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SUMMARY

Real-world complex systemsmay bemathematically
modeled as graphs, revealing properties of the
system. Here we study graphs of functional brain
organization in healthy adults using resting state
functional connectivity MRI. We propose two novel
brain-wide graphs, one of 264 putative functional
areas, the other amodification of voxelwise networks
that eliminates potentially artificial short-distance
relationships. These graphs containmany subgraphs
in good agreement with known functional brain
systems. Other subgraphs lack established func-
tional identities; we suggest possible functional
characteristics for these subgraphs. Further, graph
measures of the areal network indicate that the
default mode subgraph shares network properties
with sensory and motor subgraphs: it is internally
integrated but isolated from other subgraphs, much
like a ‘‘processing’’ system. The modified voxelwise
graph also reveals spatial motifs in the patterning of
systems across the cortex.

INTRODUCTION

Advances in neuroimaging that facilitate the study of brain rela-

tionships in humans have stimulated an enormous amount of

scientific and medical interest in recent years (Biswal et al.,

1995; Bullmore and Sporns, 2009; Deco et al., 2011; Dosenbach

et al., 2010). Resting state functional connectivityMRI (rs-fcMRI),

which measures spontaneous low-frequency fluctuations in

blood oxygen level dependent (BOLD) signal in subjects at

rest, has attracted particular attention for its ability to measure

correlations in neural activity (via BOLD signal) between distant

brain regions. These correlations are of great interest to the

medical community because an increasing number of pathologic

conditions appear to be reflected in functional connectivity

between particular brain regions (Church et al., 2009; Seeley

et al., 2009). At the same time, these correlations are of funda-
mental interest to neuroscientists because they offer the first

opportunity to comprehensively and noninvasively explore the

functional network structure of the human brain (Bullmore and

Sporns, 2009).

Although a variety of methods may be used to study rs-fcMRI

data, one of the most powerful and flexible approaches is the

graph theoretic approach (Bullmore and Sporns, 2009; Rubinov

and Sporns, 2010). Within this framework, a complex system is

formalized as a mathematical object consisting of a set of items

and a set of pairwise relationships between the items. Items are

called nodes, relationships are called ties, and collections of

these nodes with their ties are called graphs or networks. A short

and incomplete list of established topics in graph theory includes

quantifying hierarchy and substructure within a graph, identifying

hubs and critical nodes, determining how easily traffic flows in

different portions and at different scales of a network, and esti-

mating the controllability of a system (Liu et al., 2011; Newman,

2010). Because graph theoretic analyses can model properties

at the level of the entire graph, subgraphs, or individual nodes,

and because the brain itself is a complex network, graph theo-

retic approaches are a natural and attractive choice for rs-fcMRI

analysis.

A current obstacle to the graph-based study of functional

brain organization is that it very difficult to define the individual

nodes that make up a brain network. On first principles, treating

a graph as a model of a real system, if the nodes of the graph

do not accurately represent real items in the system, the graph

itself is a distorted model and graph theoretic properties will

diverge from the true properties of the system (Butts, 2009;

Smith et al., 2011; Wig et al., 2011). The brain is a complex

network with macroscopic organization at the level of functional

areas and subcortical nuclei, but the number and locations

of these entities in humans is largely unknown. Standard

approaches to forming whole-brain rs-fcMRI graphs often ignore

this issue and define nodes as voxels (Buckner et al., 2009; Cole

et al., 2010; Fransson et al., 2011; Tomasi and Volkow, 2011;

van den Heuvel et al., 2008), large parcels from anatomically

based brain atlases (Hartman et al., 2011; He et al., 2009;

Meunier et al., 2009a; Spoormaker et al., 2010; Tian et al.,

2011), or random interpolations between voxels and parcels

(Hayasaka and Laurienti, 2010; Meunier et al., 2009b). These

approaches are not meant to correspond to macroscopic
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‘‘units’’ of brain organization, and thus there is no direct reason

to believe that these approaches result in well-formed nodes

(Wig et al., 2011).

An overarching goal of this report is to, at least partially, over-

come this obstacle. We have developed methods to define, as

best we can, a set of more appropriate nodes, and to define

a network based upon these nodes (and the ties between

them). We also propose a second novel brain network, based

on a modification of voxel-wise approaches, and examine

some of its properties in relation to the first graph. Before

studying these graphs in detail, we are obliged to demonstrate

that they (1) display signs of accuracy, and (2) improve upon

previous graph definitions.

