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Best possible?

How local can distributed algorithms be?


- Proposal algorithm is optimal (FOCS 2019 best paper)

Balliu, Brandt, Hirvonen, Olivetti, Rabie, and Suomela,  
arXiv:1901.02441


- Sinkless orientation is hard (STOC 2016)

Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, and Uitto

arXiv:1511.00900

https://arxiv.org/abs/1901.02441
https://arxiv.org/abs/1511.00900


Speedup simulation
Assume problem 𝝥0: can be solved in T rounds

There exists problem 𝝥1: can be solved in T-1 rounds

There exists problem 𝝥T: can be solved in 0 rounds

Contradiction?

mechanical transform



holds, and otherwise that the coin flips are unlucky.

Observe that c œ C(u) if and only if the random coin flips in Ac(u) are lucky, since N
t≠1(u) fi

Ac(u) = N
t(e). Let Ec be the event that the random coin flips in Ac(u) are unlucky, that is, the

event that Pr[B(u) = c | N
t≠1(u) fi Ac(u)] < K holds.

Lemma 10. Given any fixed neighbourhood N
t≠1(u) of node u, the set C(u) is empty with probability

at most 3K.

Proof. Let E =
u

Ec be the event that the random values in each Ac(u) are unlucky given N
t≠1(u).

This is the case if and only if C(u) = ÿ, which implies that

Pr[C(u) = ÿ | N
t≠1(u)] = Pr[E ],

where the right-hand side can be written as

Pr[E ] =
ÿ

c

Pr[E and B(u) = c].

Observe that since E ™ Ec for any colour c, we have that

Pr[E and B(u) = c] = Pr[E and B(u) = c | Ec] · Pr[Ec]
Æ Pr[B(u) = c | Ec] · Pr[Ec]
Æ Pr[B(u) = c | Ec].

Since by definition the coin flips in Ac(u) are unlucky in the event Ec, we get that Pr[B(u) = c |
Ec] < K. Thus combining the above, we have that

Pr[C(u) = ÿ | N
t≠1(u)] =

ÿ

c

Pr[E and B(u) = c] <

ÿ

c

K.

Since we have three colours, the claim follows.

Definition 11 (Nice edge neighbourhoods). For an edge e = {u, v}, we call its fixed neighbourhood
N

t(e) nice if
Pr[B(u) = Â(e) = B(v) | N

t(e)] < K
2
.

That is, after fixing the random coin flips in N
t(e), the algorithm outputs Â(e) with probability less

than K
2. Otherwise, we call N

t(e) a bad neighbourhood.

Lemma 12. Let e = {u, v} be an edge with no cycles in its radius-(t + 1) neighbourhood. If the

fixed neighbourhood N
t(e) is nice, then Â(e) /œ C(u) fl C(v).

Proof. Let N
t(e) be fixed and nice. Assume for contradiction that Â(e) œ C(u)flC(v). By definition

of the candidate colour set, for both w œ e we have Â(e) œ C(w) if

Pr[B(w) = Â(e) | N
t(e)] Ø K.

As the output B(u) of node u is determined by the coin flips in N
t(u) and the coin flips in

N
t(e) = N

t(u) fl N
t(v) are fixed, we now have that B(u) only depends on the coin flips in

N
t(u) \ N

t(v). Similarly, the output B(v) of v only depends on the coin flips in N
t(v) \ N

t(u).
Therefore, the events B(u) = Â(e) and B(v) = Â(e) are independent, as N

t+1(e) contains no cycles,
and we get

Pr[B(u) = Â(e) = B(v) | N
t(e)] Ø K

2
,

which contradicts the assumption that N
t(e) was nice.
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Now it is easy to check that if a node u has at least one candidate colour and all its incident
edges have nice neighbourhoods, then u will not be a sink according to B

Õ.

Lemma 13. Suppose N
t(u) is fixed and the neighbourhoods N

t(e) are nice for all edges e = {u, w}
incident to u. If C(u) ”= ÿ, then B

Õ(eÕ) = u æ v for some e
Õ = {u, v}.

Proof. Since C(u) ”= ÿ, there is some Â(e) œ C(u). Moreover as N
t(e) is nice, Lemma 12 implies

that Â(e) /œ C(u) fl C(v), and thus, Â(e) /œ C(v). By definition of B
Õ, we have B

Õ(e) = u æ v.

Now we have all the pieces to show the first part of the mutual speedup lemma.

