

(Automated) Limits of Locality in Distributed Computing

Aalto CS Research Day 2019 Juho Hirvonen Dennis Olivetti

Distributed Algorithms

)

)

maximal matching

sinkless orientation

Proposal algorithm: maximal matching

Finding a sinkless orientation

Best possible?

How **local** can distributed algorithms be?

- Balliu, Brandt, Hirvonen, Olivetti, Rabie, and Suomela, arXiv:1901.02441
- Sinkless orientation is hard (STOC 2016) arXiv:1511.00900

- Proposal algorithm is optimal (FOCS 2019 best paper)

Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, and Uitto

Speedup simulation

Assume problem **Π**₀: can be solved in **T** rounds

There exists problem **Π**₁: can be solved in **T-1** rounds

There exists problem **I**_T: can be solved in **0** rounds

mechanical transform

Contradiction?

2016: state of the art

holds, and other	wise that the coin	
Observe that	t $c \in C(u)$ if and d	
$A_c(u) = \frac{N^t(e)}{1 - 1}$	Let \mathcal{E} be the eve	that
event th		then or fo
Lemma at most		01 10
Proof. I		Our
This is t	Now it	we s
	edges have	non-
mula ana (1	Lemma 1	A
where the	incident to	hood
	Proof. Sin	\mathbf{Def}
	that $\psi(e)$ §	that
Observe	Now we	
	Lemma 1	Oth
	$edge \ e = \{$	Oth
	$most \ p. \ T.$	Len
Since by	$any \ node \ i$	
$\mathcal{E}_c] < K$	Proof. Let	
	a sink at i	Prod
	bad neighb	IUCK that
Since we	of different	UILU U
Definit	is at most	
$N^t(e)$ na	union boui	
		Sinc
That is,		
than K^2	Now let us	
Lemma	is an edge	
fixed net	at most p ,	by I
Proof. I		boui
of the ca		
As the	hy Definiti	$\operatorname{Det}_{\lambda ^{ \prime } t - }$
$N^t(e) =$	by Demme	<i>1</i> v
$N^t(u) \setminus$		
Therefor	and we have	hold
and we		Tam
which co	4.2 Fro	Len
	We now sh	
	given a sin in the prev	
	edges are l	
	edges to ou	
	Unlike	

Proof. Fix the coin flips in $N^{t-1}(u)$ and assume $N^{t-1}(u)$ is nice. For the sake of contradiction, uppose $C'(u) = \emptyset$. Now by definition of C'(u) we have

$$\Pr[B'(e) = u \leftarrow v \mid N^{t-1}(u)] > L$$

for each edge $e = \{u, v\}$. Since the coin flips in $N^{t-1}(u)$ are fixed, the output B'(e) only depends on the coin flips in $N^{t-1}(v) \setminus N^{t-1}(u)$. Since the girth is larger than 2t, for each $e = \{u, v\}$ and $e' = \{u, v'\}$, where $v \neq v'$, the coin flips in $N^{t-1}(v) \setminus N^{t-1}(u)$ and $N^{t-1}(v') \setminus N^{t-1}(u)$ are independent. Therefore, the events $B'(e) = u \leftarrow v$ and $B'(e') = u \leftarrow v'$ are independent. This implies that

$$\Pr[C'(u) = \emptyset \mid N^{t-1}(u)] = \prod_{e=\{u,v\}} \Pr[B'(e) = u \leftarrow v \mid N^{t-1}(u)] > L^3,$$

contradicting the assumption that $N^{t-1}(u)$ is nice.

Lemma 19. Suppose B' is a sinkless orientation algorithm that runs in time t such that the probability that any node u is a sink is at most ℓ . Then there exists a sinkless colouring algorithm B" that runs in time t - 1 such that the probability for any edge $e = \{u, v\}$ having a forbidden configuration $B''(u) = \psi(e) = B''(v)$ is less than $4\ell^{1/4}$.

