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ABSTRACT 

Computers can now simulate simple game physics systems 

hundreds of times faster than real-time, which enables real-

time prediction and visualization of the effects of player 

actions. Predictive simulation is traditionally used as part of 

planning and game AI algorithms; we argue that it presents 

untapped potential for game mechanics and interfaces. We 

explore this notion through 1) deriving a four-quadrant 

design space model based on game design and human 

motor control literature, and 2) developing and evaluating 

six novel prototypes that demonstrate the potential and 

challenges of each quadrant. Our work highlights 

opportunities in enabling direct control of complex 

simulated characters, and in transforming real-time action 

into turn-based puzzles. Based on our results, adding 

predictive simulation to existing game mechanics is less 

promising, as it may feel alienating or make a game too 

easy. However, the approach may still be useful for game 

designers, for example, as it allows one to test designs 

beyond one’s playing skill.  
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INTRODUCTION 

Simulation of dynamic physical systems utilizes a set of 

rules that are unambiguous and mathematically well-

defined [5], but can at the same time lead to emergent, rich 

behavior. This has inspired many types of physically based 

games and game mechanics, with popular examples such as 

The Incredible Machine [4], Angry Birds [25], Cut the 

Rope [36], Where’s My Water [3], QWOP [2], and Portal 

[34]. Gradually, game physics has evolved towards more 

complex systems, i.e., from 2D to 3D, and from rigid 

bodies (e.g., stacked objects) to soft bodies (e.g., ropes and 

cloth) and fluids. During recent years, no fundamentally 

new physics simulation types have appeared, but on the 

other hand, personal computing devices can now simulate 

simple systems hundreds or even thousands times faster 

than real-time. This paper focuses on capitalizing this 

excess computing power for novel game mechanics and 

interfaces.   

In this paper, we argue that real-time predictive physics 

simulation provides an underexplored tool for game design. 

Most games simulate physical systems at a fixed rate such 

as 60 simulation steps per second, and only use simulations 

in a reactive manner to compute the interactions of objects 

based on player input. In contrast, we denote by predictive 

simulation a process of: 

1) Saving the current simulation state  

2) Simulating the physics forward for multiple steps, up to 

a prediction horizon,  

3) Using the simulation results to preview and evaluate 

the results of player decisions  

4) Restoring simulation state back to the saved state, so 

that the game may continue without discontinuities. 
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Figure 1. Our “animation as a game” prototype, where the player’s goal is to save the falling character. A) Initial situation where 

the character is hit by a projectile. B) Game interface appears on the left, and the main view shows predictive movement 

trajectories and future pose; the character will hit its head unless the player acts. C) Using the posing controls (top-left), the player 

adjusts the future pose. Tucking increases rotation speed, which is predicted and visualized in real-time. D) Once satisfied with the 

prediction, the player advances the simulation. See the supplemental video at 03:00 for live gameplay. 
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As a simple example, while the player aims a projectile, one 

can provide immediate visualization of the predicted 

trajectories of impacted objects. Figure 1 presents a more 

complex example of controlling a humanoid model; the 

same principle of providing immediate feedback through 

predictive simulation trajectories still applies.  

As summarized in Table 1, predictive physics simulation is 

not a new concept, and it has been increasingly utilized by 

recent artificial intelligence (AI) and animation research 

(e.g., [11,32]). However, research has focused on non-

player characters or enabling simple high-level control of a 

simulated avatar, e.g., making a bipedal character walk in a 

desired direction. This has obvious applications in action 

games such as God of War [27] or Uncharted [20], which 

presently need vast quantities of animation data to enable 

such high-level control. However, there are also various 

games such as Angry Birds [25] and QWOP [2], where the 

player directly controls simulations on a low level. In such 

games, predictive simulation seems less explored. This 

observation prompts our primary research question: What 

novel possibilities and challenges emerge from combining 

predictive simulation with low-level direct control of 

simulated characters?  

We contribute to answering the research question through 

an exploratory research process of 1) defining a four-

quadrant design space model based on human motor control 

theory, and 2) developing and evaluating six novel 

prototypes that demonstrate the potential and challenges of 

each quadrant. Thus, using the contribution types of 

Wobbrock and Kientz [35], we make both a theoretical and 

an artifact contribution. In the following, we first start with 

the design space model, and then discuss the relevant 

background, our prototypes, their evaluation with game 

designers, and finally, key design insights and lessons 

learned. 

DESIGN SPACE MODEL 

In game and animation AI, a primary function of predictive 

simulation is to help an intelligent controller evaluate 

different options when making decisions. Such controllers 

typically use a feedback control model, i.e., decisions are 

evaluated through comparing simulation results to some 

goals, and the comparison results then inform further 

decisions. A key observation behind our design space 

model is that much of human motor control and decision 

making can also be modeled using a similar feedback or 

closed-loop model [29]. Further, control difficulty is 

heavily affected by the following three factors: 

 Time pressure, which depends on the control task. 

Adjusting actions such as steering a car based on 

sensory feedback from previous actions always takes 

some time [29].  

