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Figure 1: Bold lines and shaded circles denote paths from the agent to different goals and dynamic obstacles, respectively. In Figure (a) the
tree is growing and a path to the goal point is found. In Figures (b) and (c) the goal point is changed on the fly. In both cases since the tree
root moves with the agent and the tree covers most of the environment, the paths to the changed goals are returned quickly. In Figure (d) the
agent has reached the goal point and rewiring of the nodes based on the current location of the tree root has generated the minimum length
paths to others nodes of the tree. The crossed points denote the Rewiring Circle.

Abstract

This paper presents a novel algorithm for real-time path-planning in
a dynamic environment such as a computer game. We utilize a real-
time sampling approach based on the Rapidly Exploring Random
Tree (RRT) algorithm that has enjoyed wide success in robotics.
More specifically, our algorithm is based on the RRT* and in-
formed RRT* variants. We contribute by introducing an online tree
rewiring strategy that allows the tree root to move with the agent
without discarding previously sampled paths. Our method also does
not have to wait for the tree to be fully built, as tree expansion and
taking actions are interleaved. To our knowledge, this is the first
real-time variant of RRT*.

We demonstrate our method, dubbed Real-Time RRT* (RT-RRT*),
in navigating a maze with moving enemies that the controlled agent
is required to avoid within a predefined radius. Our method finds
paths to new targets considerably faster when compared to CL-RRT,
a previously proposed real-time RRT variant.
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1 Introduction

Path planning in dynamic environments is a demanding problem
encountered in many robotic tasks and computer games [Rastgoo
et al. 2014; Sud et al. 2008]. Real-time path planning algorithms
are used to react to the changes in the environment as well as to
constantly look for a better path to the goal point. These algorithms
have to balance with the trade-off of the goodness of the path versus
having a short search time. The path planning problem gets even
more challenging when changing the goal point is allowed, which
is the case in many multiple-query tasks [Kavraki et al. 1996], e.g.
computer games. Difficulty in path planning arises also when the
structure of the agent gets more sophisticated and controlling the
agent is not trivial [Sud et al. 2008], e.g. planning a path for a
humanoid agent [Gutmann et al. 2005].

Many of the current approaches for solving the real-time path plan-
ning problem fall into the categories of heuristic methods [Gut-
mann et al. 2005], potential field methods [Khatib 1986] and sam-
pling methods like rapidly exploring random trees (RRTs) [LaValle
1998]. A survey of approaches to real-time path planning in dy-
namic environment can be found in [Rastgoo et al. 2014]. Most
of the algorithms used in the games industry stem from the A∗ al-
gorithm. The A∗ algorithm, however, faces prolonged search time
in an environment that has many complex obstacles. The real-time
versions of A∗ algorithm inherit this problem and try to solve it us-
ing various methods [Cannon et al. 2012; Sturtevant et al. 2010].
Furthermore, A∗ needs discretization of the environment whose
resolution has a strong effect on the search time. Although in [Can-
non et al. 2012] the algorithm samples for building a graph, the
number of samples for finding a path between nodes increases such
that it may affect the real-time response time of the algorithm for
taking an action. The response time of the potential field algorithms
is in real-time, however they suffer from trapping into local minima.

Rapidly exploring random trees (RRTs) quickly expand a search
tree in an environment. They are efficient for single-query tasks in
a continuous environment, i.e. when the goal point is fixed. The
different real time variants of RRT path planning either regrow the
whole tree with guidance of the previous iteration for a limited time
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[Bruce and Veloso 2002] or prune infeasible branches of the tree af-
ter changing its root [Luders et al. 2010]. Unlike these algorithms,
our proposed algorithm retains the whole tree in the environment
and rewires the nodes of the tree based on the location of the tree
root and changes in the dynamic obstacles. Consequently, our al-
gorithm enables the user to rapidly switch the goal point around
(multiple-query task) by efficiently using the expanded tree in the
environment (see Fig 1). To the best of our knowledge, our al-
gorithm is the first real-time RRT-based algorithm that retains the
whole tree, gradually rewires different parts of the tree, and works
efficiently in multiple query tasks.

