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Talk outline

• Sketch a lower bound proof technique for 
distributed graph algorithms 

• In general, simulation is a very powerful tool for 
lower bounds 

• We have the beginnings of a complexity theory: 
can use heavy hammers in lower bound proofs



Modeling locality
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Distributed computing



Locality
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Output 1



Locality
• Everything proceeds in synchronous 

communication rounds 

• Abstract away other possible challenges like 
failures, asynchrony, and congestion 

In t communication rounds each node 
can learn t-hop neighborhood



Locality



Locality

complexity = 

mapping of t-neighbourhoods to 
outputs (topology → color)

each node has to announce its own 
local output (e.g. its own color)

number of rounds until all nodes have 
announced output

output = 

algorithm = 



Locally checkable labelings



Locally checkable labelings



Details

• LCLs assume bounded maximum degree ∆ = O(1) 

• Every node has a unique name in poly(n)  
(except when they don’t!) 

• Value of n is known to the nodes (strong models 
imply stronger lower bounds)

Assuming standard LOCAL model



LCL complexity zoo



LCL complexity zoo
RAND

DET

O(1) Θ(log*n)

Θ(n)Θ(log*n)O(1)

complexity: t(n)

?

?

?

State of the art circa 2015

Θ(n)

?

∆-coloring: O(poly log n) 
[Panconesi and Srinivasan,1995]

cycle 3-coloring cycle 2-coloring



Intermediate problems

Sinkless orientation requires  
Ω(log∆ log n) randomized time 

[Brandt et al., STOC 2016]



LCL complexity zoo
RAND

DET

O(1) Θ(log*n)

Θ(n)Θ(log*n)O(1)

complexity: t(n)

?

?

Θ(n)

sinkless orientation 
Ω(log log n)

O(log n)

?



Implications

• Distributed Lovász local lemma at least as hard 
as sinkless orientation 

• ∆-coloring at least as hard as sinkless orientation



Lower bound:  
sinkless orientation



Based on*
A lower bound for the distributed Lovász local lemma, 
Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, 

Suomela, and Uitto, STOC 2016 

An exponential separation between randomized and 
deterministic complexity in the LOCAL model 

Chang, Kopelowitz, and Pettie, FOCS 2016 

The Complexity of Distributed Edge Coloring with Small 
Palettes, Chang, He, Li, Pettie, and Uitto, SODA 2018



Sinkless orientation

All edges are oriented with no sinks



The lower bound

Sinkless orientation requires Ω(log∆ log n) 
randomized time 

Sinkless orientation requires Ω(log∆ n) 
deterministic time



A (simple) deterministic  
lower bound

We will start by proving a lower bound for a  
simpler, deterministic model: 

Finding a sinkless orientation requires Ω(log∆ n) 
communication rounds in this model



Lower bound:  
sinkless orientation

(simple) model: 
d-regular graphs, 

2-vertex col. 
c-edge col. 
(for c >> d) 

graphs have large 
(logarithmic) girth



(Very) high level proof

1. In high-girth graphs a o(log∆ n)-round algorithm 
for sinkless orientation implies a 0-round 
algorithm for sinkless orientation 

2. There is no 0-round algorithm for sinkless 
orientation in high-girth graphs



Lower bound:  
sinkless orientation

For algorithm A, define running time profile  
t = (t1,t2,…,tc) 

= 

Edges of color i must halt after ti rounds*



Lower bound:  
sinkless orientation

Assume algorithm has running time profile  
t = (t,t,…,t) 

= 

Edges of all colors halt in t communication rounds



Lower bound:  
sinkless orientation

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation



Lower bound:  
sinkless orientation

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times



Lower bound:  
sinkless orientation

algorithm with running time profile 
0 = (0,0,0,0,0) 

easy to show that this is impossible!

We can apply argument if initial t = o(log∆ n)



Simulation
3-neighbourhood of orange edge

edge e

(3,3,3,3,3) 

(3,3,3,3,2)



Simulation
possible outputs given  2-neighbourhood?

(here t = 3)



Simulation
possible outputs given 2-neighbourhood?

inputs independent



 3-neighbourhood of violet edge
Outputs of incident edges



Outputs of incident edges
3-neighbourhood of red edge

(here t = 3)



Outputs of incident edges
intersection of 3-neighbourhoods = 2-neighbourhood of 

orange

(here t = 3)



Outputs of incident edges
outputs on the two sides are independent given orange

inputs 
independent



Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

∃ input s.t. other edges pointed towards node?



Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

if not, we can safely orient towards node



Other endpoint a sink
now assume the first endpoint is a potential sink

∃ input s.t. other edges pointed towards node?



Other endpoint a sink
now assume both endpoints potential sinks

if yes, can engineer input such that this happens 
(independence)



Other endpoint a sink
now assume both endpoints potential sinks

no feasible output left for middle edge



Lower bound:  
sinkless orientation

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times



Problem with LOCAL model

• Unique identifiers induce dependencies 
between possible inputs of distant nodes 

• Argument that we can force a sink unless one 
endpoint is safe is no longer true



Roundabout solution:  
randomize

• Now consider the randomized setting 

• In addition to the colouring, nodes have access to 
u.a.r. real number  

• Can get identifiers w.h.p. 