 Complexity of actions, which depends on both the 

control task and control interface. Complexity also 

interacts with time pressure, as complex decisions take 

more time; for example, reaction time grows as a 

function of the number of stimulus-response mappings 

[29].  

 Possibility of anticipation, which depends on 

information provided by the task and interface. 

Although our reaction time is limited, we can still 

execute sequences of quick actions if we can anticipate 

and plan ahead of time [29]. An example of this is 

provided by various music games which display 

timelines of upcoming notes to play, providing more 

anticipation and reaction time. 

A key opportunity of predictive simulation is in providing 

anticipation and enabling rapid evaluation of action results 

before action is taken, which should help in control tasks 

with more time pressure and/or increased action 

complexity. Time pressure and action complexity are up to 

the game designer to decide, and the decision is crucial 

since designing appropriately difficult challenges for the 

player is a central part of game design [26,28]. Hence, we 

propose the 2D design space model of Table 2, with time 

pressure and action complexity as the coordinate axes.
 
We 

have divided the model into four quadrants, and following 

this division, we have developed and evaluated at least one 

prototype to explore each quadrant.  

To reiterate, the model in Table 2 is based on both game 

design literature (importance of appropriate difficulty) and 

human motor control research (factors affecting difficulty). 

In low-level control of simulated characters, action 

complexity increases with the number of controlled 

simulation parameters and the need to plan for multiple 

actions instead of just a single action. With respect to time 

pressure, simulations can be controlled in real-time or turn-

based fashion. Overall difficulty grows towards the bottom 

 Reactive simulation Predictive simulation 

High-level 

(abstract) 

control 

Animation-driven action 
games, e.g., God of War, 

Uncharted. 

Recent AI and animation 
research. 

Low-level 

(direct) 

control 

Direct physics control games 
(QWOP, Angry Birds) 

Underexplored.  

Table 1. A categorization of physics simulation uses. Predictive 

simulation is increasingly used in AI and animation research, 

which is however focused on high-level control of simulated 

characters. 

 

 Simple actions Complex actions 

Turn-based 

control 

(no time 

pressure) 

2D ball shooting 
(Figure 2) 

Character posing, turn-
based QWOP, timeline 

QWOP (Figures 1,3,4). 

Real-time 

control 

(time 

pressure) 

3D car (Figure 5) 3D bike (Figure 6)  

Table 2. A four-quadrant model of the underexplored design 

space of Table 1, with our prototypes placed in the quadrants.  
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right corner of our model. We do not claim that our model 

captures all dimensions of the design space; our purpose is 

to highlight important dimensions that should provide 

sufficient focus for the rest of this paper. Of the three 

factors affecting difficulty listed above, anticipation is not 

explicitly included in the model in Table 2, as improved 

anticipation is automatically implied by using predictive 

simulation and visualization. In each quadrant, the degree 

of anticipation can be fine-tuned by selecting what to 

visualize and adjusting the prediction horizon.  

BACKGROUND AND RELATED WORK 

Before describing our prototypes in detail, we now make a 

brief detour into reviewing related work. 

Reactive physics simulation in games 

Reactive physics simulation in digital games dates back to 

at least the gravity simulations of Space War, Lunar Lander 

and Artillery [18]. Advances in simulation technology and 

computing power have inspired new game mechanics and 

types such as the water manipulation in Where’s my Water 

[3]. Initially, simulations were only computed in two 

dimensions and with rigid bodies, but recently, even 3D 

large scale water simulation has found use in gameplay 

[13].  

While our work focuses on simple mouse and keyboard 

interfaces, our Table 1 is inspired by Liu and Zordan [17], 

who similarly divide game interfaces into literal (low-level) 

and symbolic (high-level) in the context of gestural 

interaction. Both interface types have their strengths and 

weaknesses. Low-level control of simulation parameters 

such as a bipedal character’s joint motor speeds can give 

rise to emergent and interesting movement, as in the 

interfaces of Laszlo et al. [15] and later in the games 

QWOP [2] and Toribash [19]; both games are however 

extremely difficult. Although the difficulty can give rise to 

physical comedy [31], many games instead simplify and 

abstract the interface to a level where the player simply 

presses a button to trigger complex predefined character 

animations. Creating and finetuning the animations is 

however costly, and some degree of movement emergence 

is lost, although physics simulation can still be used for 

reactions of the game world.  

Predictive physics simulation in animation and AI 

Predictive physics simulation is increasingly used in 

procedural animation and AI research. The basic idea is that 

since the outcomes of multiple alternative actions can be 

simulated and evaluated, an optimization algorithm can 

choose which action to take and which actions to evaluate 

next. This has a long history in animation synthesis and 

simulated robot control (e.g., [1,9,16,21]), with recent 

methods capable of real-time control of 3D humanoid 

bipeds [11,32]. Predictive physics simulation has also been 

used, especially together with stochastic search algorithms 

such as Monte Carlo Tree Search, for controlling non-

player characters in video games [7,12], and for providing 

real-time feedback to level designers regarding the 

playability and possibilities of level designs [30]. 