In the following, we first provide a brief review of the relevant lit-
erature on real-time path planning algorithms in Section 2. Section
3 formally defines the real-time path planning problem and intro-
duces the related notation. A description of our proposed RT-RRT*
method and our simulation experiments then follow in Sections 4
and 5. The simulations indicate that our method outperforms CL-
RRT which can be considered the state-of-the-art of real-time RRT-
based path planning methods.

2 Related Work

In this section we first review the relevant literature regarding tree
based algorithms for path planning and in the latter subsection we
introduce the currently used approaches to real-time path planning.

2.1 RRTs and their extensions

RRTs sample points in the space and add them to a tree which
grows to the whole planning space. RRTs [LaValle 1998] have the
useful properties of: 1) covering the whole space efficiently and
quickly; 2) probabilistic completeness i.e. as the number of nodes
in the tree increases, the probability of finding a solution approaches
one. However, RRTs are not asymptotically optimal and rewiring is
not performed in the RRT algorithm, i.e. the connections between
nodes are set once. The emergence of RRT* [Karaman and Fraz-
zoli 2011] changed this as it allows to rewire the tree connections
such that the path length from the root to a leaf is reduced. RRT*
is asymptotically optimal, but its convergence is slow especially in
large environments. Informed RRT* [Gammell et al. 2014] intro-
duced a focused sampling method that samples new nodes inside an
ellipsoid. The focal points of the ellipsoid are the starting and goal
points. This method increased the convergence rate of RRT* espe-
cially in large environments. In this paper, we combine the good
aspects of RRT variants and we introduce real-time path planning
that is based on RRT* and Informed RRT*.

2.2 Real-time Path Planning methods

Tree Based Path Planning methods mostly stem from RRTs.
Two of these methods are ERRT [Bruce and Veloso 2002] and CL-
RRT [Luders et al. 2010]. The tree of these algorithms covers a
small portion of the environment. Therefore, they only use the tree
as a look-ahead in their path planning, which reduces the search
time but increases the length of the path to the goal. At each iter-
ation ERRT creates a tree using some way-points of the previous
iteration. CL-RRT on the other hand ensures that the agent will not
deviate from the planned path and prunes infeasible branches when
the agent moves on the tree. Contrary to these methods, we retain
the tree between the iterations and change the tree root when the
agent moves. Also, we rewire the tree when the tree root changes
or a dynamic obstacle blocks a node. As a result, our method needs
very few iterations to search for a path to various goal points as
the tree grows, and the paths to those goal points are shorter com-
pared to CL-RRT (see Section 5). This also makes our method

suitable for multi-query tasks, i.e. querying paths to multiple goals,
which is highly preferable algorithm quality e.g. in games. The first
real-time motion re-planning on RRT* is RRTX [Otte and Frazzoli
2015]. As opposed to RRTX, our method is designed for multi-
query tasks, which plans paths from agent to goals, and interleaves
tree expansion and rewiring with taking actions.

Potential Based Path Planning methods treat the environment
as a potential field such that the goal point attracts and the obstacles
repulse the agent. These methods stem from the original Artificial
Potential Field (APF) introduced in [Khatib 1986]. In spite of be-
ing useful as a real-time path planning, these methods suffer from
trapping into local minima. Thus, potential field methods need ad-
ditional effort to overcome the problem of local minima as well as
to find a minimum length path to the goal point.

Graph Based Path Planning methods usually make a grid of
the environment and apply real-time versions of A∗ to it. Some
of the methods simply divide the environment into simple polyg-
onal grids [Sturtevant et al. 2010; Gutmann et al. 2005]. On the
other hand, there are some methods that use Voronoi diagram [Sud
et al. 2008] or sampling [Cannon et al. 2012] to build a graph rep-
resenting the environment. One disadvantage of graph based over
tree based path planning is that even though the environment is ex-
plored and a graph representing it is constructed, one needs fur-
ther processing, such as A∗, to extract the path from the graph. In
multi-query tasks, graph based path planning methods may need to
search the entire graph to find a path to different goal points. Unlike
this, our proposed algorithm needs fewer iterations for finding goal
points as the tree grows in the environment. Besides, RT-RRT* uti-
lizes the efficient tree structure to return a path to possibly multiple
goal points by backtracking the ancestors from the goal.

