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ABSTRACT

The ability to trace the fate of individual atoms through the metabolic pathways is needed in
many applications of systems biology and drug discovery. However, this information is not
immediately available from the most common metabolome studies and needs to be sepa-
rately acquired. Automatic discovery of correspondence of atoms in biochemical reactions is
called the ‘‘atom mapping problem.’’ We suggest an efficient approach for solving the atom
mapping problem exactly—finding mappings of minimum edge edit distance. The algorithm
is based on A* search equipped with sophisticated heuristics for pruning the search space.
This approach has clear advantages over the commonly used heuristic approach of iterative
maximum common subgraph (MCS) algorithm: we explicitly minimize an objective func-
tion, and we produce solutions that typically require less manual curation. The two methods
are similar in computational resource demands. We compare the performance of the pro-
posed algorithm against several alternatives on data obtained from the KEGG LIGAND and
RPAIR databases: greedy search, bi-partite graph matching, and the MCS approach. Our
experiments show that alternative approaches often fail in finding mappings with minimum
edit distance.
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1. INTRODUCTION

Metabolic modeling of a cell is a fundamental part of systems biology (Kell, 2004), where structure,

properties, and dynamics of cellular and organismal systems are studied. Advances in system level

biology will have an impact on the future of medicine and understanding of organisms (Kitano, 2002).

Metabolism is modeled with chemical reactions catalyzed by enzymes that process and transform the

compounds of the cell to produce energy and building blocks, with additional functions of information

transfer. Information on pathways, reactions and metabolites are gathered on databases, such as KEGG/

LIGAND (Kanehisa and Goto, 2000; Goto et al., 2002) and BioCyc/EcoCyc (Karp et al., 2004). Currently,

however, metabolic databases do not contain comprehensive information on atom correspondences across

chemical reactions. KEGG RPAIR database (Kotera et al., 2004) contains such correspondences between

single metabolite pairs. However, these are difficult to extend to mappings concerning the whole reaction

without extensive manual work. In most other databases, atom mapping information is missing altogether.
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Atom mappings of reactions have various uses and potential applications. Reconstruction of metabolic

networks (Duarte et al., 2007; Pitkänen et al., 2008) is typically only done in metabolite level, whereas

atom-level representation (ARM Arita, 2003) of the pathways would facilitate better understanding of

metabolic networks. Reaction atom maps are a requisite to do consistency checking of pathways (Arita,

2005). Another application of the atom mappings is the global analysis of metabolic networks by com-

putation of conservation ratios of atoms in metabolic reactions (Hogiri et al., 2008). Reactions can be

classified based on their chemical transformations (Yamanishi et al., 2009). In drug design, predicting the

fate of all parts and atoms of the candidate drug through the transformation pathways of the drug is useful

for optimizing drug design. Tracer experiments, where a set of atoms is labeled chemically or isotopi-

cally, enable the tracing of atoms across reaction network (Arita, 2003; Menküc et al., 2008). In the 13C flux

analysis, an isotopically labeled substrate is fed to the cell and its pathways are traced by measuring the

concentration of 13C in different parts of the metabolic network. To be able to trace single atoms in the

network, one must have knowledge of single atom’s locations across the reactions (Rantanen et al., 2008,

2006; Rousu et al., 2003). Atom mapping information can be also used to deduce the relevant pathways a

metabolite or drug is following (Blum and Kohlbacher, 2008).

The computational atom mapping problem has been tackled using mainly iterative maximum common

substructure (MCS) approach, which has been extensively researched (Raymond and Willett, 2002). MCS

is one of the well-established methods of graph matching (Bunke, 2000), which has been often applied

towards chemical structures in the graph matching community (Sussenguth, 1965; Lynch, 1968; Levi,

1972; Cone et al., 1977; Tarjan, 1977; Lynch and Willett, 1978; McGregor and Willett, 1981; Xu, 1996;

Wang and Zhou, 1997). The MCS approaches concentrate on finding largest intact substructures from the

reactants and products of a reaction. These substructures are determined to undergo the reaction intact.

Thus, a greedy series of maximal common substructure searches are made to deduce the corresponding

atom regions of the reactants and products, producing the atom mapping.

Akutsu (2004) was the first to formalize the atom correspondences across chemical reactions and prove

that the problem of atom mapping is NP-hard in general case. They concentrated on a special case where a

single cut is made in the reaction, i.e., reactions are of type X�AþY�B$X�BþY�A, where X, Y, A,

and B are chemical species. They used Morgan’s algorithm (Wipke and Dyott, 1974) to approximate the

graph isomorphism algorithm on all 2-partitions of the reactant and product graphs. Arita used a modified

Morgan’s algorithm and an exhaustive search to find the approximated maximum common substructures

without restrictions on the number of cuts (Arita, 2000). The ARM database of up to 3000 reactions was

assembled with heavy curation containing mappings of carbon, phosphorus and nitrogen atoms only (Arita,

2003).