Lemma 14. Suppose B is a sinkless colouring algorithm that runs in t rounds such that for any

edge e = {u, v} the probability of outputting a forbidden configuration B(u) = Â(e) = B(v) is at

most p. Then there exists a sinkless orientation algorithm B
Õ

that runs in t rounds such that for

any node u the probability of being a sink is at most 6p
1/3

.

Proof. Let B
Õ be as given earlier and consider a node u. By Lemma 13, algorithm B

Õ can produce
a sink at node u only if C(u) = ÿ or one of the edges incident to u has a bad (i.e., not nice)
neighbourhood. Let S = maxe Pr[N t(e) is bad] be the maximum probability that some edge has a
bad neighbourhood; the probability of having a bad neighbourhood need not be the same for edges
of di�erent colours. By the union bound, the probability that N

t(e) is bad for some edge e = {u, v}
is at most 3S. By Lemma 10, the probability that C(u) = ÿ is at most 3K. Thus, applying the
union bound once again, we get that

Pr[node u is a sink] Æ
ÿ

e={u,v}
Pr[N t(e) is bad] + Pr[C(u) = ÿ] Æ 3S + 3K.

Now let us consider the probability that an edge e = {u, v} has a forbidden configuration, where e

is an edge that attains Pr[N t(e) is bad] = S. Recall that the probability of B(u) = Â(e) = B(v) is
at most p, and thus,

p Ø Pr[B(u) = Â(e) = B(v)]
Ø Pr[N t(e) is bad] · Pr[B(u) = Â(e) = B(v) | N

t(e) is bad]
Ø SK

2

by Definition 11. By setting K = p
1/3 we get that

p Ø SK
2 = Sp

2/3 ≈∆ p
1/3 Ø S

and we have 3S + 3K Æ 6p
1/3 which proves our claim.

4.2 From Sinkless Orientation Back to Sinkless Colouring

We now show how to construct a randomised sinkless colouring algorithm B
ÕÕ that runs in time t ≠ 1

given a sinkless orientation algorithm B
Õ that runs in time t. The approach is analogous to the one

in the previous section. The high level idea is that any node u first checks which of its incident
edges are likely to be pointed outwards by B

Õ, and then it can choose the colour of one of these
edges to output a sinkless colouring with a large probability.

Unlike before, each node will gather only its radius-(t ≠ 1) neighbourhood in t ≠ 1 rounds. Again,
let L be a threshold we fix later. Define the candidate colour set C

Õ(u) as

C
Õ(u) = {Â(e) : Pr[BÕ(e) = u Ω v | N

t≠1(u)] Æ L},
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that is, the set of colours which are pointed towards u with probability at most L. The node u will
then output the smallest candidate colour or an arbitrarily chosen colour if there are no candidates,
or formally,

B
ÕÕ(u) =

I
min C

Õ(u) if C
Õ(u) ”= ÿ,

0 otherwise.

Our goal now is to show that this produces a sinkless colouring with a large probability. To do this,
we show that the probabilities of the following two events are large: (1) the candidate set being
non-empty and (2) Â(e) /œ C(u) fl C(v) for any edge e = {u, v}.

Analogously to Section 4.1, we define the notions of lucky/unlucky bits and nice/bad neighbour-
hoods.

Definition 15 (Lucky random bits). For any e = {u, v}, let Au(e) = N
t≠1(u) \ N

t≠1(v). We say
that the random coin flips in Au(e) are lucky if

Pr[BÕ(e) = u Ω v | N
t≠1(e) fi Au(e)] Æ L.

Otherwise, the coin flips in Au(e) are unlucky.

Lemma 16. Given any fixed neighbourhood N
t≠1(e) of edge e, we have

Pr[Â(e) œ C
Õ(u) fl C

Õ(v) | N
t≠1(e)] Æ 2L.

Proof. Fix the random coin flips in N
t≠1(e). Let Eu be the event that the coin flips in Au(e) are

lucky and let E = Eu fl Ev be the event that coin flips in both Au(e) and Av(e) are lucky. Observe
that Â(e) œ C

Õ(u) if and only if the coin flips in Au(e) are lucky. Therefore,

Pr[E ] = Pr[Â(e) œ C
Õ(u) fl C

Õ(v) | N
t≠1(e)]

= Pr[E and B
Õ(e) = u æ v] + Pr[E and B

Õ(e) = u Ω v].