3 Problem Statement and Notations

Let us denote the work space, where path planning is done, by X .
In our algorithm X can be subset of R2 or R3. However, without
loss of generality in this paper we only consider X ⊆ R2. Also,
X is considered to be bounded. Besides spaces such as X , the
calligraphy alphabet is used to refer to sets. X contains obstacles,
which may be dynamic. Xobs ( X denotes the set of all obstacles in
the environment, and we assume it is known. Thus, the free space
is denoted by Xfree = X \ Xobs. The tree is denoted by T and each
node inside it is represented by xi ∈ Xfree. The current tree root
is denoted by x0 which is changed when the agent moves. In the
path planning algorithm the set of planned nodes is represented by
(x0,x1, ...,xk) in which k is the user-defined limit for planning a
path ahead from x0. Besides nodes, x is used in our algorithm to
denote any positions in the environment. For example, xgoal ∈ Xfree
represents the goal point, which can be changed by the user. xa ∈
Xfree is the position of the agent.

We formulate the problem of real-time path planning in dynamic
environments as follows. We want to find a path, i.e. (x0, x1,
..., xgoal), from the agent to xgoal where xgoal can be changed on
the fly (see Fig 1). Also, the path to xgoal should be of minimum
length. For finding a minimal length path, we use cost-to-reach val-
ues (denoted by ci) which are computed using the Euclidean length
of the path from x0 to xi. Furthermore, we restrict our algorithm
to be real-time. This means that we have a limited amount of time
for Tree Expansion-and-Rewiring and Path Planning with the ex-
panded tree. In real-time path planning it is important to have a
real-time response whether or not we have a path to the goal. When
the tree is growing and xgoal is not found, we use the cost function
fi = ci + hi to plan a path from x0 to a point close to xgoal. hi
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denotes cost-to-go values from xi to xgoal and is computed using
Euclidean distance between these two nodes. Note that, when time
for path planning is up, next immediate node after x0 in the planned
path, x1, is committed and should be followed.

In multi-query tasks, each point in Xfree of the environment has the
potential of being xgoal while dynamic obstacles are moving around
and may block some paths. In our algorithm we change x0 when the
agent moves to keep the agent near the tree root, and by retaining
the whole tree between iterations we can return a path to any point
in the environment (see Fig 1). Therefore, our main problem is,
how to rewire the tree really fast and in a real-time manner to react
to the changes in the environment (changes in Xobs) as well as to
return a minimal length path to xgoal while xgoal can be any point in
the environment.

4 Method

Our method, which is introduced in Algorithm 1, interleaves path
planning with tree expansion and rewiring. We initialize the tree
with xa as its root (line 2). At each iteration, we expand and rewire
the tree for a limited user-defined time (lines 5-6). Then we plan a
path from the current tree root for a limited user-defined amount of
steps further (k in line 7). The planned path is a set of nodes starting
from the tree root, (x0,x1, ...,xk). At each iteration we move the
agent for a limited time to keep it close to the tree root, x0 (line
10). When path planning is done and the agent is at the tree root,
we change the tree root to the next immediate node after x0 in the
planned path, x1 (lines 8-9). Hence, we enable the agent to move
on the planned path on the tree towards the goal.

Algorithm 1 RT-RRT*: Our Real-Time Path Planning
1: Input: xa, Xobs, xgoal
2: Initialize T with xa,Qr ,Qs

3: loop
4: Update xgoal, xa, Xfree and Xobs
5: while time is left for Expansion and Rewiring do
6: Expand and Rewire T using Algorithm 2
7: Plan (x0, x1, ..., xk) to the goal using Algorithm 6
8: if xa is close to x0 then
9: x0 ← x1

10: Move the agent toward x0 for a limited time
11: end loop

Algorithm 2 Tree Expansion-and-Rewiring
1: Input: T ,Qr,Qs, kmax, rs
2: Sample xrand using (1)
3: xclosest = argminx∈XSI dist(x,xrand)
4: if line(xclosest,xrand) ⊂ Xfree then
5: Xnear = FindNodesNear(xrand,XSI)
6: if |Xnear| < kmax or |xclosest − xrand| > rs then
7: AddNodeToTree(T , xrand, xclosest, Xnear)
8: Push xrand to the first ofQr