Proof. Let B'' as defined earlier and consider an edge $e = \{u, v\}$. If algorithm B'' outputs a orbidden configuration $B''(u) = \psi(e) = B''(v)$, then either $C'(u) \cup C'(v) = \emptyset$ or $\psi(e) \in C'(u) \cap C'(v)$ holds. We will now bound the probability of both events.

Observe that before fixing any random bits, the probability of having a bad radius-(t-1) eighbourhood is the same for all nodes, as all radius-(t-1) node neighbourhoods are identical. Let $S = \Pr[N^{t-1}(u)$ is bad] be this probability. By union bound and Lemma 18 we get that

$$\begin{aligned} \Pr[C'(u) \cup C'(v) &= \emptyset] &\leq \Pr[C'(u) = \emptyset] + \Pr[C'(v) = \emptyset] \\ &\leq \Pr[N^{t-1}(u) \text{ is bad}] + \Pr[N^{t-1}(v) \text{ is bad}] \\ &\leq 2S. \end{aligned}$$

rom Lemma 16 we get that

 $\Pr[\psi(e) \in C'(u) \cap C'(v)] \le 2L.$

Using the union bound and the above, we get that the probability of a forbidden configuration is

$$\Pr[B''(u) = \psi(e) = B''(v)] \le 2S + 2L.$$

To prove the claim, observe that from Definition 17 and the assumption that B' produces a sink t u with probability at most ℓ , it follows that

 $\ell \ge \Pr[u \text{ is a sink}] \ge \Pr[u \text{ is a sink} \mid N^{t-1}(u) \text{ is bad}] \cdot \Pr[N^{t-1}(u) \text{ is bad}] > SL^3.$

Therefore, $\ell > SL^3$. By setting $L = \ell^{1/4}$ we get that $S < \ell^{1/4}$ implying $2S + 2L < 4\ell^{1/4}$.

4.3 The Speedup Lemma

'he following is an immediate consequence of Lemma 14 and Lemma 19.

remma 20. Suppose B is a sinkless colouring algorithm that runs in time t such that for any edge the probability that B produces a forbidden configuration at e is at most p. Then there is a sinkless olouring algorithm B" that runs in t-1 rounds such that it produces a forbidden configuration at ny edge with probability less than $4 \cdot 6^{1/4} \cdot p^{1/12}$.

