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Talk outline
• Sketch two lower bound proof techniques for 

distributed graph algorithms 

• In general, simulation is a very powerful tool for 
lower bounds 

• We have the beginnings of a complexity theory: 
can use heavy hammers in lower bound proofs 

• Combining lower bounds for coordination and 
symmetry breaking beyond our techniques



LOCAL model
• input = the communication network 

• output = every computer produces local output 

• global output = the union of local outputs



LOCAL model

Nodes are running a synchronous loop: 

1. exchange messages 
2. update state 

No bounds on computation, messages, no failures: 
trying to abstract away all challenges except locality



LOCAL model
• complexity = the number of synchronous 

communication rounds until all nodes have 
stopped and announced output



The model

• each node has a unique name in poly(n) 

• graph has bounded maximum degree Δ = O(1) 

• graph size n is known 

Notation: DLOCAL(1) and RLOCAL(log log n), etc.



Information-limited
• In t rounds, information can propagate at most t 

hops in the network 

• After t rounds, output cannot depend on input that 
is more than t hops away 

• Gathering the t-hop neighborhood is all an 
algorithm can do! 

time ≈ distance



Information-limited

t-round algorithm  
=  

function on t-hop neighbourhoods



First lower bound



Based on*
A lower bound for the distributed Lovász local lemma, 
Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, 

Suomela, and Uitto, STOC 2016 

An exponential separation between randomized and 
deterministic complexity in the LOCAL model 

Chang, Kopelowitz, and Pettie, FOCS 2016 

The Complexity of Distributed Edge Coloring with Small 
Palettes, Chang, He, Li, Pettie, and Uitto, SODA 2018



Sinkless orientation

All edges are oriented with no sinks



The lower bound

Sinkless orientation requires Ω(log∆ log n) 
randomized time 

Sinkless orientation requires Ω(log∆ n) deterministic 
time
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A (simple) deterministic  
lower bound

We will start by proving a simpler lower bound for a 
simpler deterministic model: 

Finding a sinkless orientation requires Ω(log∆ n) 
communication rounds in this model



Lower bound:  
sinkless orientation

(simple) model: 
d-regular graphs, 

2-vertex col. 
c-edge col. 
(for c >> d) 

graphs have large 
(logarithmic) girth



(Very) high level proof

1. In high-girth graphs a o(log∆ n)-round algorithm 
for sinkless orientation implies a 0-round 
algorithm for sinkless orientation 

2. There is no 0-round algorithm for sinkless 
orientation in high-girth graphs



Lower bound:  
sinkless orientation

For algorithm A, define running time profile  
t = (t1,t2,…,tc) 

= 

Edges of color i must halt after ti rounds*



Lower bound:  
sinkless orientation

Assume algorithm has running time profile  
t = (t,t,…,t) 

= 

Edges of all colors halt in t communication rounds



Lower bound:  
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation



Lower bound:  
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times



Lower bound:  
sinkless orientation
For example, assume d=3 and c=5

algorithm with running time profile 
0 = (0,0,0,0,0) 

easy to show that this is impossible!

We can apply argument if initial t = o(log∆ n)



Simulation
3-neighbourhood of orange edge

edge e

(3,3,3,3,3) 

(3,3,3,3,2)



Simulation
possible outputs given  2-neighbourhood?

(here t = 3)



Simulation
possible outputs given 2-neighbourhood?

inputs independent



 3-neighbourhood of violet edge
Outputs of incident edges



Outputs of incident edges
3-neighbourhood of red edge

(here t = 3)



Outputs of incident edges
intersection of 3-neighbourhoods = 2-neighbourhood of 

orange

(here t = 3)



Outputs of incident edges
outputs on the two sides are independent given orange

inputs 
independent



Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

∃ input s.t. other edges pointed towards node?



Outputs of incident edges
is it possible for endpoint to be a sink for the other edges?

if not, we can safely orient towards node



Other endpoint a sink
now assume the first endpoint is a potential sink

∃ input s.t. other edges pointed towards node?



Other endpoint a sink
now assume both endpoints potential sinks

if yes, can engineer input such that this happens 
(independence)



Other endpoint a sink
now assume both endpoints potential sinks

no feasible output left for middle edge



Lower bound:  
sinkless orientation
For example, assume d=3 and c=5

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times



Problem with LOCAL model

• Unique identifiers induce dependencies 
between possible inputs of distant nodes 

• Argument that we can force a sink unless one 
endpoint is safe is no longer true



Roundabout solution:  
randomize

• Now consider the randomized setting 

• In addition to the colouring, nodes have access to 
u.a.r. real number  

• Can get identifiers w.h.p. 