9: else
10: Push xclosest to the first ofQr

11: RewireRandomNode(Qr, T )
12: RewireFromRoot(Qs, T )

Qr , Qs are two different queues initialized in line 2 to be used for
Rewiring in Algorithm 2. Line 4 of Algorithm 1 updates the goal
point, position of the agent and the obstacles in the environment
that is used later in the Path Planning and the Tree Expansion-and-
Rewiring algorithms. We use control particle belief propagation

algorithm (C-PBP) [Hämäläinen et al. 2015] in line 10 for mov-
ing the agent to separate path planning and synthesizing the mo-
tions of the agent, a practice bearing resemblance to [Song et al.
2014][Gutmann et al. 2005]. However, any other control algorithm
can be used for moving the agent. Sections 4.1 and 4.2 explain the
previously used Tree Expansion-and-Rewiring and Path Planning
algorithms, respectively.

4.1 Tree Expansion and Rewiring

Tree Expansion-and-Rewiring is introduced in Algorithm 2. Sam-
pled nodes, xrand in line 2, are added to the tree until it completely
covers the environment (line 7). The sampled node xrand is always
used in rewiring random parts of the tree either around itself or
around its closest node, xclosest (lines 8, 10, 11). This is needed be-
cause of the changes in the tree root and dynamic obstacles. Fig 1d
shows the situation when the tree has stopped adding nodes. Line
6 states the condition for this. kmax denotes maximum number of
neighbors around a node such as xrand and rs is used for the max-
imum Euclidean distance allowed between the nodes in the tree.
These two values together control the density of the tree. Same as
with RRT*, Xnear in line 5 is the set of nodes neighboring xrand.
Line 4 checks whether the path between xrand and xclosest is colli-
sion free or not. Lines 11 and 12 perform the two different rewiring
methods in a large tree with a changing tree root. Their operation is
explained in further depth in Section 4.1.2. What happens in line 7
is explored in Section 4.1.1.

Random sampling: Sampling in line 2 of Algorithm 2 uses the
following equation. Pr is a random number between [0, 1] and α
is a small user-given constant, e.g. 0.1. β ∈ R is for dividing the
sampling between Uniform(X ) and Ellipsis(x0,xgoal) samplings.

xrand =


LineTo(xgoal) if Pr > 1− α

Uniform(X ) if

Pr ≤
1− α
β

or

@path(x0,xgoal)

Ellipsis(x0,xgoal) otherwise

(1)

In (1), LineTo(xgoal) samples randomly in the line between xgoal
and the node of the tree that is closest to xgoal. Uniform(X ) sam-
ples the environment uniformly. Finally, Ellipsis(x0,xgoal) samples
inside an ellipsis so that the path from x0 to xgoal is inside it. Same
as Informed RRT* we need to sample the environment uniformly
until we find a path to xgoal. Due to the changes in the tree root and
xgoal in our algorithm, we constantly need to rewire random parts of
the tree and explore the environment for later queries in multi-query
tasks. Thus, as opposed to Informed RRT*, when a path to xgoal is
found, we focus part of the sampling inside the Ellipsis instead of
all of it. Therefore, we can efficiently rewire the paths to xgoal and
to the other parts of the tree as well. To sample in the Ellipsis,
[Gammell et al. 2014] sets x0 and xgoal as focal points of the ellip-
sis where its transverse and conjugate diameters equal to cbest and√
c2best − c2min. cbest is the length of the path from x0 to xgoal, and

cmin is ‖x0−xgoal‖2. One should notice that unlike Informed RRT*
we update the rotation of the ellipsis at every iteration because of
the changing tree root and goal point.

Tree Largeness: By retaining T between iterations, the tree
grows too large (but with a limited number of the nodes) to be han-
dled wholly in real-time path planning. Instead, we use a subset of
the nodes, denoted by XSI. For the sake of simplicity and saving
memory we use grid-based spatial indexing (Fig 2 left), however
one might use KD-Tree spatial indexing to gain even more speed
up. XSI is used to find xclosest and Xnear of xrand in Algorithm 2.
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Also, XSI is used in Algorithms 4 and 5 to search for Xnear around
xr and xs, respectively. In addition, XSI is used to search for a node
inside the goal region (rg) as well as to block every node inside the
obstacle regions (rb) of the dynamic obstacles that are within the
distance of ro from the agent (see Fig 2).