Since E ™ Eu, it follows that

Pr[E and B
Õ(e) = u Ω v] = Pr[E and B

Õ(e) = u Ω v | Eu] · Pr[Eu]
Æ Pr[BÕ(e) = u Ω v | Eu] Æ L

by Definition 15 as the coin flips in Au(e) are lucky in the event Eu. Symmetrically, we also get the
bound Pr[E and B

Õ(e) = u æ v] Æ L. Combining the above observations we get that

Pr[E ] = Pr[Â(e) œ C
Õ(u) fl C

Õ(v) | N
t≠1(e)] Æ 2L.

Definition 17 (Nice node neighbourhoods). Let N
t≠1(u) be fixed. We say that the neighbourhood

N
t≠1(u) is nice if the probability that u is a sink when executing B

Õ is at most L
3, that is, if

Pr[BÕ(e) = u Ω v for all e = {u, v} | N
t≠1(u)] Æ L

3

holds. Otherwise, we call N
t≠1(u) a bad neighbourhood.

Lemma 18. Assume that the fixed neighbourhood N
t≠1(u) is nice. Then C

Õ(u) ”= ÿ.
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Proof. Fix the coin flips in N
t≠1(u) and assume N

t≠1(u) is nice. For the sake of contradiction,
suppose C

Õ(u) = ÿ. Now by definition of C
Õ(u) we have

Pr[BÕ(e) = u Ω v | N
t≠1(u)] > L

for each edge e = {u, v}. Since the coin flips in N
t≠1(u) are fixed, the output B

Õ(e) only depends
on the coin flips in N

t≠1(v) \ N
t≠1(u). Since the girth is larger than 2t, for each e = {u, v} and

e
Õ = {u, v

Õ}, where v ”= v
Õ, the coin flips in N

t≠1(v)\N
t≠1(u) and N

t≠1(vÕ)\N
t≠1(u) are independent.

Therefore, the events B
Õ(e) = u Ω v and B

Õ(eÕ) = u Ω v
Õ are independent. This implies that

Pr[C Õ(u) = ÿ | N
t≠1(u)] =

Ÿ

e={u,v}
Pr[BÕ(e) = u Ω v | N

t≠1(u)] > L
3
,

contradicting the assumption that N
t≠1(u) is nice.

Lemma 19. Suppose B
Õ

is a sinkless orientation algorithm that runs in time t such that the

probability that any node u is a sink is at most ¸. Then there exists a sinkless colouring algorithm

B
ÕÕ

that runs in time t ≠ 1 such that the probability for any edge e = {u, v} having a forbidden

configuration B
ÕÕ(u) = Â(e) = B

ÕÕ(v) is less than 4¸
1/4

.

Proof. Let B
ÕÕ as defined earlier and consider an edge e = {u, v}. If algorithm B

ÕÕ outputs a
forbidden configuration B

ÕÕ(u) = Â(e) = B
ÕÕ(v), then either C

Õ(u)fiC
Õ(v) = ÿ or Â(e) œ C

Õ(u)flC
Õ(v)

holds. We will now bound the probability of both events.
Observe that before fixing any random bits, the probability of having a bad radius-(t ≠ 1)

neighbourhood is the same for all nodes, as all radius-(t ≠ 1) node neighbourhoods are identical.
Let S = Pr[N t≠1(u) is bad] be this probability. By union bound and Lemma 18 we get that

Pr[C Õ(u) fi C
Õ(v) = ÿ] Æ Pr[C Õ(u) = ÿ] + Pr[C Õ(v) = ÿ]

Æ Pr[N t≠1(u) is bad] + Pr[N t≠1(v) is bad]
Æ 2S.

From Lemma 16 we get that
Pr[Â(e) œ C

Õ(u) fl C
Õ(v)] Æ 2L.

Using the union bound and the above, we get that the probability of a forbidden configuration is

Pr[BÕÕ(u) = Â(e) = B
ÕÕ(v)] Æ 2S + 2L.

To prove the claim, observe that from Definition 17 and the assumption that B
Õ produces a sink

at u with probability at most ¸, it follows that

¸ Ø Pr[u is a sink] Ø Pr[u is a sink | N
t≠1(u) is bad] · Pr[N t≠1(u) is bad] > SL

3
.

Therefore, ¸ > SL
3. By setting L = ¸

1/4 we get that S < ¸
1/4 implying 2S + 2L < 4¸

1/4.

4.3 The Speedup Lemma

The following is an immediate consequence of Lemma 14 and Lemma 19.