The SIMCOMP program (Hattori et al., 2003a) computes pairwise reactant-product mappings. They

used maximum common substructure algorithm by first transforming the reactants and products into an

association graph and by finding maximum cliques, which correspond to maximal common substructures in

the original graphs, in the association graph (Hattori et al., 2003a,b). A modified Bron-Kerbosch maximal

clique algorithm was used (Bron and Kerbosch, 1971; Koch, 2001; Cazals and Karande, 2005, 2008).

SIMCOMP program was run against KEGG LIGAND database, and an RPAIR database of the pairwise

mappings was generated for roughly 7000 reactant-product pairs (Kotera et al., 2004; Kanehisa et al.,

2006). SIMCOMP doesn’t take reaction information into account, and thus the pairwise mappings can’t

easily be extended to whole reaction mappings. Mu et al. (2007) used SIMCOMP to produce an updated set

of atom mappings.

The MCS approach has several drawbacks. First, computing MCS is computationally hard, and the state-

of-the-art methods either employ a cut-off limit (Hattori et al., 2003a) or approximated methods (Arita,

2003; Akutsu, 2004). Thus, it can be shown that MCS approach fails to find maximal subregions (Arita,

2003). Second, the MCS approach leaves the optimization criteria undefined and in practise heuristically

approximates the minimum graph edit distance function.

Very recently, Crabtree and Mehta (2009) presented an atom-mapping method that is not based on

subgraph isomorphism but on graph isomorphism. They formulated the atom-mapping problem as mini-

mization of bonds broken and formed to realize the chemical reaction. They presented both exact and

heuristic combinatorial algorithms to solve the problem. In this article, we adopt the same optimization-

based philosophy. We present an efficient A* based algorithm (Hart et al., 1968; Dechter and Pearl, 1985)

for automatic mapping of reaction atoms. No constraints on the reaction type or size is imposed. The

algorithm’s objective function is to find an atom mapping minimizing the graph edit distance. The algo-
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rithm directly maps individual atoms according to a set of constraints by a search procedure that is bounded

by upper and lower bound functions of the edit distance. The search is guided by atom’s topological context

feature information, which was in a smaller and more restricted scale introduced by Hattori et al. (2003a).

The objective function of the algorithm can be easily extended or altered to, for example, include infor-

mation on thermodynamic energies of reactions (Mavrovouniotis, 1991; Blanskby and Ellison, 2003).

2. Atom Mapping Via Graph Edit Distance Minimization

In this section, we formally define the atom mapping problem that is to be solved by the algorithms

presented in later sections.

A molecule graph G¼ (V, E, L, W) is a (possibly disconnected) graph with nodes i 2 V labeled by

chemical elements L(i) 2 fH, C, N, O, . . .g and edges1 (i, j) 2 E corresponding to covalent bonds, with

integer weights W(i, j)¼ 0, 1, 2, 3 corresponding to the bond order (no bond, single, double, triple).

Throughout this article, hydrogen atoms are omitted from the molecular graphs for simplicity.

The atom spectrum of G is the vector a(G)¼ (al(G))l , where al(G) is the number of atoms i 2 V with

label L(i)¼ l. The bond type of a pair of atoms with W(i, j)> 0 is the triplet T(i, j)¼ (L(i), L(j), W(i, j))

denoting the adjacent atom labels and the bond order. A bond spectrum b(G)¼ (bl(G))t is a vector where

bt(G) denotes the number of bonds of type t in molecule graph G (Table 1, Fig. 1).

A reaction is a triplet r¼ (R, P, M ), where the R (resp. P) is a molecule graph called the reactant graph

(resp. product graph), representing the set of reactant (resp. product) molecules. The atom mapping M for

a pair (R, P) is a relation M�VR�VP, where (i, j) 2 M denotes that a reactant atom i is mapped

onto product atom j. The domain of M is denoted dom(M)¼fvj(v, u) 2 Mg � VR and the range

ran(M)¼fuj(v, u) 2 Mg � VP. An atom mapping is complete if dom(M)¼VR and if ran(M)¼VP, that is,

every reactant atom is mapped to at least one product atom and vice versa. An atom mapping is valid if the

node labels of all mapped atoms agree: for all (i, j) 2 M, LR(i)¼ LP(j). A reaction r¼ (R, P, M) is valid if

M is valid and complete and the graphs R and P have equal atom spectra.

A partial atom mapping M*�M induces a partition of the both reactant and product graphs into mapped

and residual subgraphs. The mapped reactant graph R(M*) consists of reactant edges

ER,M*¼ER\ dom(M*)2 for which both end points have been mapped, and the nodes induced by the edges.