In close relation to our work, Twigg and James [33] 

investigated predictive trajectory visualizations for 

adjusting the starting conditions of simulations such as 

trebuchet shooting; our ball shooting prototype in Figure 2 

extends this with the interactive heatmap. We are also 

inspired by Laszlo et al. [14] who introduced predictive 

simulation and visualization for animation interfaces close 

to our prototype in Figure 1. We extend their work with 

full-body humanoid characters, visualization of trajectories 

in addition to poses, and the timeline interface of the 

prototype in Figure 4. 

Predictive physics simulation in game interfaces 

Although many games such as Angry Birds do visualize 

predictions of object movement trajectories, it appears that 

such predictions are mostly computed using more 

computationally efficient but also more limited methods 

than predictive simulation. For example, basic ballistic 

equations allow computing projectile trajectories but not the 

subsequent complex interactions of impacted objects. 

Toribash [19] and Peggle [22] provide rare 

counterexamples. In Toribash, the player controls a 3D 

simulated humanoid, and the game proceeds in a turn-based 

fashion. While the player is adjusting simulation controls, 

the game simulates and renders what will happen in the 

next few seconds. Interestingly, Toribash frames the 

complexity of Laszlo et al. [14] style physically based 

animation as a game challenge. However, predictions are 

only computed one rendered frame at a time, which adds 

significant delay in contrast to our immediate 

visualizations. Peggle employs immediate projectile 

trajectory visualization akin to Twigg and James [33]. It is 

noteworthy that although such visualization might make a 

game too easy, Peggle cleverly uses it as a limited resource, 

allowing longer predictions as a power-up. 

PROTOTYPES 

The following lists our prototypes, structured following the 

four-quadrant model of Table 2, and the monikers used 

when referring to them in the rest of the paper: 

1. Turn-based control of simple actions: the “ball 

shooting” prototype of Figure 2 (supplemental video at 

00:20). 

2. Turn-based control of complex actions: the “character 

posing” prototype of Figure 1 (video at 03:00), “turn-

based QWOP” of Figure 3 (video at 02:02), and 

“timeline QWOP” of Figure 4 (video at 02:28). 

3. Real-time control of simple actions: the “car” prototype 

of Figure 5 (video at 01:05). 

4. Real-time control of complex actions: the “bike” 

prototype of Figure 6 (video at 01:28) 

We start our discussion from the most straightforward case 

of simple actions and turn-based control, and then extend 

the ideas to real-time control and more complex actions. 
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A note on the design process: The work towards this paper 

originates from a serendipitous discovery in context of 

intelligent animation control research, as the first author 

developed an initial implementation of the character posing 

prototype. We considered the prototype interesting, which 

motivated the construction of the design space model and 

developing prototypes for the other quadrants. The 

development of the QWOP versions then followed, as the 

emergent and rich movements of a simulated humanoid 

appeared more interesting than the ball, car, or bike. 

Turn-based control of simple actions 

In turn-based control, feedback is often delayed and the 

player must try and iterate multiple times to get an action 

right. Here, the key potential of predictive simulation is in 

providing feedback already while the player searches for a 

suitable action. We demonstrate this in the ball shooting 

prototype of Figure 2. The player controls the launch speed 

and angle similar to Angry Birds [25], with the goal of only 

moving the green boxes. We use predictive simulation to 

provide immediate visualization of the trajectories of 

objects and a prediction of the score (200 points for every 

green box that moves more than a threshold, minus 100 

points for every gray box that moves).  

In the ball shooting case, the action space is only two-

dimensional (a shot is fully defined by speed and angle). In 

such cases, actions can be explored automatically to 

produce a heat map that gives a visual overview of possible 

player actions (the top-right grayscale rectangle in Figure 

2). Four high-scoring strategies show up as bright clusters, 

the higher ones corresponding to bouncing the ball off the 

ground, and rightmost ones corresponding to bouncing the 

ball off the left wall. The user can interactively browse the 

heatmap with mouse to view the shot trajectories.   

Brute force heatmap computation can be slow; at about 5-

10ms per simulation and 256x256 pixel heatmap, the 

computation takes several minutes. However, as we 

demonstrate on the supplemental video, a non-negative 

scoring function can be treated as an unnormalized 

probability density function, which allows for quick 

computing of an approximate heatmap using importance-

sampling. We use kD-tree Sequential Monte Carlo 

Sampling [10], which adaptively increases resolution where 

score is high. 

Turn-based control of complex actions 

Our prototypes in Figure 1, Figure 3, and Figure 4 extend 

turn-based control to the more complex case of a simulated 

humanoid. In our designs, we recombine ideas from three 

games: QWOP, Toribash, and Backflip Madness [2,8,19]. 

All three games implement an interface for controlling a 

physically based simulated humanoid character, but the 

games differ in how they manage the control complexity. 

QWOP only uses a 2D character, which prevents falling 

sideways, and simplifies the controls into discrete 

keystrokes; Q and W drive the left and right thigh forward, 

and O and P bend the left and right knee. Toribash uses a 

full 3D humanoid, but gives the player unlimited time to 

think – the player can explicitly control when simulation is 

advanced. Backflip Madness reduces complexity by 

allowing the player to only control the timing of transitions 

between predefined poses such as crouching, extended, and 

tucking.  