Lemma 20. Suppose B is a sinkless colouring algorithm that runs in time t such that for any edge

e the probability that B produces a forbidden configuration at e is at most p. Then there is a sinkless

colouring algorithm B
ÕÕ

that runs in t ≠ 1 rounds such that it produces a forbidden configuration at

any edge with probability less than 4 · 61/4 · p
1/12

.
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holds, and otherwise that the coin flips are unlucky.

Observe that c œ C(u) if and only if the random coin flips in Ac(u) are lucky, since N
t≠1(u) fi

Ac(u) = N
t(e). Let Ec be the event that the random coin flips in Ac(u) are unlucky, that is, the

event that Pr[B(u) = c | N
t≠1(u) fi Ac(u)] < K holds.

Lemma 10. Given any fixed neighbourhood N
t≠1(u) of node u, the set C(u) is empty with probability

at most 3K.

Proof. Let E =
u

Ec be the event that the random values in each Ac(u) are unlucky given N
t≠1(u).

This is the case if and only if C(u) = ÿ, which implies that

Pr[C(u) = ÿ | N
t≠1(u)] = Pr[E ],

where the right-hand side can be written as

Pr[E ] =
ÿ

c

Pr[E and B(u) = c].

Observe that since E ™ Ec for any colour c, we have that

Pr[E and B(u) = c] = Pr[E and B(u) = c | Ec] · Pr[Ec]
Æ Pr[B(u) = c | Ec] · Pr[Ec]
Æ Pr[B(u) = c | Ec].

Since by definition the coin flips in Ac(u) are unlucky in the event Ec, we get that Pr[B(u) = c |
Ec] < K. Thus combining the above, we have that

Pr[C(u) = ÿ | N
t≠1(u)] =

ÿ

c

Pr[E and B(u) = c] <

ÿ

c

K.

Since we have three colours, the claim follows.

Definition 11 (Nice edge neighbourhoods). For an edge e = {u, v}, we call its fixed neighbourhood
N

t(e) nice if
Pr[B(u) = Â(e) = B(v) | N

t(e)] < K
2
.

That is, after fixing the random coin flips in N
t(e), the algorithm outputs Â(e) with probability less

than K
2. Otherwise, we call N

t(e) a bad neighbourhood.

Lemma 12. Let e = {u, v} be an edge with no cycles in its radius-(t + 1) neighbourhood. If the

fixed neighbourhood N
t(e) is nice, then Â(e) /œ C(u) fl C(v).

Proof. Let N
t(e) be fixed and nice. Assume for contradiction that Â(e) œ C(u)flC(v). By definition

of the candidate colour set, for both w œ e we have Â(e) œ C(w) if

Pr[B(w) = Â(e) | N
t(e)] Ø K.

As the output B(u) of node u is determined by the coin flips in N
t(u) and the coin flips in

N
t(e) = N

t(u) fl N
t(v) are fixed, we now have that B(u) only depends on the coin flips in

N
t(u) \ N

t(v). Similarly, the output B(v) of v only depends on the coin flips in N
t(v) \ N

t(u).
Therefore, the events B(u) = Â(e) and B(v) = Â(e) are independent, as N

t+1(e) contains no cycles,
and we get

Pr[B(u) = Â(e) = B(v) | N
t(e)] Ø K

2
,

which contradicts the assumption that N
t(e) was nice.

10

<<<<

Now it is easy to check that if a node u has at least one candidate colour and all its incident
edges have nice neighbourhoods, then u will not be a sink according to B

Õ.

Lemma 13. Suppose N
t(u) is fixed and the neighbourhoods N

t(e) are nice for all edges e = {u, w}
incident to u. If C(u) ”= ÿ, then B

Õ(eÕ) = u æ v for some e
Õ = {u, v}.

Proof. Since C(u) ”= ÿ, there is some Â(e) œ C(u). Moreover as N
t(e) is nice, Lemma 12 implies

that Â(e) /œ C(u) fl C(v), and thus, Â(e) /œ C(v). By definition of B
Õ, we have B

Õ(e) = u æ v.

Now we have all the pieces to show the first part of the mutual speedup lemma.

Lemma 14. Suppose B is a sinkless colouring algorithm that runs in t rounds such that for any

edge e = {u, v} the probability of outputting a forbidden configuration B(u) = Â(e) = B(v) is at

most p. Then there exists a sinkless orientation algorithm B
Õ

that runs in t rounds such that for

any node u the probability of being a sink is at most 6p
1/3

.