Figure 2: Adjacent grid squares for gu and for gi (Left). Obstacle
and goal regions are denoted by rb and rg , respectively (Right).
Only effects of dynamic obstacles within the distance of ro from the
agent are considered.

In order to work with XSI instead of the whole T , we divide the
environment with a square grid (Fig 2 left). To find XSI around one
node (e.g. xu), we find the grid square gu, where xu is located.
Then, we return all nodes of the tree that are inside gu and in its
adjacent squares. A grid square gj is considered adjacent to other
grid square gi when gj is the closest grid square to gi which has at
least one node of the tree inside it. Fig 2 illustrates the difference
between adjacent grid squares for gi and gu. Note that, the size of
the grid affects strongly the processing time and the size of XSI.
Also, each grid should be big enough to contain the obstacle region
around each dynamic obstacle (see Section 5 for our obstacle and
grid details).

Blocking Nodes by Dynamic Obstacles: When a dynamic ob-
stacle blocks nodes inside itself, we set their cost-to-reach values
ci to infinity. As a result, all of the nodes of the branches which
stem from nodes in the obstacle region get infinity ci value. Thus,
when Rewiring algorithms are gradually and continuously connect-
ing nodes with high ci to their neighbors to reduce their ci, rewiring
will create another path for nodes with infinite ci. Section 4.1.2
explains how rewiring the nodes in large trees is done. The compu-
tation of ci is explained in Section 4.1.1.

Neighbor Radius: FindNodesNear in Algorithm 2, same as
RRT*, returns the nodes inXSI that are at most at distance of ε from
xrand. We want to have control over the expected amount of nodes
that FindNodesNear returns which should be kmax in Algorithm
2. We know that kmax : ntotal equals µ(Bε) : µ(X ) where A : B
means ratio of A to B. ntotal denotes total number of the nodes
in the tree. µ(Bε) is the volume/area of ε-radius ball, in 2D this
would be πε2. µ(X ) is the volume/area of the search space. Thus,
ε is calculated as follows:

ε =

√
µ(X )kmax

πntotal
(2)

If ε in (2) becomes smaller than rs in Algorithm 2, we set ε to rs
since rs controls the closeness of the nodes. In Section 4.1.2 we use
FindNodesNear to find Xnear of different nodes, and gradually
spread rewiring through the entire tree. Spreading the rewiring is
directly related to the closeness of nodes and the selection of the
neighbor nodes Xnear. Thus, setting ε smaller than rs obstructs
spreading the rewiring.

4.1.1 Adding a Node to the Tree

When we want to add xnew to the tree, same as with RRT*, Algo-
rithm 3 finds the parent with the minimum cost-to-reach (ci) value
inside Xnear (lines 2-6). One should note that the computation of ci
is related to the length of the path from x0 to xi. Thus, cost(xi)
needs to compute ci whenever cj for any intermediate node in the
path to xi is changed. Therefore, when cost(xi) is called, it will
recompute ci from xi up to x0 if a new node has been added to the
path to xi (same as RRT*) or any changes in x0 or dynamic ob-
stacles inside ro (see Fig 2) have happened (as opposed to RRT*).
Note that whenever cost(xi) is called, if one of the ancestors of
xi is blocked by a dynamic obstacle, i.e. ci = ∞, we block that
node as well. The introduced cost(xi) is used in Algorithms 3-6.

VT and ET denote sets of nodes and edges in the tree, respectively.
Note that, when a node is added to the tree, 1) it expands the tree;
2) if it is inside the goal region (Fig 2), a path to x0 is found (See
Section 4.2); 3) we have to update the adjacent grid squares used
for grid based spatial indexing (See Section 4.1). Also, it should be
noted that we are using a tree structure to build the tree and each
node has access to its children and its parent. In other words, we
use ET only in the explanation.

