless
orientation in high-girth graphs

Lower bound:
sinkless orientation

For algorithm A, define running time profile
t = (t1,t2,…,tc)

=

Edges of color i must halt after ti rounds*

Lower bound:
sinkless orientation

Assume algorithm has running time profile
t = (t,t,…,t)

=

Edges of all colors halt in t communication rounds

Lower bound:
sinkless orientation

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation

Lower bound:
sinkless orientation

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

Lower bound:
sinkless orientation

algorithm with running time profile
0 = (0,0,0,0,0)

easy to show that this is impossible!

We can apply argument if initial t = o(log∆ n)

Simulation
3-neighbourhood of orange edge

edge e

(3,3,3,3,3)

(3,3,3,3,2)

Simulation
possible outputs given 2-neighbourhood?

(here t = 3)

Simulation
possible outputs given 2-neighbourhood?

inputs independent

 3-neighbourhood of violet edge
Outputs of incident edges

Outputs of incident edges
3-neighbourhood of red edge

(here t = 3)

Outputs of incident edges
intersection of 3-neighbourhoods = 2-neighbourhood of

orange

(here t = 3)

Outputs of incident edges
outputs on the two sides are independent given orange

inputs
independent

Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

∃ input s.t. other edges pointed towards node?

Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

if not, we can safely orient towards node

Other endpoint a sink
now assume the first endpoint is a potential sink

∃ input s.t. other edges pointed towards node?

Other endpoint a sink
now assume both endpoints potential sinks

if yes, can engineer input such that this happens
(independence)

Other endpoint a sink
now assume both endpoints potential sinks

no feasible output left for middle edge

Lower bound:
sinkless orientation

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

Problem with LOCAL model

• Unique identifiers induce dependencies
between possible inputs of distant nodes

• Argument that we can force a sink unless one
endpoint is safe is no longer true

Roundabout solution:
randomize

• Now consider the randomized setting

• In addition to the colouring, nodes have access to
u.a.r. real number

• Can get identifiers w.h.p.

Theorem: sinkless orientation requires
Ω(∆-1log∆ log n) rounds

Lower bound:
updated strategy

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

A’’

:

:

:

Lower bound:
updated strategy

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

error with prob. < p

error with
prob. < O(p-3^(t(2d-1)))

error with
prob. < O(p-3^(2d-1))

At

At-1

A0

:

:

:

Lower bound:
updated strategy

algorithm A’ with running time 0, error prob. < O(p-3^(t(2d-1)))

t = Ω(Δ-1 log log n)

start with alg. A, running time t, error prob. p0

0 rounds: must have error probability p > 1/8d

Lower bound:
updated strategy

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up a color by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

:

:

Outputs of incident edges
black endpoint potential sink w.p. > p?

v2 v1

Outputs of incident edges
white endpoint potential sink w.p. > p?

v1v2

Back to deterministic
Theorem (Chang et al., FOCS 2016): Assume that for

LCL L there exists an algorithm with running time
t = o(log∆ n), then there exists an algorithm with

running time t’ = O(log* n)

Corollary: sinkless orientation requires Ω(log∆ n)
deterministic time

Automatic speed-up

• Another black box simulation

• A given algorithm A is ”fooled” to run faster:
compute locally unique ”identifiers” (a colouring)
and run A on those

• Efficient solving of LCLs reduces to coloring +
constant time

Back to randomized
Theorem (Chang et al., FOCS 2016): randomized

complexity of an LCL on instances of size n is at least
the deterministic complexity on

instances of size (log n)1/2

Corollary: sinkless orientation requires Ω(log∆ log n)
randomized time

What just happened?

IDs → randomness
randomized:

Ω(Δ-1 log log n)

deterministic: Ω(log∆ n)
Proof technique doesn’t

work for identifiers

automatic speed-up
deterministic:

Ω(log n)

automatic connection
randomized:
Ω(log log n)

What just happened?