We consider two main sources of complexity. The character 

posing prototype of Figure 1 focuses on the high 

dimensionality of action space, and the QWOP-inspired 

prototypes of Figure 3 and Figure 4 utilize simplified 

actions (only a set of 4 actions corresponding to the 

Q,W,O,P keys) that however require precise timing and 

coordination.  

 

Figure 2. A ball shooting prototype inspired by Angry Birds. 

The player defines launch speed and angle of the blue ball, 

with the goal of only moving the green cubes. One can also 

shoot using a heatmap (top-right), where bright pixels 

correspond to good speed and angle combinations. 

 

Figure 3. A turn-based version of the game QWOP, where the 

effect of keypresses is predicted and visualized, and time only 

advances when the player holds down the spacebar. 

 

Figure 4. Timeline-based version of the game QWOP. In this 

prototype, the player paints the keystrokes on an animation 

timeline with tracks for the Q,W,O,P keys. Animation 

automatically plays in a loop (yellow frame indicator, solid 

character). The ghost character shows state at mouse position. 
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In our character posing prototype, the user controls when 

simulation is advanced; compared to Toribash, we provide 

faster feedback and more precise control. The game interface 

features an animation rig that the player can manipulate using 

a mouse. This defines a target pose that the simulated 

character is driven towards. The predicted trajectories and the 

resulting pose at the prediction horizon are also visualized. In 

Figure 1 the player is making the character tuck to rotate 

faster and avoid hitting its head. The player can also adjust 

the prediction horizon with a slider. The supplemental video 

shows how the character can be landed safely by first 

tucking, and then extending the body near the ground.    

Figure 3 shows a turn-based version of QWOP, where the 

player is given a fifth key – simulation time advances only 

when the player holds down spacebar. The effects of other 

keys are predicted and visualized, allowing the player to 

explore the best combination of keys.  

In initial testing, the turn-based QWOP was found quite 

difficult despite the unlimited time for deciding on the 

keypresses. This is why we developed the concept further, 

resulting in the prototype in Figure 4. Instead of pressing the 

keys, the player paints the keypresses on a timeline with a 

track for each key. The painted keypresses can also be freely 

erased, in essence transforming an originally real-time action 

game into a puzzle. The interface provides immediate 

visualization of character state at the mouse position (the 

semitransparent character) and the character’s movement 

trajectory over the whole timeline.  

Real-time control of simple actions  

Our car and bike prototypes in Figure 5 and Figure 6 

examine how the ideas presented above can be extended to 

real-time control. The car driving represents the case of 

simple actions. Horizontal mouse movement is mapped to 

steering, and the player has also keys for accelerating, 

braking, and turning on the predictive simulation and 

visualization. The player’s goal is to drive through the traffic 

at full speed without hitting other cars. The predictive 

trajectory’s color indicates whether the car will collide with 

others using the present steering direction.  

Real-time control of complex actions 

As the more complex real-time case we use the 3D bike 

steering and balancing prototype of Figure 6. We are inspired 

by the bikes of Trials HD [23], which however are only 

simulated in 2D. A 3D bike is more complex to control than 

a 2D bike or a car, as balance is coupled to steering through 

centripetal force; when steering right, one has to actually first 

countersteer left to make the bike start falling right. To 

prevent the bike from falling all the way, one must then steer 

right. Complexity arises from the needed precise temporal 

coordination of steering movements. As shown on the 

supplemental video, balancing is highly difficult because it is 

nearly impossible to estimate the correct steering magnitude, 

and both over- and understeering quickly lead to lost balance.  

Similar to the car prototype, horizontal movement of the 

mouse is directly mapped to bike steering. Left mouse button 

controls throttle.  

Technology: simulation cost and determinism  

In modern game development, physics simulation is rarely 

implemented from scratch. Instead, games often use 

established libraries and toolkits such as the Open Dynamics 

Engine (ODE), Bullet, or Box2D. Our ball shooting 

prototype uses Box2D v2.3.0 for simulation and OpenCV for 

visualization. The other prototypes use Open Dynamics 

Engine (ODE) integrated with Unity 3D game engine as a 

native plugin. The predictive simulations take around 5-40ms 

on a 2.6GHz Intel i7-6700HQ processor, depending on 

simulation complexity and prediction horizon.  The car 

prototype is the most computationally heavy due to multiple 

simulated cars and 3D simulation being slower than 2D. 

In the implementation, we had to solve the problem of 

neither ODE or Box2D simulations being fully deterministic 

and reproducible. The simulators do not by default provide 

functionality for simulating forward from a given state and 

then restoring the starting state in a way that would ensure 

exactly same results in further simulations. This was also the 

reason for us not being able to use Unity3D’s built-in 

physics, which has the additional complication that 

 

Figure 5. Prototype where the player tries to drive through the 

traffic at full speed. Holding down ctrl key shows predicted 

trajectories of all cars. In this image, the end of the player’s 

trajectory is red, which signals predicted future collision. 