Algorithm 3 Add Node To Tree
1: Input: T ,xnew,xclosest,Xnear
2: xmin = xclosest, cmin = cost(xclosest) + dist(xclosest,xnew)
3: for xnear ∈ Xnear do
4: cnew = cost(xnear) + dist(xnear,xnew)
5: if cnew < cmin and line(xnear,xnew) ∈ Xfree then
6: cmin = cnew, xmin = xnear

7: VT ← VT ∪ {xnew}, ET ← ET ∪ {xmin,xnew}

Algorithm 4 Rewire Random Nodes
1: Input: Qr, T
2: repeat
3: xr=PopFirst(Qr), Xnear=FindNodesNear(xr,XSI)
4: for xnear ∈ Xnear do
5: cold=cost(xnear), cnew=cost(xr)+dist(xr,xnear)
6: if cnew < cold and line(xr,xnear) ∈ Xfree then
7: ET ← (ET \{Parent(xnear),xnear})∪{xr,xnear}
8: Push xnear to the end ofQr

9: until Time is up orQr is empty.

Algorithm 5 Rewire From the Tree Root
1: Input: Qs, T
2: ifQs is empty then
3: Push x0 toQs

4: repeat
5: xs=PopFirst(Qs), Xnear=FindNodesNear(xs,XSI)
6: for xnear ∈ Xnear do
7: cold=cost(xnear), cnew=cost(xs)+dist(xs,xnear)
8: if cnew < cold and line(xs,xnear) ∈ Xfree then
9: ET ← (ET \{Parent(xnear),xnear})∪{xs,xnear}

10: if xnear is not pushed toQs after restartingQs then
11: Push xnear to the end ofQs

12: until Time is up orQs is empty.

4.1.2 Rewiring The Tree

Rewiring is done when a node (xi) gets a lower cost-to-reach ci
value by passing from another node instead of its parent. Thus, in
our algorithm rewiring should be done around the new node (xnew)
that is added (same as RRT*) as well as around the already added
nodes (as opposed to RRT*) due to changing the tree root (x0) and
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dynamic obstacles. When x0 or any dynamic obstacle inside ro (see
Fig 2) changes, we need to rewire large portion of the tree which is
done by: 1) Rewiring a random part of the tree (Algorithm 4); 2)
Rewiring starting from the tree root (Algorithm 5).

Lines 3-7 and lines 5-9 of Algorithms 4 and 5 rewire neighbor nodes
(Xnear) of xr and xs, respectively. Thus, rewiring is done in xnear if
by changing its current parent to xj, ci for xnear reduces where xj is
xr and xs in Algorithms 4 and 5, respectively. The difference be-
tween these algorithms is the focus point of the rewiring. Algorithm
4 rewires random part of the tree starting from nodes around xrand
or xclosest that are added toQr in Algorithm 2. Then if rewiring hap-
pens to any xnear, Algorithm 4 adds xnear to Qr since nodes around
xnear have the potential to get rewired (line 8). However, Algorithm
5 focuses rewiring the tree around x0 and thus around the agent.
Hence, it starts rewiring from x0 (line 3) and pushes all its neighbor
nodes toQs. Then, it continues to push nodes with greater distance
from x0 by popping nodes (xs) from Qs (line 5) and pushing xnear
around xs (line 11) when the condition in line 10 is met. Using Qs
allows us to rewire the neighbor nodes with the same ci values from
x0. We refer to the nodes with the same cis as Rewiring Circle from
x0 (see crossed points in Fig 1). Rewiring continues at each itera-
tion until the condition in lines 9 and 12 of Algorithms 4 and 5 is
met, respectively. If time is up and there are still nodes inQr orQs
that should get rewired, we can continue rewiring in the upcoming
iterations.

By pushing nodes with the potential need of rewiring their neigh-
bors to Qr, Algorithm 4 intensifies the effect of random sampling
in line 2 of Algorithm 2. Also, by the combination of using Qr
for random rewiring with focusing sampling inside the Ellipsis that
contains the path from x0 to xgoal, we made it possible to rewire the
path to xgoal very quickly. Note that, when rewiring is done on the
path from x0 to xgoal, we need to update the path again (see Sec-
tion 4.2). UsingQs in Algorithm 5, allows us to grow the Rewiring
Circle between iterations. As the Rewiring Circle grows (supple-
mental video 00:40) every node inside this circle is rewired. Thus,
on the already expanded tree, a minimum path to every node in the
circle is created due to the circle that grows from x0. Note that,
Algorithm 5 only rewires on the already expanded tree and since
the tree is not complete in the beginning, it is possible that when a
new node is added to the tree, Algorithm 4 creates paths with lower
cis to the nodes in the circle. Qs gets restarted when x0 is changed
or a dynamic obstacle blocks a node with lower ci than cis of the
nodes on the Rewiring Circle. In Algorithm 5, restarting Qs means
we need to rewire nodes from x0 again (line 10).