The residual reactant graph �RR(M�) consists of remaining edges ER�ER,M* and the nodes induced by them.

The set of nodes belonging to both the mapped and the residual graphs are called the boundary. The

complementary residual graph �RRC(M�) consists of unmapped nodes R(M�)� �RR(M�) and the edges between

them. The partition of the product graph into the mapped P(M*) and residual part �PP(M�) is defined in

analogous manner (Fig. 2).

In general, an atom mapping does not need to be bijective; i.e., a reactant atom can be mapped onto

several product atoms (or vice versa), for example, when the participating molecules have symmetric

orientations. Here, however, we restrict our attention to bijective atom mappings. For bijective mappings,

we use the function/inverse function shorthands M(i)¼ j and M�1(j)¼ i for (i, j) 2 M. For example, see

Table 1 for atom and bond spectra of cysteine.

The atom mapping problem is defined as follows.

Table 1. Atom and Bond Spectra of Cysteine with Hydrogens Omitted (Fig. 1)

C O N S

a(G) ¼ [ 3, 2, 1, 1 ]

C��C C��O C����O C��N C��S

b(G) ¼ [ 2, 1, 1, 1, 1 ]

1All edges are considered undirected; thus the order of stating the nodes of an edge does not matter, (i, j): ( j, i).
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Definition 1. (Atom mapping problem). Given a pair (R, P) of molecule graphs that have equal atom

spectra, return all atom mappings M�VR�VP such that (R, P, M) is a valid reaction and the mapping cost

is minimal, i.e. f (M) � f (M0) for any valid and complete atom mapping M0 �VR�VP.

Ideally, the cost f (M) assigned to an atom mapping M should correlate with the difficulty of making

certain reaction to happen, or the probability of the reaction happening by chance. Accurate quantitative

modelling of this kind is, however, computationally very demanding, as they require modelling of the

energy landscapes of chemical reactions, which at the extreme case require quantum chemistry techniques

(Gao et al., 2006). In systems biology applications, where thousands of enzymatic reactions need to be

handled, such models are not tractable. Instead, simple heuristic cost functions needs to be used.

In this paper, we use a version of graph edit distance named edge edit distance:

Definition 2. (Edge edit distance). Given a pair of graphs G1, G2 the edge edit distance dEE(G1, G2) is

the minimum number of edge edit operations that is required to transform G1 to G2.

An easy extension of edge edit distance is to assign weights to edges, so as to indicate which edges might

be more difficult to cut than others.

Definition 3. (Weighted Edge Edit Distance). Given a pair of graphs G1, G2 the weighted edge edit

distance dWE(G1, G2) is the minimum sum of weights of inserted, deleted and renamed edges that is

required to transform G1 to G2.

The weights could, for example, correspond to bond order W(i, j) or some other measure that correlates

with the difficulty of editing the bond.

It should be clear that computing either edge edit distance variant is no easier than solving graph

isomorphism: dEE(G1, G2)¼ 0 if and only if G1 and G2 are isomorphic (resp. for dWE). As there is no known

polynomial algorithm for graph isomorphism (Uehara et al., 2005), we will not look for such for the edge

edit distance in this article, but the focus is on general search algorithms that behave well in practice.

If the edit operations are restricted to insertions and deletions, given an optimal atom mapping M, the

edge edit distance can be expressed as

fEE(M)¼ dEE(R, P)¼ jEPDEM j,

where EM is a set of images of the reactant graph edges under the mapping M, that is, e¼ (M(i), M(j)) for

some (i, j) 2 ER. Similarly, the weighted edit distance is given by

fWE(M)¼ dWE(R, P)¼
X

e2EPMEM

W(e):

Here, the edges in the set EM inherit their weights from the reactant graph W(M(i), M(j))¼W(i, j).

3. ATOM MAPPING ALGORITHM

In this section, we will describe a fast algorithm for computing atom mappings minimizing the edit

distance based costs fEE(M) and fWE(M).

FIG. 1. Amino acid cysteine.
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Our algorithm is made of the following ingredients, which we will detail subsequently:

� An A* type total path cost estimate to guide the search in the space of partial atom mappings.
� An extension operator for partial mappings that maintains the path cost estimates in constant time per

edge.
� Pruning of A* search space by computing upper bounds on the optimal cost via fast greedy search.

3.1. Total path cost estimates for partial atom mappings

We solve the atom mapping problem via search in the space of partial mappings. Thus, the states

correspond to valid partial mappings M*�M, where some atoms are already mapped and the rest are not. A

state transition corresponds to augmenting a partial mapping by mapping one unmapped reactant atom to an

unmapped product atom.