 

 

Figure 6. Prototype where horizontal mouse movement 

controls the steering of a 3D bike without any artificial 

balancing. The bike’s predicted movement and balance is 

predicted. Red color signals falling. 
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simulation time cannot be advanced independent of graphics 

rendering time.  

In principle, saving and restoring movement state (position, 

rotation, velocity, and angular velocity) of all objects should 

be enough, but subsequent simulations can still diverge, due 

to the following main reasons: 

 Simulators use random numbers, e.g., to process solver 

constraints in random order for better simulation 

stability. 

 Simulators use additional internal state for speeding up 

the simulation. For example, ODE caches some 

variables inside the joint classes, and Box2D builds a 

dynamic spatial subdivision data structure for faster 

collision handling.  

For deterministic simulation, all internal state, including 

random number generator state, must be saved and loaded 

together with movement state. We have implemented this in 

both ODE and Box2D and the source code is available at 

https://bitbucket.org/perttuhamalainen/predictivesimulation 

EVALUATION DESIGN 

Participants 

We evaluated the prototypes qualitatively with 6 game design 

M.A. students and one game designer/design teacher (all 

male, age m=30, sd=5). All participants had experience from 

designing several games (m=9, sd=4). 

Procedure 

Each participant played all prototypes for 5-10 minutes while 

thinking aloud, and then answered a set of final questions. 

The order of prototypes used Latin Square counterbalancing. 

The total experiment duration was about 1 hour per 

participant.  

For the prototypes that could also be played “regularly” 

without the predictive simulation (ball shooting, car, bike), 

the participant first played without prediction and then again 

with prediction turned on. We then asked which game 

version was better and why. The QWOP game versions were 

played with order altered between participants, and we again 

asked which version was better and why.  

After all prototypes had been tested, we asked the following 

questions, and also probed further with why-questions: 

1. Which of the prototypes were the most interesting? 

2. Which of the prototypes were the least interesting? 

3. What benefits and challenges does predictive physics 

simulation present from a game design perspective? 

4. Which quadrant of Table 2 would the participant be 

interested in exploring further or utilizing in a game?  

Data analysis 

A thematic analysis of participant answers and comments 

was performed, with the goal of informing future design and 

research, and to identify the primary benefits and challenges 

of predictive physics simulation. 

EVALUATION RESULTS 

In the following, the participants are referred to as P1…P7 

and their quotes are in italics.     

Most interesting prototypes 

The prototypes that were found most interesting were the 

character posing prototype of Figure 1 (all participants), the 

QWOP versions (5 participants mentioned one or both of the 

two, and there was no clear consensus of which version was 

better), and the bike (two participants). All of these except 

the bike also frequently resulted in comical blunders that 

made the participants laugh. 

A central theme was that participants found it intriguing to 

understand and learn about the dynamics of movement. “You 

never really pay attention to what parts of the body need to 

move to execute some actions. You have to think about 

individual actions that we otherwise are not aware of. Also 

the motorbike one was interesting because the 

countersteering is so counterintuitive – learned about how 

movement and physics work.” (P2), “I felt like having a 

superpower, that I understood better how people and the 

world work, and I got the character to make an insane 

acrobatic move” (P6 on the character posing), “Something 

like Quicksilver in X-Men movies“ (P4 on the character 

posing), “Somehow makes me want to try again and again” 

(P1 on the bike),“Prediction is better. It seems to teach me 

how the bike works. I cannot otherwise understand why I 

fail.” (P6 on the bike), “A fun variation of the original, which 

I have tried to learn for a long time. I now succeeded on first 

try” (P6 on the turn-based QWOP).  

One participant also selected the ball shooting prototype as 

the most interesting when considering the heatmap as a tool 

for level design. As a player, he too preferred the character 

posing prototype. 

Least interesting prototypes 

The prototypes that were found least interesting were the car 

(3 participants), the ball shooting (3 participants), the bike (2 

participants), and the QWOP versions (1 mention for each). 

Most of the mentioned prototypes are games that one could 

also play without predictive simulation. Although some 

participants preferred the versions with prediction because 

they were easier, a recurring concern was that prediction 

make the gameplay different and even alienating, as one’s 

focus shifts from the controlled character to the trajectory 

visualizations. “Prediction system was confusing, I was 

looking at the line, not the guy.” (P4 on the bike), 

“Prediction makes it different, and removes the core game” 

(P5 on the car), “Prediction requires re-learning with the 

bike and car, because you pay attention to completely 

different things. I was not looking at the car at all.” (P7), “It 

feels like it removes something” (P6 on driving games), “No 

feeling of being an awesome motorcyclist. Hard to be excited 

when the game’s challenge is not to do cool tricks but instead 

just to follow a line and try to keep it white instead of red” 
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(P3), “I seem to stop using my intuition, I just think of the 

trajectories” (P6 on the ball shooting).  