13

12

 $(e) = u \leftarrow v \mid N^{t-1}(u)] \le L\},$

11

2016: state of the art

			<i>Proof.</i> Fix the coin flips in $N^{t-1}(u)$ and assume $N^{t-1}(u)$ is nice. For the sake of contradiction, suppose $C'(u) = \emptyset$. Now by definition of $C'(u)$ we have
holds, and othe	erwise that the coin		$\Pr[B'(e) = u \leftarrow v \mid N^{t-1}(u)] > L$
Observe the $A_c(u) = N^{t}(c)$ event the Lemma	at $c \in C(u)$ if and c Let \mathcal{E} be the even	that then or fo	for each edge $e = \{u, v\}$. Since the coin flips in $N^{t-1}(u)$ are fixed, the output $B'(e)$ only depends on the coin flips in $N^{t-1}(v) \setminus N^{t-1}(u)$. Since the girth is larger than 2t, for each $e = \{u, v\}$ and $e' = \{u, v'\}$, where $v \neq v'$, the coin flips in $N^{t-1}(v) \setminus N^{t-1}(u)$ and $N^{t-1}(v') \setminus N^{t-1}(u)$ are independent. Therefore, the events $B'(e) = u \leftarrow v$ and $B'(e') = u \leftarrow v'$ are independent. This implies that
at most			$\Pr[C'(u) = \emptyset \mid N^{t-1}(u)] = \prod_{v \in \{u,v\}} \Pr[B'(e) = u \leftarrow v \mid N^{t-1}(u)] > L^3,$
<i>Proof.</i> I This is t	Now it edges have	Our we s	contradicting the assumption that $N^{t-1}(u)$ is nice.
where the	Lemma 1 incident to	non- 1 hoo	Lemma 19. Suppose B' is a sinkless orientation algorithm that runs in time t such that the probability that any node u is a sink is at most ℓ . Then there exists a sinkless colouring algorithm B'' that runs in time $t - 1$ such that the probability for any edge $e = \{u, v\}$ having a forbidden
	Proof. Sin that $\psi(e)$	Def that	configuration $B''(u) = \psi(e) = B''(v)$ is less than $4\ell^{1/4}$. <i>Proof.</i> Let B'' as defined earlier and consider an edge $e = \{u, v\}$. If algorithm B'' outputs a
Observe Now w Lemma 1 $edge \ e = \{$ $most \ p. \ T$ Since by $\mathcal{E}_c] < K$ Proof. Let a sink at : neighbourd		forbidden configuration $B''(u) = \psi(e) = B''(v)$, then either $C'(u) \cup C'(v) = \emptyset$ or $\psi(e) \in C'(u) \cap C'(v)$ holds. We will now bound the probability of both events.	
	Oth Len	neighbourhood is the same for all nodes, as all radius- $(t-1)$ node neighbourhoods are identical. Let $S = \Pr[N^{t-1}(u)$ is bad] be this probability. By union bound and Lemma 18 we get that	
		$\Pr[C'(u) \cup C'(v) = \emptyset] \le \Pr[C'(u) = \emptyset] + \Pr[C'(v) = \emptyset]$	
	Proc	$\leq \Pr[N^{t-1}(u) \text{ is bad}] + \Pr[N^{t-1}(v) \text{ is bad}]$ $\leq 2S.$	
Since we	bad neight of different	that	From Lemma 16 we get that $\Pr[\psi(e) \in C'(u) \cap C'(v)] \le 2L.$
Definit $N^t(e) \ n$	Definit is at most $V^t(e)$ n		Using the union bound and the above, we get that the probability of a forbidden configuration is
	Sinc	$\Pr[B''(u) = \psi(e) = B''(v)] \le 2S + 2L.$	
That is, than K^2	Now let us		To prove the claim, observe that from Definition 17 and the assumption that B' produces a sink at u with probability at most ℓ , it follows that
Lemma	a is an edge		$\ell \ge \Pr[u \text{ is a sink}] \ge \Pr[u \text{ is a sink} \mid N^{t-1}(u) \text{ is bad}] \cdot \Pr[N^{t-1}(u) \text{ is bad}] > SL^3.$
fixed net Proof. I	at most p ,	by I bou	Therefore, $\ell > SL^3$. By setting $L = \ell^{1/4}$ we get that $S < \ell^{1/4}$ implying $2S + 2L < 4\ell^{1/4}$.
of the ca			4.3 The Speedup Lemma
As the barrier w	by Definiti	$\operatorname{Def}_{\Lambda^{\tau t-}}$	The following is an immediate consequence of Lemma 14 and Lemma 19.
As the by Definiti $N^t(e) = N^t(u)$		1N ²	Lemma 20. Suppose B is a sinkless colouring algorithm that runs in time t such that for any edge e the probability that B produces a forbidden configuration at e is at most p. Then there is a sinkless colouring algorithm B'' that runs in $t - 1$ rounds such that it produces a forbidden configuration at
and we	and we have	hold	any edge with probability less than $4 \cdot 6^{1/4} \cdot p^{1/12}$.
which co	4.2 Fro	Len	13
which et	We now sh given a sin in the prev		
	edges are l edges to or		12
	Unlike let L be a		
		$C'(u) = \{\psi(e$): $\Pr[B'(e) = u \leftarrow v \mid N^{t-1}(u)] < L\}.$

intermediate complexity, **Ω(log n)**