Here we derive an A* type path cost estimate for this partial mapping space. The estimate is divided into

two components

f̂f (M�)¼ g(M�)þ h(M�),

the accumulated cost g(M*) so far is the cost to arrive at the partial mapping M*, and the future cost

estimate, a lower bound for the cost that will still be accumulated to complete the mapping. The conse-

quence of h(M*) being a lower bound on the future cost is that f̂f (M�) is a lower bound for the total path cost

f (M):

Lemma 1. If M*�M then f (M) � g(M�)þ h(M�)¼ f̂f (M�)

In this article, the accumulated cost will be given as the edge edit distance of the mapped reactant and

product subgraphs:

g(M�)¼ fEE(R(M�), P(M�))

For the future cost estimate, two properties are essential: First, it should be tight enough to prune sub-

optimal branches from the search space. Second, it should be fast to evaluate so that benefits of search

space pruning will realize. We will give three alternatives for future cost estimate in the following. For

bijective atom mappings, it turns out that practical future cost estimates can be obtained by using the

information contained either in the bond spectra or in the atom spectra of the reactant and product

graphs.

For the first estimate, the bond spectrum difference

Db(R, P)¼ b(R)� b(P)

of the reactant and product graphs is the key concept. We set the future cost estimate

hb(M)¼
X

t

jDbt( �RR(M), �PP(M))j

to be the bond spectrum difference of the residual graphs of M. The following lemma established the lower

bound property

Lemma 2. If M is a valid bijective partial atom mapping, then

fEE( �RR(M), �PP(M)) � hb(M)

Proof. The result follows from the simple observation that one edit operation can change the bond

spectrum difference by at most one, and that both sides of the inequality are non-negative by definition. &

Any possible looseness in the above bound is caused by situations where some extra edit operations that

do not decrease bond spectrum difference are needed to make the mapping topologically feasible. We note
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that this bound can be evaluated efficiently: for each partial mapping, we keep track of the bond spectra of

the residual graphs in a hash table and their current bond spectrum difference. Both can be updated in near

constant time when expanding the partial mapping.

Another lower bound can be obtained by examining the neighborhoods of atoms in the reactant and

product graphs. Let g(G) denote the neighborhood spectrum of molecule graph G, defined by

g(G)¼ (gt(G)), where gt(G) is the count of atom neighborhoods of type t in G. Atom neighborhood type is

defined as a pair t¼ (l, s), where l is an atom type and s 2 Lk(l) is a string of alphabetically ordered atom

type labels and k(l) is the maximum number of neighbors for atom type l. For example, t¼ (C, COO)

describes a carbon connected to one carbon and two oxygen atoms, and g(C, COO)(G) represented the number

of such arrangements in G. The future cost estimate

hc(M
�)¼ 1

2

X

t

jDct( �RRC(M�), �PPC(M�))j

is given as the sum of absolute differences in the neighborhood spectra of the complementary residual graphs,

that is, in the unmapped regions of reactant and product graphs. The lower bound property is given by

Lemma 3. If M is a valid bijective partial atom mapping, then

fEE( �RR(M), �PP(M)) � hc(M)

Proof. The lemma follows from the observation that one edge edit operation changes exactly two atom

neighborhoods and hence can change the neighborhood difference by at most two, and from the non-

negativity of both sides of the inequality. &

The future cost estimate hg is similarly efficient to evaluate: we can incrementally update the neigh-

borhood spectra of the residual graphs and the current neighborhood spectrum difference in near constant

time.

The two lower-bound can be combined to a single bound by taking the maximum. Thus, the final future

cost estimate used in our algorithm is given by

h(M�)¼ maxfhb(M�), hc(M
�)g:

Example. The KEGG reaction R01289 serineþhomocysteine <¼> cy-
stathioneþH2O is part of the cysteine synthesis pathway (Fig 2). A partial mapping M* is

highlighted in the figure. The partial mapping’s accumulated cost is g(M*)¼ 0 as the partially mapped

regions of reactant and product sides are equal. The future cost estimate based on bond spectrum is

hb(M*)¼ 2, as the bond spectrum’s of residual graphs differ by an extra C��S and a missing C��O on the

reactant side (Table 2). The future cost estimate based on atom neighborhoods is hg(M*)¼ 2 (Table 3). The

cost is thus f̂f (M�)¼ g(M�)þ h(M�)¼ 0þ 2¼ 2.

Finally, we note that a lower bound can be derived by performing a minimum weight bipartite

matching between the reactant and product atoms in the residual graph of a partial mapping. We con-

struct a bipartite graph G¼ ( �VVR(M), �VVP(M), E, W) taking the nodes of the residual reactant and product

graphs and connecting nodes with edges E¼f(r, p)jr 2 �VVR(M), p 2 �VVP(M), L(r)¼ L(p)g, edge weights

given by W.