Our evaluation of rs-fcMRI brain graphs rests upon a simple

and fundamental argument. Decades of PET and fMRI experi-

ments have defined functional systems as groups of brain

regions that coactivate during certain types of task (e.g., the

dorsal attention system, (Corbetta and Shulman, 2002; Corbetta

et al., 1995); here and elsewhere we replace common neurosci-

entific usage of ‘‘network’’ with ‘‘system,’’ reserving the word

network for the graph theoretic sense, such that ‘‘dorsal attention

network’’ becomes ‘‘dorsal attention system’’). A more recent

large literature indicates that rs-fcMRI signal is specifically and

highly correlated within these functional systems (e.g., within

the visual system, default mode system, dorsal attention system,

ventral attention system, auditory system, motor system, etc.)

(Biswal et al., 1995; Dosenbach et al., 2007; Fox et al., 2006;

Greicius et al., 2003; Lowe et al., 1998; Nelson et al., 2010a).

There is a family of methods (subgraph detection) that is used

to break large networks into subnetworks of highly related

nodes (subgraphs), such that nodes within subgraphs are more

densely connected (here, correlated) to one another than to the

rest of the graph. We hypothesized that specific patterns of

high correlation within functional systems would be reflected

as subgraphs within a brain-wide rs-fcMRI network. Thus, the

presence of subgraphs that correspond to functional systems

is an indication that a graph accurately models some features

of brain organization, and the absence of such subgraphs raises

suspicions that a graph may not be well-defined.

With this hypothesis in mind, we open this report by studying

the subgraph structures of four brain-wide graphs within a single

data set. As mentioned above, two novel graphs are studied:

a graph of putative functional areas (264 nodes), and a modifica-

tion of voxelwise networks that excludes short-distance correla-

tions (40,100 nodes). Two other standard graphs are used for

comparison: a graph of parcels from a popular brain atlas

(90 nodes), and a standard voxelwise graph (40,100 nodes). To

presage the results, subgraphs in the areal network are signifi-

cantly more like functional systems than subgraphs in the atlas-

based graph, and subgraphs in the modified voxelwise network

are more like functional systems than the standard voxelwise

network. Additionally, despite great differences in network size

and definition, the areal and modified voxelwise subgraphs are

remarkably alike and contain many subgraphs corresponding

to known functional systems, bolstering confidence in their

accuracy. Given these findings, we perform a variety of further

analyses upon the novel graphs to learn more about functional

brain organization, with some novel and interesting results.
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RESULTS

Comparing Networks: Defining Four Brain-Wide
Networks
Two novel and two standard methods of graph definition were

examined within a large cohort of healthy young adults (and in

a matched replication cohort; see Table S1 available online).

To reiterate, graphs are composed of a set of nodes and a set

of ties between nodes. Graphs were formed using the nodes

described below, and ties were defined using Pearson correla-

tion coefficients between node rs-fcMRI timecourses. The cross

correlation matrix of a set of nodes thus defines a graph.

Because most graph theoretic techniques are developed (and

are most meaningful) in sparse graphs (Newman, 2010), thresh-

olds were applied to the graphs to eliminate weak ties (such that

correlations under the threshold were ignored). Because there is

no ‘‘correct’’ threshold, all analyses were performed over a range

of thresholds, typically beginning around 10% tie density (retain-

ing the strongest 10% of correlations) and rising until the

networks became severely fragmented (see Supplemental

Experimental Procedures).

The first novel graph (referred to as the areal graph) was

defined in accord with neurobiological principles. The brain is

a complex network with a hierarchical spatial and functional

organization (in the cortex) at the level of neurons, local circuits,

columns, functional areas, and functional systems. Standard

rs-fcMRI analyses use cubic voxels that are a few millimeters

on each side, and thus can potentially resolve brain relation-

ships at the level of areas. Centers of putative areas were

identified using two independent methods operating on data

sets that were not used in graph analyses (see Experimental

Procedures). The first method was meta-analytic in nature (as

in Dosenbach et al., 2006), and explored a large fMRI data

set to identify voxels that were reliably and significantly modu-

lated when certain behaviors were demanded (e.g., button-

pressing) or certain signal types were found (e.g., error-related

activity). The second method extended a recently developed

technique of mapping cortical areas using rs-fcMRI to entire

cortical sheets (fc-Mapping) (Barnes et al., 2011; Cohen et al.,

2008; Nelson et al., 2010a). The combination of these methods

yielded 264 putative areas spanning the cerebral cortex,

subcortical structures, and the cerebellum (see Experimental

Procedures, Figure S1, and Table S1 for analysis details, and

Table S2 for coordinates). Regions of interest (ROIs) were

modeled as 10mmdiameter spheres. Graphswere formed using

ROIs as nodes (n = 264) and ties terminating within 20 mm

of a source node center were set to zero to avoid possible

shared signal between nearby nodes. This procedure yielded

graphs of putative functional areas in which each node repre-

sented, to the best of our capabilities, an element of brain

organization.

