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the posterior parameters of latent process f.

(a) Samples from a 2D deep GP prior exhibit a pathology wherein representa-
tions in deeper layers concentrate on low-rank manifolds. (b) Samples from a

‘ . Experiments \ diff GP prior result in rank-preserving representations. (¢) Continuous trajec-

_ o tories are formed with smooth drift and structured diffusion (d).
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(e) Model convergence

Observed input space (a) is transformed through stochastic continuous-time
mappings (b) into a warped space (¢). The stationary Gaussian process in the | o a0 MM

warped space gives a smooth predictive distribution corresponding to highly Number of iterations
non-stationary predictions in the original observed space.
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Increasing the flow time 1" improves the train and test errors (a,c), likelihoods

(b,d) and model convergence (e).

UCI regression benchmarks e Increasing time can lead to an increase in the model capacity without

over-fitting.
boston energy concrete wine red Kkin8mn power naval protein e Diffusion acts as regularization.
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BNN T—=2 301 180 567 064 010 412 001  4.73 ' 7. Contributions and conclusions .
Sparse GP M =100 287  0.78 5.97 0.63 009 3.91  0.00 4.43 . We . . - ‘ , .
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