FIG. 2. KEGG Reaction R01289: serineþhomocysteine <¼> cystathioneþH2O. Gray

regions show the partial mapping M*. Unhighlighted areas together with dashed nodes indicate the residual reactant and

the residual product graphs. The unhighlighted areas only form the complementary residual graphs.
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Any bipartite matching, given by a subset B�E of edges that define a one-to-one in �VVR(M), directly

gives a valid atom mapping. However, in general it does not need to be the one with minimum edge edit

distance. The suboptimality arises from the fact that the edges are matched independently, disregarding the

fact that mapping a pair of adjacent reactant atoms to a pair of non-adjacent product atoms necessarily

induces at least one edge edit.

However, by setting the bipartite weights appropriately, we can guarantee the bipartite matching cost

bound the edit distance from below. This is achieved as follows.

For each edge (r, p) we examine the bond spectrum differences in the neighborhood graphs GN (r)

and GN (p) induced by the bonds adjacent to r, and p, respectively. We keep separately track of

the positive and negative differences, DbN (r, p)þ ¼
P

t max (0, bt(GN (r))� bt(GN (p))) and

DbN (r, p)� ¼
P

t max (0, bt(GN (r))� bt(GN (p))). The sum is set as the edge weight in the bipartite graph:

W(r, p)¼ 1

2
(DbN (r, p)þ þDbN (r, p)� ):

The coefficient 1/2 comes from the fact that neighborhood differences are divided equally among the two

end points of a bond. The bipartite matching cost is then

hBPM(M)¼
X

(r, p)2B

W(r, p):

We have the following lemma:

Lemma 4. If M is a valid bijective atom mapping, then

fEE( �RR(M), �PP(M))�hBPM(M) (1)

Proof. We can equivalently write fEE(R, P)¼
P

r2R

P
t2T f t

EE(r), where f t
EE(r)¼

1
2
jfr0 2 Rj(r, r0) 2 EE, L(r0)¼ tgj is the number of edit operations in the bonds adjacent to r divided by two,

and f t
BPM(r, p)¼ 1

2
jDct(r, p)j is the contribution of the atom type t to the cost of the edge (r, p) in the

bipartite mapping.

Assume now contrary to the claim that fEE(R, P)5 fBPM(R, P). Then we can find a such atom r and atom

type t that f t
EE(r)5 f t

BPM(r, p), f t
BPM(r, p)4 0, and (r, p) 2 M. Thus there is a surplus of k¼ f t

FBM(r, p)

Table 2. Bond Spectra of the Mapped Graph, Residual Graph, Whole Graph, and Their Difference

C��C C��O C¼O C��N C��S

b( �RR(M�)) ¼ [ 2, 3, 2, 1, 0 ]

b(R(M*)) ¼ [ 3, 0, 0, 1, 1 ]

b(R) ¼ [ 5, 3, 2, 2, 1 ]

C��C C��O C¼O C��N C��S

b( �PP(M�)) ¼ [ 2, 2, 2, 1, 1 ]

b(P(M*)) ¼ [ 3, 0, 0, 1, 1 ]

b(P) ¼ [ 5, 2, 2, 2, 2 ]

Db( �RR(M�), �PP(M�)) ¼ [ 0, þ1, 0, 0, �1 ]

hb(M*) ¼ 2

Table 3. The Atom Neighborhoods of Residual Graphs of Partial Mapping M * Indicated in Figure 2

(C,CO) (C,CS) (C,CCN) (C,COO) (O,C) (O,) (N,C)

c( �RRC) ¼ [ 1, 0, 1, 1, 5, 0 1 ]

c( �PPC) ¼ [ 0, 1, 1, 1, 4, 1, 1 ]

Dc( �RRC , �PPC) ¼ [ þ1, �1, 0, 0, þ1, �1, 0 ]

hg(M*) ¼ 2

The atom neighborhoods differ at four locations, and thus we need at least two bond changes to equalize them.
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neighbors of type t in the reactant neighborhood as compared to the product neighborhood. As M is a valid

mapping, k atoms of type t cannot be mapped to the neighbors of p, instead the bonds should be cleaved by

edit operations. However, by our assumptions in the neighborhood of r there are only f t
EE(r)5 k edit

operations. Hence, after using all edit operations, there will be fBPM(r, p)� fEEt(r) neighbors remaining that

have not been cleaved and cannot be mapped to neighbors of p. This is a contradiction and hence our claim

is proven. &

Although (1) gives a relatively tight lower bound for the future cost, it comes with a price: computing the

bipartite matching takes O(V3) time (Munkres, 1957; Riesen et al., 2007). Hence, it is believed to be too

slow to be used within the A* algorithm.