Theorem: sinkless orientation requires 
Ω(∆-1log∆ log n) rounds



Lower bound:  
updated strategy

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

A’’

:

:

:



Lower bound:  
updated strategy

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

error with prob. < p

error with  
prob. < O(p-3^(t(2d-1)))

error with  
prob. < O(p-3^(2d-1))

At

At-1

A0

:

:

:



Lower bound:  
updated strategy

algorithm A’ with running time 0, error prob. < O(p-3^(t(2d-1))) 

t = Ω(Δ-1 log log n)

start with alg. A, running time t, error prob. p0

0 rounds: must have error probability p > 1/8d



Lower bound:  
updated strategy

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up a color by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

:

:



Outputs of incident edges
black endpoint potential sink w.p. > p?

v2 v1



Outputs of incident edges
white endpoint potential sink w.p. > p?

v1v2



Back to deterministic
Theorem (Chang et al., FOCS 2016): Assume that for 

LCL L there exists an algorithm with running time  
t = o(log∆ n), then there exists an algorithm with 

running time t’ = O(log* n)

Corollary: sinkless orientation requires Ω(log∆ n) 
deterministic time



Automatic speed-up

• Another black box simulation 

• A given algorithm A is ”fooled” to run faster: 
compute locally unique ”identifiers” (a colouring) 
and run A on those 

• Efficient solving of LCLs reduces to coloring + 
constant time



Back to randomized
Theorem (Chang et al., FOCS 2016): randomized 

complexity of an LCL on instances of size n is at least 
the deterministic complexity on  

instances of size (log n)1/2

Corollary: sinkless orientation requires Ω(log∆ log n) 
randomized time 



What just happened?

IDs → randomness 
randomized:  

Ω(Δ-1 log log n)

deterministic: Ω(log∆ n) 
Proof technique doesn’t 

work for identifiers

automatic speed-up 
deterministic:  

Ω(log n)

automatic connection 
randomized:  
Ω(log log n)



What just happened?

IDs → randomness 
randomized:  

Ω(Δ-1 log log n)

deterministic: Ω(log∆ n) 
Proof technique doesn’t 

work for identifiers

automatic speed-up 
deterministic:  

Ω(log n)

automatic connection 
randomized:  
Ω(log log n)



Automatic simulation 
speed-up



Deterministic speed-up

Theorem (Chang et al., FOCS 2016): Assume that for 
LCL L there exists an algorithm with running time  
t = o(log∆ n), then there exists an algorithm with 

running time t’ = O(log* n)



Algorithm’s view

• Assume algorithm A for LCL L with running time   
t = Θ(log log n) 

• Algorithm knows n, runs for t(n) rounds, stops 

• What can the algorithm see?



Algorithm’s view
∆ = 5: For some t(n) assume t(25) = 2
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Algorithm’s view
Now consider a graph G of size n >> 25
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Algorithm’s view
Label s.t. every node sees every label appear only once = 

distance O(1)-colouring
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Algorithm’s view
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Label s.t. every node sees every label appear only once = 
distance O(1)-colouring



Algorithm’s view
10

77

6

12

25
30

35

86

4

5

22

16

67

43

731

5

16

22

23

15

2

18

10

15

3
20

9

24

19

7

12

11

6

17

8

25

21

134

3

= looks locally like an instance of size 25

Label s.t. every node sees every label appear only once = 
distance O(1)-colouring



Simulation speed-up
• Given algorithm A with running time t = o(log∆ n) 

• Since A is sublogarithmic, must be some n0 s.t. A 
doesn’t see the whole graph on any instance of 
size n0 (i.e. even on expanders) 

• Now compute distance t(n0)+O(1)-coloring of G 
in time O(log* n) 

• Run A on that coloring



Simulation speed-up

• Simulation output is well defined because all local 
views could come from an instance of size n0 

• Simulation output is correct because in every local 
neighborhood output follows rules of the LCL 



Deterministic speed-up

Theorem (Chang et al., FOCS 2016): Assume that for 
LCL L there exists an algorithm with running time  
t = o(log∆ n), then there exists an algorithm with 

running time t’ = O(log* n)



Deterministic speed-up

• Every sublogarithmic-time solvable LCL 
decomposes into coloring + constant time 

• How far can we take the simplified form of 
sublogarithmic-time algorithms? 

• Simulation speed-up for other families of 
problems?



The complexity zoo: 
recent developments



LCL complexity zoo
RAND

DET

O(1) Θ(log*n)

Θ(n)Θ(log*n)O(1)

?

?

?

State of the art circa 2015

Θ(n)

?

complexity: t(n) full range



LCL complexity zoo

O(1) Θ(log*n) Ω(log log n)

Ω(log n)Θ(log*n)O(1)

∅

∅

Ω(log n)

RAND

DET

LH

LH

complexity: t(n) lower range

[Balliu et al., 2017] [Chang et al., FOCS 2016]

sinkless orientation: Θ(log log n)

sinkless orientation: Θ(log n)



LCL complexity zoo

O(1) Θ(log*n) Ω(log log n)

Ω(log n)Θ(log*n)O(1)
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State of the art circa 2017

∅ Ω(log n)
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complexity: t(n) lower range



LCL complexity zoo
RAND

DET

Ω(log n)

Θ(n)Ω(log n)

complexity: t(n)

Θ(n)

UH

UH ?

?

Θ(n1/2)
State of the art circa 2017

upper range

[Chang et al., FOCS 2017], 
[Balliu et al., 2017]



Recapping
• Proof technique arguably simple 

• A new proof hammer: where are the nails? 
• Simulation invariants: graph girth, success 

probability, color palette 
• New simulation invariants e.g. related to ∆? 

• Simulation is an extremely powerful general 
approach



Thank you! 
Questions?