4.2 Path Planning

Line 7 in Algorithm 1 uses Algorithm 6 to plan a k-step path from
x0. Algorithm 6 plans the path in two ways: 1) when tree reaches
xgoal (lines 2-4) which happens when we expand the tree using Al-
gorithm 3; 2) when the tree has not reached xgoal (lines 6-10). In
the first way, the path from xgoal up to x0 is in the tree and thus we
only need to update the path (line 3) when rewiring the path is done
using rewiring algorithms in Section 4.1.2. In the second way, we
plan a path to get as close as possible to xgoal on the tree. We use
cost function fi = ci + hi to get close to xgoal as well as to take
a short path on the growing tree. Thus, using fi can trap us in lo-
cal minima. To prevent trapping in local minima and enable path
planning to visit other branches, we plan a k-step path using fi at
each iteration (lines 6,7) and block the already seen nodes (line 10)
by setting their his to infinity. When path planning reaches a node
that could not go any further (line 8), we return the planned path
and block that node (lines 9,10). Then, we update the best already
found path if the planned path leads us to a location closer to xgoal
(line 11). However, the agent follows the best path if it leads to

some place closer than the current place of the agent (line 12).

Algorithm 6 Plan a Path for k Steps
1: Input: T , xgoal
2: if Tree has reached xgoal then
3: Update path from xgoal to x0 if the path is rewired
4: (x0, ...,xk)← (x0, ...,xgoal)
5: else
6: for xi ∈ (x1,x2, ...,xk) do
7: xi=child of xi-1 with minimum fc=cost(xc)+H(xc)

8: if xi is leaf or its children are blocked then
9: (x

′
0, ...,x

′
k)← (x0, ...,xi)

10: Block xi and Break;
11: Update best path with (x

′
0, ...,x

′
k) if necessary

12: (x0, ...,xk)← choose to stay in x0 or follow best path
13: return (x0, ...,xk)

Note that, H(xi) returns infinity if xi is blocked and xgoal has not
been changed, i.e. xi is already visited for the current xgoal. Oth-
erwise, if xgoal has been changed or xi has not been visited for the
current xgoal, H(xi) = ‖xi − xgoal‖2. Every node has a chance to
get visited again, i.e. all its ancestors get unblocked, when another
unblocked node is added as its child by rewiring or adding a node.
It should be noted that when the tree has reached xgoal and the path
gets blocked by an obstacle, we follow the path up to the obstacle
until rewiring finds another path or the path gets cleared.

5 Simulations

Figure 3: Simulation environment (left) and the tree expanded by
RT-RRT* to cover this environment (right). The numbered circles
denote different goal areas in the environment.

In this section we compare our algorithm, RT-RRT*, with CL-RRT
[Luders et al. 2010] in two different scenarios. First, we find out the
number of iterations (planning step and taking an action) needed to
find a path to the various goals in Fig 3. Secondly, we find out
the length of the paths taken between the consecutive goal points
of Fig 3. The dynamic obstacles are motionless in the simulation to
make a fair comparison with CL-RRT. However, our supplementary
video shows how RT-RRT* reacts to the movements of the dynamic
obstacles (supplemental video 00:15). The agent and dynamic ob-
stacles have the relatively small radii of 0.5m. The tree expanded
by RT-RRT* is demonstrated in Fig 3. This tree covers the whole
environment with approximately 7000 nodes. We had a grid of size
2m × 2m which divides the environment into 225 squares. The
kmax and rs in Algorithm 2 are set to 5 and 0.5 m respectively. α
and β in (1) are 0.1 and 2, correspondingly. Also, we set ro, rb
and rg of Fig 2 to 10m, 1.5m and 0.5m, respectively. The limited
time for Tree Expansion-and-Rewiring is set to 10 ms and we set
k in Algorithm 1 to 100. In order to have a fair comparison with
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CL-RRT, we had a disturbance free model and used C-PBP as the
closed loop controller of the CL-RRT algorithm as well. This way
the differences in the sampling schemes become evident. In CL-
RRT, The number of the nodes is limited to 1000 for real-time use.
Also, We plan 10 steps ahead with CL-RRT and use 5 as the nearest
neighbor parameter.