3.2. Efficient expansion of partial mappings

Given an arbitrary partial mapping M, how do we efficiently choose the next pair of atoms to be mapped?

There are two issues to consider:

� We do not want to revisit a state that we have already visited. Blindly letting any unmapped atom to be

a candidate would make us, at the worst case, visit each partial mapping M as many times as there are

different permutations.
� We wish to maintain the total path cost estimate efficiently. This means that the effect of the newly

mapped atom to both the accumulated cost and the future cost estimate should be fast to compute.

In our approach the above is achieved by numbering the reactant atoms consecutively using breadth-first

search. We start from an extreme atom of the largest reactant and iteratively process the rest of the reactants

in the order of their size. On the product side, no ordering for the atoms is imposed but any correctly labeled

unmapped atom can be paired with the next reactant atom. Thus, the search tree only branches on the

choice of the product atoms, not on the choice of reactant atoms (see Fig. 6 below).

This approach ensures that the same states are not revisited. The efficient maintenance of the total path

cost estimate is as follows: when the atom pair (r, p) is added to the partial mapping M, the incurred edge

edit distance is given by the sum of mapped neighbors r 0 of r whose images M(r 0) are not neighbors of

r and the mapped neighbors p0 of p that are not neighbors of r, that is the symmetric difference of the

neighbor sets. Computation of this number entails single traversal of the neighbor sets of the newly mapped

atoms that takes constant asymptotic time as the neighbor sets have size at most four due to chemical

valence rules.

3.3. Pruning the search

The A* algorithm (Algorithm 1) despite its theoretical appeal, has one practical weakness: the priority

queue of partial solutions can grow very large and the available main memory will become a limiting factor

on how complex reactions can be mapped.

Fortunately, it is possible to prune the priority queue by a simple strategy: we can use a fast heuristic

algorithm to complete any partial solution. This procedure will give us a complete, valid atom mapping M

with some cost f (M). The obtained cost f (M) is obviously an upper bound for the optimal cost and all

partial solutions whose lower bound is already higher than the upper bound can be pruned from the priority

queue.

Here, we present a pruning strategy based on two heuristic algorithms, greedy search and bipartite

matching. The greedy algorithm augments the partial mapping by always mapping the pair of atoms with

least increase in total path cost (Algorithm 2). The bipartite matching algorithm, on the other hand, matches

the atoms independently, guided by a similarity score for atoms.

3.3.1. Atom features. Both our heuristic mapping algorithms benefit from a similarity score s for

atoms: in the greedy algorithm, atom similarity guides the selection of which atom pair to map the next. In

the bipartite matching algorithm, the similarity score is used in defining the weight of the individual atom

matchings. The simplest similarity score is to only allow matching of atoms of equal label L. In practice, it

is useful to also compare the neighborhoods of atoms i and j to be matched. The neighborhoods differ if the

atoms lie at the chemical reaction’s site-of-modification (SOM), but usually a major part of the molecule is

not immediately touched by the chemical transformations. In these areas, the neighborhoods of matched

atoms are equivalent up to the distance to the closest SOM.
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An similarity score based on atom’s k-neighborhoods is presented. It is composed of four atom features:

1. Atom distribution adk(i) defines the distribution of atoms up to distance k around the atom i. Parti-

cularly ad0(i)¼ L(i) identifies the label of the atom itself.

2. Wiener index (Bereg, 2008) wienerk(i) is the sum of distances between all vertex pairs in a graph

spanned by distance k from atom i. Wiener index is an invariant related to the branching properties of

the graph.

3. Morgan index (Bereg, 2008; Wipke and Dyott, 1974) morgank(i) is an iteratively computed topological

invariant of the molecule graph computed for a submolecule spanned by distance k from atom i.

4. Finally, the fourth atom feature ringk(i) tells whether atom i is part of a k-sized ring for k 2 f4, 5, 6g.

The similarity score indicates how far from the i and j the neighborhoods are equivalent according to

different atom features. Each feature has an equal amount of weight in the similarity score sk, where k is the

size of the neighborhood:

Algorithm 1 S /AstarMap (R, P)

Inputs: Reactant graph R, product graph P

Outputs: Set S of optimal atom mappings

(r1, r2, . . . , rk) Order the reactant atoms using BFS

S /;; ub /?
Priority queue Q f(r1, p)jL(r1)¼ L(p), p 2 Pg
while Q is not empty do

M  removeBest[Q] fminimizing f̂f (M)¼ g(M)þ h(M)g
if f̂f (M)4 ub then

return S {only worse solutions left in Q, we can finish}

end if

if M is complete then

ub / f (M)

S / S [{M}{this is an optimal mapping}

else

M0/ expandMapping(M)

insertQueue(Q, M0);
end if

end while

return S

Algorithm 2 GreedyMap (R, P)