An additional reason for mentioning the bike was too hard 

difficulty. None of the participants could keep the bike 

balanced without the predictive visualization. Four 

participants could keep the bike balanced with the predictive 

visualization, but balancing required so much effort and 

concentration that they could not steer the bike where they 

wanted. 

Too hard difficulty was also the reason for mentioning the 

QWOP versions.  

Benefits and challenges of predictive simulation 

To summarize the pros and cons discussed during testing and 

in response to our questions 3 and 4, we identified the 

following main themes: 

1. Positive: predictive simulation allows players to tackle 

new challenges and discover novel solutions and 

movements.  “An interesting puzzle. I’ve sometimes tried 

to play Toribash, but I got nowhere.” (P6 on the 

prototype of Figure 1), “Discovery was the most 

interesting thing about the prediction” (P2), “Enables 

completely new levels and impossible scenarios that 

have a solution that the player otherwise wouldn’t find 

except through insane trial and error” (P7), “Novel 

game mechanics in the style of the posing prototype.” 

(P6), “It was interesting to see that there are four 

solutions when I assumed there’s only one” (P6) 

2. Negative: predictive simulation can make a game too 

easy. ”Prediction clearly helped, but made the game less 

interesting due to reduced challenge” (P7 on the car), 

“Prediction is too easy.” (P6 on the car), “It’s hard to 

balance the challenge – easily either too hard or too 

easy and feels like cheating” (P5), “It would maybe be 

more fun to use the prediction for searching for a 

strategy if the puzzle was more difficult” (P5), 

“Prediction makes me lose interest in prototypes that 

otherwise feel challenging” (P7 on the car and bike) 

3. Mixed: even if always-on predictive simulation can be 

detrimental in some games, it may be useful in level 

design and testing or as a limited resource or power-up. 

“Prediction is more useful for level designer, if you want 

to design and test a really hard level” (P1 on the car 

prototype), “Would be useful as a limited resource or 

power-up. As a player I would not use all the time, if it is 

not necessary for the game mechanics” (P1), “Seeing 

the prediction ruins the game, but would work for a 

tutorial” (P2), “Useful as a design tool in a car game if 

I want to test whether something is possible <for a 

highly skilled player>” (P7), “The heatmap is useful as 

it shows distinct solutions and rules out things you might 

otherwise try in testing” (P2), “Prediction would work 

well for game design and testing” (P4) 

Most interesting quadrants 

All participants found turn-based control of complex actions 

as the most interesting quadrant, although P2 commented: 

“As a game designer, turn-based control of complex actions, 

because I can learn and analyze. As a player, real-time 

control of complex actions, as I don’t want to analyze so 

much during gameplay”.   

DISCUSSION 

In this section, we present some additional observations and 

revisit our design space dimensions in light of the results. 

Turn-based vs. real-time control 

Considering all the prototypes and the evaluation results, 

turn-based control based on predictive simulations seems 

more promising than real-time control.  

In our interpretation, the key difference between turn-based 

and real-time control is that optimizing the level of challenge 

is much more difficult in the latter. In real-time gameplay, it 

can be difficult to process visual information fast enough; 

predictive simulation can require the player’s full attention as 

in our bike prototype, while still not making the control task 

easy enough to be enjoyable.   

In real-time gameplay, predictive visualization also easily 

moves the focus of attention away from the controlled object 

or character, which many participants considered distracting. 

In our turn-based prototypes that were found most interesting 

(character posing and QWOP versions), one’s focus of 

attention is not completely on the control interface or 

predictive visualization; instead, focus shifts back to the 

character when one advances the simulation or evaluates the 

animation resulting from keypresses painted on the timeline. 

Turn-based control also has less restrictions on how much 

visual information can be processed and utilized.  

Simple vs. complex actions 

Our prototypes with complex simulations appear more 

successful, in particular the ones with humanoid characters. 

In such simulations, predictive visualization can enable novel 

control interfaces and discovery of interesting emergent 

movement.  

For simple actions, it appears that predictive simulation is not 

as useful as it can make a game too easy. The movement 

discovery capabilities provided by predictive simulation 

might be more useful as a game design and testing tool. 

Designing novel mechanics and interfaces 

We agree with P4 and P5 who commented that rather than 

adding predictive simulation to existing games and 

interfaces, one should probably design novel game 

mechanics and interfaces around the predictive simulation. 

Our best performing prototypes (the posed character and 

QWOP versions) were of the latter type. Although our 

QWOP versions are based on an existing game, they do not 

simply reduce the level of challenge; they play completely 

differently than the original. A key lesson learned is that 

predictive simulation and visualization allows transforming 

real-time action games into turn-based puzzles. Our 
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prototypes demonstrate that achieving the intended 

movement is still challenging and can provide surprising 

outcomes, as slight differences in input can result in large 

deviations of realized movement. This is characteristic to all 

physics simulations with contacts; shooting a ball at slightly 

different angles can result in completely different trajectories 

depending on whether or not the ball hits an obstacle. 

Interestingly, P5 explained that the original QWOP feels 

more comical because of the faster try and fail cycle, but P6 

on the other hand commented that the turn-based QWOP is 

better because “I see the possible futures and they are 

comical in the same way as in the original, but I don’t have 

to fail for real.” 