Theorem: sinkless orientation requires 
Ω(∆-1log∆ log n) rounds



Lower bound:  
updated strategy

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up color 5 by simulation

 speed up color 4 by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

A’’

:

:

:



Lower bound:  
updated strategy

t = (t,t,t,t,t)

t-1 = (t-1,t-1,t-1,t-1,t-1)

0 = (0,0,0,0,0)

 speed up each color

repeat t times

error with prob. < p

error with  
prob. < O(p-3^(t(2d-1)))

error with  
prob. < O(p-3^(2d-1))

At

At-1

A0

:

:

:



Lower bound:  
updated strategy

algorithm A’ with running time 0, error prob. < O(p-3^(t(2d-1))) 

t = Ω(Δ-1 log log n)

start with alg. A, running time t, error prob. p0

0 rounds: must have error probability p > 1/8d



Lower bound:  
updated strategy

For example, assume d=3 and c=5

t = (t,t,t,t,t)

t(1) = (t,t,t,t,t-1)

t(2) = (t,t,t,t-1,t-1)

 speed up a color by simulation

error with prob. < p

error with prob. < 3p1/3

A

A’

:

:



Outputs of incident edges
black endpoint potential sink w.p. > p?

v2 v1



Outputs of incident edges
white endpoint potential sink w.p. > p?

v1v2



Back to deterministic
Theorem (Chang et al., FOCS 2016): Assume that for 

LCL L there exists an algorithm with running time  
t = o(log∆ n), then there exists an algorithm with 

running time t’ = O(log* n)

Corollary: sinkless orientation requires Ω(log∆ n) 
deterministic time



Automatic speed-up

• Another black box simulation 

• A given algorithm A is ”fooled” to run faster: 
compute locally unique ”identifiers” (a colouring) 
and run A on those 

• Efficient solving of LCLs reduces to coloring + 
constant time



Back to randomized
Theorem (Chang et al., FOCS 2016): randomized 

complexity of an LCL on instances of size n is at least 
the deterministic complexity on  

instances of size (log n)1/2

Corollary: sinkless orientation requires Ω(log∆ log n) 
randomized time 



What just happened?

IDs → randomness 
randomized:  

Ω(Δ-1 log log n)

deterministic: Ω(log∆ n) 
Proof technique doesn’t 

work for identifiers

automatic speed-up 
deterministic:  

Ω(log n)

automatic connection 
randomized:  
Ω(log log n)



Trouble with IDs

deterministic: Ω(log∆ n) 
with a coloring

?
deterministic: Ω(log∆ n) 

with IDs



Other applications?

• Identify other intermediate problems 

• Lower bounds as function of ∆ (maximum 
degree)? 

• Best algorithms for maximal matching and 
maximal independent set linear in ∆ 

• Weaker lower bounds exist

A hammer but no nails?



Lifting lower bounds
Examples and obstacles



A general strategy
• Lifting of lower bounds from weaker models into 

stronger ones a powerful technique 

• Proving lower bounds potentially easier in a 
weaker model (say LOCAL without unique 
identifiers) 

• Use simulation to show that a fast algorithm in 
strong model implies a fast algorithm in weak 
model



Simulation results

• OI(1) = ID(1) for LCLs [Naor and Stockmeyer, 
SIAM J. Comput., 1994] 

• PO(1) = ID(1) for approximation [Göös, H., and 
Suomela, J.ACM, 2013] 

• Non-local probes do not help for LCLs [Göös et 
al., DISC 2016]



A case study

coordination vs. symmetry breaking
∆ n

e.g. maximal matching:  
O(∆ + log* n)



MM: existing bounds
• MM requires Ω(log ∆ / log log ∆) rounds in 

RLOCAL [Kuhn et al., J.ACM, 2016] 

• MM requires Ω(∆) in EC  
[H. and Suomela, PODC 2012] 

• FMM requires Ω(∆) in RLOCAL(1)  
[Göös, H., and Suomela, PODC 2014] 

• O(∆1+𝜂)-COL requires Ω(∆1/3-𝜂/3) in broadcast 
DLOCAL [Hefetz et al., DISC 2016]



Conjecture*

Coordination necessary if time budget small as 
function of n 

No algorithm for maximal matching  
with running time O(log* n) and o(∆)



∆

nO(1) O(log*n) O(polylog n)

O(1)

O(log ∆)

O(∆)

MM

(poly) (2+ℇ)-MM

MMFMM

sinkless 
orientation

(1+ℇ)-FMM

O(log n)



Look at a single bound

Fractional maximal matching requires 
Ω(∆) rounds in RLOCAL(1)

(If no dependency on n, then must spend Ω(∆) rounds)
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A lower bound for MM?