M / empty map

reacAtoms / VR

prodAtoms / VP

while VR \ dom(M) = ; do

minV al /?
minPair / NIL

for all (r, p) 2 reacAtoms · prodAtoms do

if fc(r, p) < minVal then

minVal / fc(r, p)

minPair / (r, p)

end if

end for

M / M [ minPair

remove p from reacAtoms

remove r from prodAtoms

end while
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sk(i, j)¼ 1

4

Xk

l¼1

[adl(i)¼ adl(j)]

þ 1

4

Xk

l¼1

[wienerl(i)¼wienerl(j)]

þ 1

4

Xk

l¼1

[morganl(i)¼morganl(j)]

þ 1

4

X6

l¼4

[ringl(i)¼ ringl(j)]:

:

Above, [	] denotes the indicator function. The value of k was set to 10 to differentiate the large intact

regions of large molecules. We have precomputed the atom features for the whole KEGG LIGAND

database and thus the computation of similarity score is made in constant time during the A* search.

The similarity function is used in greedy algorithm to differentiate between all candidate atom-pairs to be

added to the partial mapping, if there are several atom-pairs which have the minimal effect on the cost

estimate f̂f ðM�Þ. In bipartite graph matching, the similarity function serves as the edge weight.

In the A* algorithm, similarity function is also used to differentiate between partial mappings with

equally lowest estimated score f̂f ðM�Þ. Each partial mapping in the A* queue represents an addition of atom

pair to the previous partial mapping and the similarity function tells which of the candidate atom pairs are

most similar with respect to their extended neighborhoods (see Fig. 6 below).

We note that the MCS approach by Hattori et al. (2003a, b) also uses a similarity function by labeling the

atoms into 68 groups based on their immediate or ring surroundings.

4. EXPERIMENTS

The experiments were done on KEGG/Ligand database version 49 ( January 9, 2008) containing a set of

7781 common biotransformation reactions. A total of 6015 reactions contained full and complete definition

of the biotransformation. Rest of the reactions had missing, erroneous, ambiguous or unbalanced reaction

definitions. These valid reactions were mapped using four algorithms: A*, maximum common subgraph

(MCS) algorithm used by Hattori et al. (2003a) (with iteration cutoff parameter R¼ 100,000), Bi-partite

graph matching algorithm (implementation by Hungarian algorithm [Munkres, 1957; Riesen et al., 2007])

and naive greedy algorithm. All algorithms were implemented using Java and computed with 4 Gb of

memory and Intel Xeon X5355 cpu running at 2.66 GHz. The A* algorithm managed to compute 5802

reactions, and our MCS implementation 5934 reactions, of the 6015 valid KEGG reactions in less than one

hour per reaction. BPM and greedy algorithms computed all reactions. A total of 5624 reactions were

computed with all algorithms and are comparable.

As the A* algorithm finds an optimal atom mapping with respect to the edit distance, the main result is to

compare how often MCS-based approach errs from this on real biochemical reactions represented by

KEGG. We also analyze the performance of greedy and BPM procedures, and RPAIR pairwise mappings

with respect to their edit distances.

Figure 3 shows the count of reactions with respect to their difference from optimal edit distance. MCS

algorithm optimally maps 5119 (91.0%) reactions. The difference is þ2 for 359 reactions (6.4%), þ4 for 66

(1.2%) and larger for 80 (1.4%) reactions.

The two procedures suggested as pruning algorithms are of comparable accuracy. BPM and greedy

algorithms achieve 63.3% and 54.4% optimal accuracy, respectively. They differ from MCS by having a

longer and wider tail. Both procedures are highly dependent on the performance of the similarity function

and atom features. Both algorithms work well as pruning procedures where they are used numerous times

during the A* search.

Figure 4 shows the performance of the four algorithms. The reaction mappings are sorted by edit distance

individually for each algorithm. The greedy and BPM algorithm’s results rise fast, while the MCS algo-

rithm is effective for the majority of the reactions. The MCS also has a high tail indicating mappings where
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MCS procedure gives results of high edit distance. The MCS fails especially on reactions with high

minimum edit distance. These reactions are often large and have complex reaction mechanism.

The running times of A* and MCS algorithms are comparable. Both algorithms suffer from high memory

requirements, but in the A* algorithm smart pruning strategies can alleviate the problem. Also, because A*

maintains both lower and upper bounds on the optimal solutions, insight into the optimality of the result

achieved after early termination is acquired.

KEGG RPAIR database contains a total of 10124 reactant-product mappings. We reconstructed reaction

level mappings by combining the pairwise mappings of all reactant-product pairs of each reaction. Most of

the reconstructed mappings only partially cover the reactants and products, or are not bijective. A total of

6851 reactions mappings can be at least partially reconstructed and 4364 of those are complete mappings.