We ran each algorithm for each scenario 10 times and averaged the
results. The average number of iterations required to find the path
to each goal was 8.26 for our method and 87.54 for CL-RRT. The
average number of the iterations needed to find the path to G1 was
approximately the same for both of the algorithms since both of
them start growing the tree from a scratch. However, as opposed
to CL-RRT, our method needs fewer iterations as the tree grows in
the environment. Particularly, in RT-RRT* when the tree is grown
to the whole area, the path is fast to find, e.g. the average number
of the iterations for finding paths to G4, G5 and G6 are 1.00, 4.27
and 1.00 for RT-RRT*, respectively, whereas for CL-RRT they are
of the order of 100. This happens because nothing is pruned from
the tree unlike in CL-RRT (supplemental video 1:30). In addition,
the average length of a path taken to the different goals was 27.12
for our method and 72.67 for CL-RRT. We can see that RT-RRT*
needs less iterations and produces paths with smaller length. The
smaller length of the path is caused by the rewiring operation which
is present only in RRT* based algorithms. We also observed that us-
ing 500 iterations CL-RRT failed to find the path to G5 with 65 %
chance and to G3 with 10 % chance because of the narrow pas-
sages, whereas RT-RRT* never fails to find a path as the tree is
expanding.

6 Conclusions

In this paper we introduced the first real-time version of RRT* and
informed RRT*. The real-time capability was achieved by inter-
leaving the path planning with the tree expansion and rewiring.
Furthermore, we move the tree root with the agent to retain the
tree instead of building it anew at every iteration. The tree contin-
ues to grow until it covers the environment. We also introduced two
modes of rewiring for having shorter paths in the large tree with a
limited number of the nodes. These are: 1) rewiring starting from
the root, and 2) rewiring random parts of the tree. The first one
creates a growing circle centered at the agent. In this process ev-
ery node inside the circle is rewired, and this circle most frequently
rewires nodes around the agent and thus the tree root. The sec-
ond one is done using both focused and uniform sampling, but in
patches instead of just one node. We tested our algorithm against
CL-RRT which can be considered the state-of-the-art in RRT-based
real-time path planning. Our simulations show that the combination
of retaining the tree with the two methods of rewiring the large tree
in RT-RRT* enables the algorithm to find shorter paths with less
iterations to one or multiple goal points. One should note that, for
the sake of simplicity and memory, we used a grid to speed up our
neighboring node search. Some more sophisticated spatial index
such as a KD-tree would speed up the search even more and allow
using bigger sampling budgets.

RT-RRT* has its limitations, e.g. it requires a large memory capac-
ity because the whole tree is stored at all times. One of the major
limitations of our algorithm is that it only works in a bounded en-
vironment. The focused sampling inside an ellipsoid works some-
what in an unrestricted environment but the rewiring suffers if the
distances are large. Thus, the challenges of unbounded and large
distance environments remain to be addressed.

We used C-PBP to move the agent on the planned path and sepa-
rate the path planning from the motion planning. Although C-PBP
enables the agent to follow the planned path smoothly and plan mo-

tions around the obstacles, it regrettably does not provide us with
a model of the obstacles. That is why we made assumptions about
which objects are obstacles and resorted to circumventing the ob-
stacles with a given minimum distance. We deem extracting an
obstacle model a fruitful research direction for the future.
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HÄMÄLÄINEN, P., RAJAMÄKI, J., AND LIU, C. K. 2015. Online
Control of Simulated Humanoids Using Particle Belief Propaga-
tion. In Proc. SIGGRAPH ’15, ACM.

KARAMAN, S., AND FRAZZOLI, E. 2011. Sampling-based Algo-
rithms for Optimal Motion Planning. Int. J. Rob. Res..
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