• Implies a ”if cows could fly” lower bound for 
maximal matching 

• When solving maximal matching in O(1) time, 
must use Ω(∆) rounds 

• Solving maximal matching requires Ω(log* n) 
rounds



Structure of the proof
• Base case: FMM requires Ω(∆) rounds in the EC 

model 

• Lift the bound using a series of simulations

EC PO OI DLOCAL(1)

RLOCAL(1)

Ω(∆)



Model EC



Base case
1 2

1 3

• Start with completely 
symmetric graph:  

∆ ≈ degrees of 
symmetry 

• Merge two graphs, forcing 
the algorithm to look 1 
step further, lose 1 unit 
of symmetry



Structure of the proof
• Base case: FMM requires Ω(∆) rounds in the EC 

model 

• Lift the bound using a series of simulations

EC PO OI DLOCAL(1)

RLOCAL(1)
Ω(∆)
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port-numbering → ∆2-labelling



EC → PO

4

1

2
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0
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Structure of the proof
• Base case: FMM requires Ω(∆) rounds in the EC 

model 

• Lift the bound using a series of simulations

EC PO OI DLOCAL(1)

RLOCAL(1)



Model OI

5 118

143 51
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a d
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DLOCAL OI



PO → OI 

• OI-algorithms have to work on locally tree-like 
graphs 

• Use port-numbering and orientation to construct 
a locally consistent ordering on nodes



Order-invariant tree
For any r, there exists 

an infinite  
2r-regular PO-tree 
with homogeneous 

linear order

homogeneous =  
translation invariant =  

order of u and v 
defined by the labels 

on the path p(u,v)



PO → OI 

v
v

unfold

Consider the tree-like view of node v



PO → OI 

v

v

Embed the neighborhood 
of v into the OI-tree



Structure of the proof
• Base case: FMM requires Ω(∆) rounds in the EC 

model 

• Lift the bound using a series of simulations

EC PO OI DLOCAL(1)

RLOCAL(1)



OI → DLOCAL(1)

• Ramsey-argument: in a large identifier space 
there exists a subspace s.t. DLOCAL-algorithm 
has to behave like an OI-algorithm 

• Trick: outputs of non-constant size, control an 
indicator algorithm A*



OI → DLOCAL(f(n))?

• Ramsey-type argument cannot go beyond  
o(log* n) 

• It is not clear if we can get even there! 

• Real goal was Ω(∆) when dependency on n is 
O(log* n) or even o(log n)



Going forward



How to proceed?

• One possible strategy: divide the proof into two 
parts: 

1. Show that MM / MIS in vertex-colored graphs 
requires Ω(∆) rounds (with moderate 
dependency on n) 

2. Show that unique identifiers do not help 
compared to a colouring



P1: Ω(∆) lower bound
• Existing lower bounds no good for various reasons 

• Indistinguishability doesn’t work for maximality 
constraints 

• KMW lower bound for approximation, probably 
capped around Ω(log ∆) 

• EC lower bound cannot handle coloring 

• So simulation speed-up?



Simulation for MM

• A concrete research question: solving maximal 
matching in 2-vertex colored graphs 

• Can be solved in time O(∆) using a simple greedy 
proposal algorithm



Simulation for MM?

• Simulation proof works for input vertex coloring 

• Currently technique works only for sinkless 
orientation and coloring 

• Need a different invariant: current invariants cycle 
length, success probability, and size of color 
palette



P2: ID → coloring

Usually control identifiers by Ramsey’s theorem: 
create areas of homogeneous output 

This proof technique cannot go to O(log* n) and 
beyond 

”Reason”: OI-algorithms much weaker in trivial 
breaking of symmetry



P2: ID → coloring
Chang et al.: 

In bounded-degree graphs, any algorithm for an LCL 
problem with complexity o(log n) can be sped up to 

O(log* n) time 

In particular, solving LCLs in DLOCAL(log* n) 
decomposes into coloring + DLOCAL(1)



LCL speed-up

• Algorithm A with complexity t(n) = o(log n) 

• Given instance G of size N, tell algorithm it is 
running in instance of size n = n(A) 

• Colour G2t(n)+1+O(1) with n2 colours (e.g. Linial) 

• Everything looks locally like an instance of size n, 
so simulate A in t(n) rounds

t(n) = O(1), colouring in time O(log*n)



LCL speed-up

• Every LCL solvable in time o(log n) can be solved 
in time O(log*n) by first coloring + a constant-
time distributed algorithm 

• Compare with the natural algorithm for MIS: 
colour with ∆+1 colours, apply greedy



LCL speed-up

• The algorithm implied by LCL speed-up still 
requires a coloring with long-distance 
dependencies 

• Does not keep dependency on ∆ 

• Two lower bound techniques still incompatible



Dependencies

inputs 
independent?



Role of identifiers
• Additional ideas required to truly understand 

power of unique identifiers and in general input 
labels with long-range dependencies 

• Very few examples where these actually help! 

• Include ”cheating”, e.g. output is unbounded 
(Kuhn, 2009, Hasemann et al., 2012), 

• Different setting: local decision [Fraigniaud et 
al., 2015]



Concluding



Simulation

Simulation can be a powerful and 
simple technique for proving 

lower bounds



Big open questions
• Power of unique identifiers /  

power of colorings 

• Coordination / symmetry breaking 

• Extending speed-up simulation to new 
problems