LIMITATIONS AND FUTURE WORK 

Due to our qualitative and exploratory research approach, our 

evaluation data does not provide quantitative evidence in 

favor or against hypotheses such as “visualization A is better 

than B in task C”. Readers should also use their own 

judgement in assigning weight to the user comments – they 

represent the views and experiences of individual players 

rather than the collective experience of a larger player 

population.  

We opted for this approach as we wanted to gain a broad 

understanding of the design space and generate a wide 

variety of examples that could provide ideas for future games 

and ideas or hypotheses for future research. As an example of 

such a hypothesis, our results suggest that predictive 

visualization helps in the complex case of steering and 

balancing a 3D bike; this could be validated in a quantitative 

follow-up study, possibly comparing different visualizations 

in terms of task performance and player enjoyment.  

Based on our ball shooting prototype (Figure 2), we also see 

future potential in characterizing level designs based on 

multiple simulations – for example, we hypothesize that good 

levels have multiple bright heatmap areas (i.e., multiple 

alternative strategies), and each area is large enough (no need 

for pixel-perfect control). Naturally, with more complex 

actions, such heatmaps and summary visualizations are likely 

to need advanced multidimensional data visualization 

techniques. 

Although we have limited ourselves to low-level simulation 

control as opposed to utilizing predictive simulation for high-

level AI-based control, we intend to investigate hybrids of 

the two approaches in future work; this might provide better 

tools for adjusting control difficulty and control 

abstraction/indirection. For example, extrapolating the 

concept of Draw Race [24] and Flight Control [6] (draw the 

desired path of a car or a plane to control it), a humanoid 

parkour character could be controlled indirectly by indicating 

the desired sequence of foot placements in advance, while 

getting predictive feedback of how the AI will succeed in 

obeying the instructions. 

CONCLUSION 

In this paper, we have proposed a four-quadrant model of the 

design space of low-level game or simulation control with 

predictive physics simulation and visualization, based on the 

key design dimensions of action complexity and time 

pressure (Table 2). Furthermore, we have presented the 

design and evaluation of six prototypes that demonstrate 

novel possibilities and challenges of each quadrant. Drawing 

on our experiences, observations, and the user comments, we 

now conclude with a summary of design insights and lessons 

learned: 

1. Predictive physics simulation appears a promising tool 

for designing novel game mechanics and interfaces, in 

particular considering turn-based control of complex 

actions, such as our character posing prototype (Figure 

1). Previewing results of player actions before the 

actions are executed is a useful design pattern, provided 

that it does not make a game too easy. 

2. As demonstrated by our QWOP variations, predictive 

physics simulation allows creating novel games through 

transforming a real-time action game into a turn-based 

puzzle. 

3. One must be cautious in simply adding predictive 

simulation and visualization to existing games and 

mechanics. For example, it was found detrimental to our 

car prototype, as it made the game too easy and shifted 

the player’s focus from the car to the trajectory 

visualizations. 

4. Even if predictive simulation does not improve the 

player’s experience, it may still be useful as a limited 

power-up, in tutorial use, or for the game designer. For 

example, it can be used to explore strategies that the 

designer might not otherwise think of, or to test difficult 

levels beyond the designer’s playing ability.  

5. Considering technological aspects, it appears that most 

physics simulators are not designed for predictive 

simulations. We hope our work informs future game and 

physics engine development of the need to provide full 

simulation determinism, reproducibility, and an interface 

for loading and saving both movement state and all 

internal state. 

ACKNOWLEDGEMENTS 

We thank our participants and the anonymous reviewers for 

their insightful comments. Takatalo is supported by 

Academy of Finland grant 299358. 

REFERENCES 

1.  Christopher G Atkeson. 2007. Randomly sampling 

actions in dynamic programming. In 2007 IEEE 

International Symposium on Approximate Dynamic 

Programming and Reinforcement Learning, 185–192. 

2.  Bennet Foddy. 2008. QWOP. http://foddy.net, Game 

[browser]. 

3.  Creature Feep. 2011. Where’s my Water. Game [iOS]. 

4.  Dynamix. 1993. The Incredible Machine. Game [PC]. 

Session 8: Beyond the Typical Player Experience CHI PLAY 2017, October 15–18, 2017, Amsterdam, NL 

504



5.  David H Eberly. 2010. Game physics. CRC Press. 

6.  Firemint. 2009. Flight Control. Game [iOS]. 

7.  Jacob Fischer, Nikolaj Falsted, Mathias Vielwerth, 

Julian Togelius, and Sebastian Risi. 2015. Monte Carlo 

Tree Search for Simulated Car Racing. In Proc. 

FDG’15. 

8.  Gamesoul Studio. 2013. Backflip Madness. Game 

[iOS]. 

9.  T. Geijtenbeek and N. Pronost. 2012. Interactive 

Character Animation Using Simulated Physics: A 

State-of-the-Art Review. Computer Graphics Forum 

31, 8: 2492–2515. https://doi.org/10.1111/j.1467-

8659.2012.03189.x 

10.  Perttu Hämäläinen, Sebastian Eriksson, Esa 

Tanskanen, Ville Kyrki, and Jaakko Lehtinen. 2014. 

