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Best possible?

How local can distributed algorithms be?

- Proposal algorithm is optimal (FOCS 2019 best paper)

Balliu, Brandt, Hirvonen, Olivetti, Rabie, and Suomela,
arXiv:1901.02441

- Sinkless orientation is hard (STOC 2016)

Brandt, Fischer, Hirvonen, Keller, Lempiainen, Rybicki, Suomela, and Uitto
arXiv:1511.00900


https://arxiv.org/abs/1901.02441
https://arxiv.org/abs/1511.00900

Speedup simulation

Assume problem [Mg: can be solved in T rounds

v

There exists problem I4: can be solved in T-1 rounds

mechanical transform

There exists problem INy: can be solved in 0 rounds
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