The second novel graph thatwas examinedwas amodification

of voxelwise networks in which all short-distance ties were

excluded. This modification arose from several practical obser-

vations. First, nearby voxels share nonbiological signal (causing

increased rs-fcMRI correlation), a result of unavoidable steps

in data processing (e.g., reslicing, blurring). Second, short-

distance relationships are especially susceptible to spurious



Figure 1. Areal Subgraph Structure Is Highly

Similar across Cohorts and Subgraph Structure Is

Similar between Areal and Modified Voxelwise

Graphs

Top left: A spring embedded layout of the areal graph at

4% tie density visualizing the graph and the basis for

subgraphs.

Top right: For both cohorts, plots are shown of the areal

assignments into subgraphs (colors) at tie densities from

10% down to 2% in 1% steps. ROI ordering is identical,

and all subgraphs with fewer than four members are

colored white. The standard measure of subgraph

similarity, normalized mutual information, between node

assignments of the cohorts at identical tie densities

ranged from 0.86 to 0.92, indicating highly similar patterns

across cohorts (1 = identical assignments, 0 = no infor-

mation shared between assignments).

Bottom: subgraphs from three thresholds are shown

for the areal (spheres) and modified voxelwise graphs

(surfaces). Note the similarity of subgraph assignments

between networks, despite the great difference in network

size and cortical coverage, even in different subjects (main

versus replication cohorts). All areal subgraphs with fewer

than four members are colored white, and all modified

voxelwise subgraphs with fewer than 100 voxels are

colored white. Areal networks are shown at 10%, 3%, and

2% tie density (r > 0.16, 0.30, and 0.33), and modified

voxelwise networks are shown at 5%, 2%, and 0.5% tie

density (r > 0.16, 0.23, and 0.31).
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augmentation by subject motion (Power et al., 2011). Third, as

will be seen shortly, voxelwise graphs are dominated at higher

thresholds by short-distance relationships, which are logically

partially artificial based on the above considerations. Modified

voxelwise networks are presented in which all ties terminating

within 20 mm of a source node are excluded, though other

distances (e.g., 15 mm and 25 mm) were also tested, with similar

results (data not shown).

The two standard methods of graph formation were parcel-

based and voxel-based. The parcel-based graph was formed

using the 90-parcel AAL atlas (Tzourio-Mazoyer et al., 2002),

a popular method of graph formation. This atlas divides the

cortex and subcortical structures into parcels based upon

anatomical landmarks. The voxel-based graph was defined

using all voxels within the AAL atlas (n = 40,100), and the modi-

fied voxelwise graph was also defined using these voxels.

Comparing Networks: Correspondence between
Subgraphs and Functional Systems
Subgraphs were determined over a range of thresholds for each

graph using one of the best-performing subgraph detection

algorithms currently available (Infomap) (Fortunato, 2010; Ros-

vall and Bergstrom, 2008). This algorithm uses the map equation

to minimize information theoretic descriptions of random walks

on the graph (essentially assigning zip codes to subgraphs to
Neuron 72, 665–
shorten addresses of individual nodes). Other

algorithms were tested and yielded similar

results (Figure S2).

Figure 1 illustrates ourmethodology and high-

lights several important results. The first panel
depicts the areal graph in a spring embedded layout and maps

subgraphs onto nodes using colors, visibly demonstrating the

basis for subgraphs. In spring embedded layouts, ties act as

springs to position nodes in space such that well-connected

groups of nodes are pulled together, providing an intuitive and

informative picture of the graph. The second panel shows the

subgraph assignments of the areal network in both cohorts

over a range of thresholds (each chart consists of 9 columns of

264 color entries). ROIs are ordered identically for both cohorts,

and the patterns of subgraph assignment across cohorts are in

good agreement. The standard graph theoretic measure of

similarity between two sets of node assignments is normalized

mutual information (NMI), which measures how much informa-

tion one set of assignments provides about another set of

assignments. Values of 1 indicate identical assignments, and

values of 0 indicate that no information is gained about the

second set of assignments by knowing the first. Between

cohorts, NMI ranges from 0.86 to 0.92 across thresholds, indi-

cating very similar assignments.