However, RPAIR entries use internal molecular definitions which differ from the standard definitions used

in KEGG LIGAND. We couldn’t automatically match these two sources of molecular definitions, and

hence only 2161 of the reconstructed mappings are consistent with KEGG LIGAND. These mappings are

generated with SIMCOMP MCS algorithm and are manually curated (Kotera et al., 2004).

1932 of these mappings have the optimal edit distance, while only 16 are non-optimal (all differing by 2).

This is due to the manual curation of KEGG RPAIR. When these 2161 mappings are compared against the

direct MCS mappings, 13 % of the reconstructed mappings have different edit distance compared to direct

MCS mappings, signifying manual curation. 3% of the curated mappings have larger edit distance than

uncurated mappings, while 97% have smaller edit distance. This indicates that domain experts almost

always prefer the mappings with low edit distances.

5. DISCUSSION

Little is known about the process of enzymatic reactions with respect to the resulting atom mapping. In

general, the enzyme doesn’t need to minimize the edit distance—or to maximize the size of common

FIG. 5. Competing atom mappings of methionine:glyoxylate aminotransferase reaction. The MCS algorithm results

in mapping of cost 4, while A* achieves a mapping of cost 2. However, the MCS mapping exhibits the correct reaction

mechanism according to biochemical knowledge.

FIG. 6. Search tree of the A* algorithm on R00893: cysteineþoxygen <¼> 3-sulfino-
alanine. The left column indicates with circles the reactant graph atom ordering, which is fixed. The tree shows

possible partial mappings at each step starting from the empty mapping and progression of the A*. The algorithm chooses

always the partial mapping which minimizes the cost function and find two optimal mappings fast. On the first row

similarity function is used to distinguish better candidate. After the two complete mappings are found, the algorithm

continues from the root to another candidate with f¼ 2 to ensure that all remaining optimal mappings are found.

‰
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subgraphs. The reaction mechanism is the result of chemical and physical interactions and laws, which in

turn produce the atom mapping pattern. An interesting approximation of more realistic cost function is to

use bond dissociation energies (Blanskby and Ellison, 2003), approximated with, for example, group

contribution theory (Mavrovouniotis, 1991).

An example of a reaction which does more work than needed is R00652 methio-
nine:glyoxylate aminotransferase (Fig. 5). Here, the real transformation is

thought to happen as shown on top (Glover et al., 1988), which requires a total of four operations: two

cuts and two new bond formations. This is the mapping the MCS algorithm finds. The A* algorithm finds

the mapping shown on bottom, which includes only two operations. Here, the simpler mapping is

unrealistic probably because of the high cost of cutting the methionine at the middle. In the MCS

mapping, only easily modifiable oxygen and nitrogen atoms are operated at the edges of the molecules.

The A* cost function could be extended to take this into account.

Enzymes catalyzing reactions can be classified into groups such as transferases or isomerases according

to, for example, enzyme classification (EC) system. This contextual information could be used to infer the

type of reaction and the likely type of transformation of the reaction. The structural information of the

enzymes and substrates of a reaction could be used for 3D modeling and prediction of the likely site-of-

modification. 3D modeling has been actively researched in drug design (de Graaf et al., 2005).

An interesting development to the framework presented here would be to explicitly model the symmetry

classes of optimal atom mappings. That is, all mappings which are automorphic. As seen in Figure 6,

symmetrical atoms lead to duplication of the number of optimal mappings. Handling of automorphic

mappings can be either designed into an mapping algorithm or be done afterwards to classify the resulting

mappings into symmetry classes. We have implemented an VF2-based isomorphism algorithm which can

answer whether two bi-graph mappings (i.e., atom mappings) are isomorphic (Cordella et al., 1999, 2004).

To our knowledge, no current method deals with symmetries directly in the mapping algorithm itself.

In a setting where only one optimal mapping is sufficient, the upper bound can be optimized. Instead of

setting the upper bound to the cost of current best mapping, it can be set to f (M) �1 as we are only

interested in mappings which are better than the current best mapping. This leads to more effective pruning

of the search space. This strategy is especially effective as the cost function f is discrete and often small

(Fig. 4).

6. CONCLUSION

This article describes a novel A* algorithm for atom mapping problem. The proposed method isn’t

based on MCS, but utilizes a sophisticated cost function to determine the atom mapping that incurs the

minimum number of edge operations. The algorithm uses smart heuristics to guide itself through the

space of atom mappings and guarantees an optimal result. The A* algorithm is well-defined and can be

modified to use any cost function to determine a good atom mapping. We also propose a novel set of

atom features, which are used to distinguish between similar atoms. The algorithm was used against

KEGG database, and the resulting mappings agree well with the RPAIR database mappings, which are

manually curated.
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