Online Motion Synthesis Using Sequential Monte 

Carlo. ACM Trans. Graph. 33, 4: 51:1–51:12. 

https://doi.org/10.1145/2601097.2601218 

11.  Perttu Hämäläinen, Joose Rajamäki, and C. Karen Liu. 

2015. Online Control of Simulated Humanoids Using 

Particle Belief Propagation. ACM Trans. Graph. 34, 4: 

81:1–81:13. https://doi.org/10.1145/2767002 

12.  Emil Juul Jacobsen, Rasmus Greve, and Julian 

Togelius. 2014. Monte Mario: Platforming with 

MCTS. In Proceedings of the 2014 Annual Conference 

on Genetic and Evolutionary Computation (GECCO 

’14), 293–300. 

https://doi.org/10.1145/2576768.2598392 

13.  Timo Kellomäki. 2015. Large-Scale Water Simulation 

in Games. Tampere University of Technology. 

14.  Joe Laszlo, Michael Neff, and Karan Singh. 2005. 

Predictive Feedback for Interactive Control of Physics-

based Characters. Computer Graphics Forum 24, 3: 

257–265. https://doi.org/10.1111/j.1467-

8659.2005.00850.x 

15.  Joseph Laszlo, Michiel van de Panne, and Eugene 

Fiume. 2000. Interactive Control for Physically-based 

Animation. In Proceedings of the 27th Annual 

Conference on Computer Graphics and Interactive 

Techniques (SIGGRAPH ’00), 201–208. 

https://doi.org/10.1145/344779.344876 

16.  Stephen R. Lindemann and Steven M. LaValle. 2005. 

Current Issues in Sampling-Based Motion Planning. In 

Robotics Research. The Eleventh International 

Symposium, Paolo Dario and Raja Chatila (eds.). 

Springer Berlin Heidelberg, 36–54. 

https://doi.org/10.1007/11008941_5 

17.  C Karen Liu and Victor B Zordan. 2011. Natural user 

interface for physics-based character animation. In 

Proc. International Conference on Motion in Games, 

1–14. 

18.  Henry Lowood and Raiford Guins. 2016. Debugging 

Game History: A Critical Lexicon. MIT Press. 

19.  Nabi Studios. 2006. Toribash. Game [PC]. 

20.  Naughty Dog. 2007. Uncharted: Drake’s Fortune. 

Game [PlayStation 3]. 

21.  J. Thomas Ngo and Joe Marks. 1993. Spacetime 

Constraints Revisited. In Proceedings of the 20th 

Annual Conference on Computer Graphics and 

Interactive Techniques (SIGGRAPH ’93), 343–350. 

https://doi.org/10.1145/166117.166160 

22.  PopCap Games. 2007. Peggle. Game [PC]. 

23.  RedLynx. 2009. Trials HD. Game [Xbox 360]. 

24.  RedLynx. 2009. Draw Race. Game [iOS]. 

25.  Rovio Entertainment. 2009. Angry Birds. Game [iOS]. 

26.  Katie Salen and Eric Zimmerman. 2003. Rules of Play: 

Game Design Fundamentals. The MIT Press. 

27.  SCE Santa Monica Studio. 2005. God of War. Game 

[PlayStation 2]. 

28.  Jesse Schell. 2008. The art of game design a book of 

lenses. Elsevier/Morgan Kaufmann, Amsterdam; 

Boston. 

29.  R. A. Schmidt and C. A. Wrisberg. 2008. Motor 

Learning and Performance. Human Kinetics. 

30.  Noor Shaker, Mohammad Shaker, and Julian Togelius. 

2013. Ropossum: An Authoring Tool for Designing, 

Optimizing and Solving Cut the Rope Levels. In Proc. 

AIIDE 2013. 

31.  Jaroslav Švelch. 2014. Comedy of Contingency: 

Making Physical Humor in Video Game Spaces. 

International Journal of Communication 8, 0: 23. 

32.  Yuval Tassa, Nicholas Mansard, and Emo Todorov. 

2014. Control-Limited Differential Dynamic 

Programming. In Proc. IEEE International Conference 

on Robotics and Automation (ICRA’14). 

33.  Christopher D. Twigg and Doug L. James. 2007. 

Many-worlds Browsing for Control of Multibody 

Dynamics. In ACM SIGGRAPH 2007 Papers 

(SIGGRAPH ’07). 

https://doi.org/10.1145/1275808.1276395 

34.  Valve Corporation. 2007. Portal. Game [PC]. 

35.  Jacob O Wobbrock and Julie A Kientz. 2016. Research 

contributions in human-computer interaction. 

interactions 23, 3: 38–44. 

36.  ZeptoLab. 2010. Cut the Rope. Game [iOS]. 
 

 

Session 8: Beyond the Typical Player Experience CHI PLAY 2017, October 15–18, 2017, Amsterdam, NL 

505