The subgraph charts contain subgraphs whose composition

remains quite constant over thresholds (e.g., the horizontal

bands of blue, red, or yellow) as well as subgraphs that are

hierarchically refined as thresholds rise (e.g., cyan becoming

cyan, orange, pink, and purple). These patterns can be seen on

brain surfaces (Figure 1, bottom) as relatively constant subgraph
678, November 17, 2011 ª2011 Elsevier Inc. 667



Figure 2. Many Modified Voxelwise Subgraphs Replicate across Cohorts and Even within Single Subjects

Select subgraphs from the modified voxelwise analysis are presented from a dorsal view for both cohorts and for an additional single subject. Cohort subgraphs

are taken from the 2% tie density analysis and subgraphs in the individual are taken from a 0.5% tie density analysis. The overall NMI between cohort assignments

at this threshold was 0.71, and NMI values between subgraphs from different cohorts are shown in the matrix to the right. Additional views of this data and

replications of subgraphs from other thresholds are found in Figure S3.
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compositions for visual (blue), default (red), or fronto-parietal

(yellow) regions over thresholds, and as refinement of the large

cyan subgraph into hand somatosensory-motor (cyan), face

somatosensory-motor (orange), auditory (pink), and cingulo-

opercular (purple) subgraphs. This bottom panel of Figure 1 plots

areal assignments (spheres) in the main cohort over the modified

voxelwise assignments (surfaces) in the replication cohort,

demonstrating the similarity of subgraphs over thresholds

across different cohorts and even across graph definitions. As

Figure 2 shows, the modified voxelwise graphs also replicate

well across cohorts and even in single subjects. Fuller visualiza-

tions of these data and replications of subgraphs from other

thresholds are found in Figure S3.

We predicted that well-formed graphs would possess well-

formed subgraphs corresponding to major functional systems

of the brain. Figure 3 gives an overview of howwell each network

met this prediction. At left, PET and fMRI data defining major

functional systems are shown. The next three columns display

subgraphs from a single threshold of analysis for each graph

(a high threshold, tailored to each graph). In the second column,

areal and modified voxelwise assignments are shown simulta-

neously because they are in such good agreement. The areal

and modified voxelwise graphs contain subgraphs that corre-

spond to each of the functional systems, and these subgraphs

contain most or all of the brain regions implicated in the func-

tional systems, and sometimes also some extra brain regions.

In contrast, the AAL-based graph is incapable of representing

most functional systems at this threshold (or any threshold;

see Figure S4). The standard voxel-based graph represents

some functional systems well (e.g., the default mode system),

but others are only incompletely represented. Examination of

other thresholds of the standard voxelwise graph (Figure S4)

indicates that at low to moderate thresholds, reasonable

subgraph representations of some functional systems are found,

but that as thresholds rise, portions of functional systems
668 Neuron 72, 665–678, November 17, 2011 ª2011 Elsevier Inc.
tend to merge, and subgraphs come to resemble a patchwork

of local subgraphs across the cortex (see circled regions in

Figure S4).

To more quantitatively assess subgraph correspondence to

functional systems, we used NMI to compare groups of coordi-

nates from functional systems with the subgraph identities of

the nodes nearest to the coordinates under each network defini-

tion. A one-factor ANOVA of NMI demonstrates an effect of

graph (p < 10�7; see Figure S5). The AAL-based graph displays

the lowest correspondence (NMI = 0.37 ± 0.04, significantly

lower than all other graphs) across thresholds, and the variable

structure of the voxelwise graph is reflected in NMI that ranges

widely over thresholds (0.58–0.86), in contrast to the stable

and high NMI found in the areal (0.72 ± 0.06) and modified

voxelwise graphs (0.87 ± 0.15). Importantly, as thresholds rise,

NMI between functional systems and subgraphs increases for

the modified voxelwise analysis, but decreases for the standard

voxelwise analysis.

Choosing Network Definitions for Further Analysis
The areal and modified voxelwise graphs best meet our predic-

tions about the correspondence between functional systems

and subgraphs within brain-wide networks. The poorer corre-

spondence in the AAL-based and standard voxelwise graphs

likely results from coarse, nonfunctionally based nodes in the

AAL-based graph, and the effects of millions of artificially high

short-range correlations between nearby voxels in the standard

voxelwise graph. We turn now from our focus upon confirmatory

findings to novel observations about functional brain organiza-

tion that can be drawn from the areal and modified voxelwise

graphs. We shall continue to focus on the network at the level

of subgraphs. We begin by discussing the identities of

subgraphs, then examine the relationships and properties of

particular subgraphs, and end with observations about relation-

ships between all subgraphs.