IDs → randomness
randomized:

Ω(Δ-1 log log n)

deterministic: Ω(log∆ n)
Proof technique doesn’t

work for identifiers

automatic speed-up
deterministic:

Ω(log n)

automatic connection
randomized:
Ω(log log n)

Automatic simulation
speed-up

Deterministic speed-up

Theorem (Chang et al., FOCS 2016): Assume that for
LCL L there exists an algorithm with running time
t = o(log∆ n), then there exists an algorithm with

running time t’ = O(log* n)

Algorithm’s view

• Assume algorithm A for LCL L with running time
t = Θ(log log n)

• Algorithm knows n, runs for t(n) rounds, stops

• What can the algorithm see?

Algorithm’s view
∆ = 5: For some t(n) assume t(25) = 2

1

5

16

22

23

15

2

18

10

15

3
20

9

24

19

7

12

11

6

17

8

25

21

134

3

Algorithm’s view
Now consider a graph G of size n >> 25

77

30

35

86

67

43

73

Algorithm’s view
Label s.t. every node sees every label appear only once =

distance O(1)-colouring
10

77

6

12

25
30

35

86

4

5

22

16

67

43

731

5

16

22

23

15

2

18

10

15

3
20

9

24

19

7

12

11

6

17

8

25

21

134

Algorithm’s view
10

77

6

12

25
30

35

86

4

5

22

16

67

43

731

5

16

22

23

15

2

18

10

15

3
20

9

24

19

7

12

11

6

17

8

25

21

134

4

4

5

5

25

25

Label s.t. every node sees every label appear only once =
distance O(1)-colouring

Algorithm’s view
10

77

6

12

25
30

35

86

4

5

22

16

67

43

731

5

16

22

23

15

2

18

10

15

3
20

9

24

19

7

12

11

6

17

8

25

21

134

3

= looks locally like an instance of size 25

Label s.t. every node sees every label appear only once =
distance O(1)-colouring

Simulation speed-up
• Given algorithm A with running time t = o(log∆ n)

• Since A is sublogarithmic, must be some n0 s.t. A
doesn’t see the whole graph on any instance of
size n0 (i.e. even on expanders)

• Now compute distance t(n0)+O(1)-coloring of G
in time O(log* n)

• Run A on that coloring

Simulation speed-up

• Simulation output is well defined because all local
views could come from an instance of size n0

• Simulation output is correct because in every local
neighborhood output follows rules of the LCL

Deterministic speed-up

Theorem (Chang et al., FOCS 2016): Assume that for
LCL L there exists an algorithm with running time
t = o(log∆ n), then there exists an algorithm with

running time t’ = O(log* n)

Deterministic speed-up

• Every sublogarithmic-time solvable LCL
decomposes into coloring + constant time

• How far can we take the simplified form of
sublogarithmic-time algorithms?

• Simulation speed-up for other families of
problems?

The complexity zoo: 
recent developments

LCL complexity zoo
RAND

DET

O(1) Θ(log*n)

Θ(n)Θ(log*n)O(1)

?

?

?

State of the art circa 2015

Θ(n)

?

complexity: t(n) full range

LCL complexity zoo

O(1) Θ(log*n) Ω(log log n)

Ω(log n)Θ(log*n)O(1)

∅

∅

Ω(log n)

RAND

DET

LH

LH

complexity: t(n) lower range

[Balliu et al., 2017] [Chang et al., FOCS 2016]

sinkless orientation: Θ(log log n)

sinkless orientation: Θ(log n)

LCL complexity zoo

O(1) Θ(log*n) Ω(log log n)

Ω(log n)Θ(log*n)O(1)

TLLL

∅

∅

State of the art circa 2017

∅ Ω(log n)

RAND

DET

?

LH

LH

complexity: t(n) lower range

LCL complexity zoo
RAND

DET

Ω(log n)

Θ(n)Ω(log n)

complexity: t(n)

Θ(n)

UH

UH ?

?

Θ(n1/2)
State of the art circa 2017

upper range

[Chang et al., FOCS 2017],
[Balliu et al., 2017]

Recapping
• Proof technique arguably simple

• A new proof hammer: where are the nails?
• Simulation invariants: graph girth, success

probability, color palette
• New simulation invariants e.g. related to ∆?

• Simulation is an extremely powerful general
approach

Thank you!
Questions?