Proof. Let B
Õ be as given earlier and consider a node u. By Lemma 13, algorithm B

Õ can produce
a sink at node u only if C(u) = ÿ or one of the edges incident to u has a bad (i.e., not nice)
neighbourhood. Let S = maxe Pr[N t(e) is bad] be the maximum probability that some edge has a
bad neighbourhood; the probability of having a bad neighbourhood need not be the same for edges
of di�erent colours. By the union bound, the probability that N

t(e) is bad for some edge e = {u, v}
is at most 3S. By Lemma 10, the probability that C(u) = ÿ is at most 3K. Thus, applying the
union bound once again, we get that

Pr[node u is a sink] Æ
ÿ

e={u,v}
Pr[N t(e) is bad] + Pr[C(u) = ÿ] Æ 3S + 3K.

Now let us consider the probability that an edge e = {u, v} has a forbidden configuration, where e

is an edge that attains Pr[N t(e) is bad] = S. Recall that the probability of B(u) = Â(e) = B(v) is
at most p, and thus,

p Ø Pr[B(u) = Â(e) = B(v)]
Ø Pr[N t(e) is bad] · Pr[B(u) = Â(e) = B(v) | N

t(e) is bad]
Ø SK

2

by Definition 11. By setting K = p
1/3 we get that

p Ø SK
2 = Sp

2/3 ≈∆ p
1/3 Ø S

and we have 3S + 3K Æ 6p
1/3 which proves our claim.

4.2 From Sinkless Orientation Back to Sinkless Colouring

We now show how to construct a randomised sinkless colouring algorithm B
ÕÕ that runs in time t ≠ 1

given a sinkless orientation algorithm B
Õ that runs in time t. The approach is analogous to the one

in the previous section. The high level idea is that any node u first checks which of its incident
edges are likely to be pointed outwards by B

Õ, and then it can choose the colour of one of these
edges to output a sinkless colouring with a large probability.

Unlike before, each node will gather only its radius-(t ≠ 1) neighbourhood in t ≠ 1 rounds. Again,
let L be a threshold we fix later. Define the candidate colour set C

Õ(u) as

C
Õ(u) = {Â(e) : Pr[BÕ(e) = u Ω v | N

t≠1(u)] Æ L},

11

that is, the set of colours which are pointed towards u with probability at most L. The node u will
then output the smallest candidate colour or an arbitrarily chosen colour if there are no candidates,
or formally,

B
ÕÕ(u) =

I
min C

Õ(u) if C
Õ(u) ”= ÿ,

0 otherwise.

Our goal now is to show that this produces a sinkless colouring with a large probability. To do this,
we show that the probabilities of the following two events are large: (1) the candidate set being
non-empty and (2) Â(e) /œ C(u) fl C(v) for any edge e = {u, v}.

Analogously to Section 4.1, we define the notions of lucky/unlucky bits and nice/bad neighbour-
hoods.

Definition 15 (Lucky random bits). For any e = {u, v}, let Au(e) = N
t≠1(u) \ N

t≠1(v). We say
that the random coin flips in Au(e) are lucky if

Pr[BÕ(e) = u Ω v | N
t≠1(e) fi Au(e)] Æ L.

Otherwise, the coin flips in Au(e) are unlucky.

Lemma 16. Given any fixed neighbourhood N
t≠1(e) of edge e, we have

Pr[Â(e) œ C
Õ(u) fl C

Õ(v) | N
t≠1(e)] Æ 2L.

Proof. Fix the random coin flips in N
t≠1(e). Let Eu be the event that the coin flips in Au(e) are

lucky and let E = Eu fl Ev be the event that coin flips in both Au(e) and Av(e) are lucky. Observe
that Â(e) œ C

Õ(u) if and only if the coin flips in Au(e) are lucky. Therefore,

Pr[E ] = Pr[Â(e) œ C
Õ(u) fl C

Õ(v) | N
t≠1(e)]

= Pr[E and B
Õ(e) = u æ v] + Pr[E and B

Õ(e) = u Ω v].

Since E ™ Eu, it follows that

Pr[E and B
Õ(e) = u Ω v] = Pr[E and B

Õ(e) = u Ω v | Eu] · Pr[Eu]
Æ Pr[BÕ(e) = u Ω v | Eu] Æ L

by Definition 15 as the coin flips in Au(e) are lucky in the event Eu. Symmetrically, we also get the
bound Pr[E and B

Õ(e) = u æ v] Æ L. Combining the above observations we get that

Pr[E ] = Pr[Â(e) œ C
Õ(u) fl C

Õ(v) | N
t≠1(e)] Æ 2L.

Definition 17 (Nice node neighbourhoods). Let N
t≠1(u) be fixed. We say that the neighbourhood

N
t≠1(u) is nice if the probability that u is a sink when executing B

Õ is at most L
3, that is, if

Pr[BÕ(e) = u Ω v for all e = {u, v} | N
t≠1(u)] Æ L

3

holds. Otherwise, we call N
t≠1(u) a bad neighbourhood.

Lemma 18. Assume that the fixed neighbourhood N
t≠1(u) is nice. Then C

Õ(u) ”= ÿ.

12

Proof. Fix the coin flips in N
t≠1(u) and assume N

t≠1(u) is nice. For the sake of contradiction,
suppose C

Õ(u) = ÿ. Now by definition of C
Õ(u) we have

Pr[BÕ(e) = u Ω v | N
t≠1(u)] > L

for each edge e = {u, v}. Since the coin flips in N
t≠1(u) are fixed, the output B

Õ(e) only depends
on the coin flips in N

t≠1(v) \ N
t≠1(u). Since the girth is larger than 2t, for each e = {u, v} and

e
Õ = {u, v

Õ}, where v ”= v
Õ, the coin flips in N

t≠1(v)\N
t≠1(u) and N

t≠1(vÕ)\N
t≠1(u) are independent.

Therefore, the events B
Õ(e) = u Ω v and B

Õ(eÕ) = u Ω v
Õ are independent. This implies that

Pr[C Õ(u) = ÿ | N
t≠1(u)] =

Ÿ

e={u,v}
Pr[BÕ(e) = u Ω v | N

t≠1(u)] > L
3
,

contradicting the assumption that N
t≠1(u) is nice.

Lemma 19. Suppose B
Õ

is a sinkless orientation algorithm that runs in time t such that the

probability that any node u is a sink is at most ¸. Then there exists a sinkless colouring algorithm

B
ÕÕ

that runs in time t ≠ 1 such that the probability for any edge e = {u, v} having a forbidden

configuration B
ÕÕ(u) = Â(e) = B

ÕÕ(v) is less than 4¸
1/4

.

Proof. Let B
ÕÕ as defined earlier and consider an edge e = {u, v}. If algorithm B

ÕÕ outputs a
forbidden configuration B

ÕÕ(u) = Â(e) = B
ÕÕ(v), then either C

Õ(u)fiC
Õ(v) = ÿ or Â(e) œ C

Õ(u)flC
Õ(v)

holds. We will now bound the probability of both events.
Observe that before fixing any random bits, the probability of having a bad radius-(t ≠ 1)

neighbourhood is the same for all nodes, as all radius-(t ≠ 1) node neighbourhoods are identical.
Let S = Pr[N t≠1(u) is bad] be this probability. By union bound and Lemma 18 we get that

Pr[C Õ(u) fi C
Õ(v) = ÿ] Æ Pr[C Õ(u) = ÿ] + Pr[C Õ(v) = ÿ]

Æ Pr[N t≠1(u) is bad] + Pr[N t≠1(v) is bad]
Æ 2S.

From Lemma 16 we get that
Pr[Â(e) œ C

Õ(u) fl C
Õ(v)] Æ 2L.

Using the union bound and the above, we get that the probability of a forbidden configuration is

Pr[BÕÕ(u) = Â(e) = B
ÕÕ(v)] Æ 2S + 2L.

To prove the claim, observe that from Definition 17 and the assumption that B
Õ produces a sink

at u with probability at most ¸, it follows that

¸ Ø Pr[u is a sink] Ø Pr[u is a sink | N
t≠1(u) is bad] · Pr[N t≠1(u) is bad] > SL

3
.

Therefore, ¸ > SL
3. By setting L = ¸

1/4 we get that S < ¸
1/4 implying 2S + 2L < 4¸

1/4.

4.3 The Speedup Lemma

The following is an immediate consequence of Lemma 14 and Lemma 19.

Lemma 20. Suppose B is a sinkless colouring algorithm that runs in time t such that for any edge

e the probability that B produces a forbidden configuration at e is at most p. Then there is a sinkless

colouring algorithm B
ÕÕ

that runs in t ≠ 1 rounds such that it produces a forbidden configuration at

any edge with probability less than 4 · 61/4 · p
1/12

.
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speedup

O O O O
O O O I
O O I I
O I I I

I O

intermediate complexity, Ω(log n)

2016: state of the art 2019: state of the art