Figure 3. Graph Definition Dictates Fidelity to Functional Brain Organization

At left, the task-defined locations of four established functional systems. The next three columns display, for the main cohort, the single subgraph that best

corresponds to each functional system under the four graph definitions. Circles are placed around small portions of subgraphs that might otherwise be over-

looked (there are small green regions within green circles). Data from a single threshold tailored to each graph are shown. The threshold was the next-to-highest

threshold that each graph can achieve before the graph becomes severely fragmented (defined by the giant component containing <50% of the nodes in the

graph). Tailored thresholds were 3% for the areal graph, 5% for the AAL-based graph, and 2% for both voxel-based graphs. Correspondence between these

functional systems and subgraphs is good for the areal and modified voxelwise graphs, intermediate for the voxelwise graph, and poor for the AAL-based graph.

Note especially the correspondence between areal (spheres) and modified voxelwise (surface) subgraphs, despite great differences in network size (n = 264

versus n = 40,100). See Figure S4 and Figure S5 for more comprehensive and quantitative presentations of subgraph assignments. Images in the left column are

modified from (Corbetta et al., 2008; Corbetta and Shulman, 2002; Dosenbach et al., 2007; Shulman et al., 1997).
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Subgraph Identities
The identities of the red (default), yellow (fronto-parietal task

control), green (dorsal attention), and teal (ventral attention)

subgraphs are already clear. The remaining major subgraphs

are now considered.

Several subgraphs correspond to sensory and motor regions

(Figure 4, left). A visual system (blue) was identified, spanning

most of occipital cortex, often including a small portion of

superior parietal cortex and a portion of the postero-lateral

thalamus (potentially lateral geniculate nucleus [LGN], see hori-

zontal sections). At moderate thresholds, somatosensory-motor

(SSM) cortex (S1, M1, and some pre- and postcentral-gyrus

cortex) was divided into dorsal (cyan) and ventral (orange)

subgraphs. These subgraphs also included voxels in the parietal

operculum that likely correspond to the second somatosensory

area (S2) (Burton et al., 2008), as well as a portion of the thalamus

possibly corresponding to ventral posterior thalamus (VP). At

high thresholds, an auditory subgraph (pink) emerged from the

purple cingulo-opercular subgraph.

Rather than a division between somatosensory and motor

regions, a division between dorsal and ventral SSM regions

is found. Although motor and sensory function are typically

localized to the pre- and postcentral gyri, respectively, classic

descriptions of stimulus-evoked responses and sensations in

humans indicate that these processes are not exclusively local-
ized to either side of the central sulcus (Penfield and Boldrey,

1937), a finding consistent with recent investigations of primary

motor and somatosensory cortex in rodents (Matyas et al.,

2010). The division into ventral and dorsal subgraphs roughly

separates the face from the rest of the body, a distinction

confirmed by button-pushing and verb generation meta-analysis

data (Figure S1). Similar dorsal/ventral distinctions have recently

been found (Yeo et al., 2011). Intriguingly, correlations between

meta-analytic face SSM (orange) and auditory (pink) ROIs are

higher than correlations between body SSM (cyan) and auditory

ROIs (auditory-face r = 0.16, auditory-hand r = 0.05, p < 0.001,

significant in both cohorts). These differential correlations are

unlikely to reflect only anatomical connectivity, but instead might

be related to the history of coactivation that these regions surely

share as a function of oral/aural language. Thus, it appears that

somatosensory and motor cortex are functionally divided into

a ventral facial representation and a dorsal representation of

the rest of the body (called ‘‘hand’’ for brevity).

Two cingulo-opercular subgraphs (black and purple, Fig-

ure 4, middle) are identified, both encompassing regions in

anterior cingulate/medial superior prefrontal cortex (aCC),

anterior prefrontal cortex (aPFC), and the anterior insula (aI)

(with additional regions in inferior and middle frontal gyrus and

supramarginal gyrus at multiple thresholds). Two distributed

functional systems have been ascribed to cingulo-opercular
Neuron 72, 665–678, November 17, 2011 ª2011 Elsevier Inc. 669



Figure 4. Subgraph Identities

Left: visual (blue), auditory (pink), and hand (cyan) and face (orange) sensory-somatomotor (SSM) subgraphs are shown for the areal network at 2% (spheres) and

the modified voxelwise network at 0.5% tie density (surface). Themean correlations in the main cohort between auditory processing (pink, MNI:�38�33 17) and

hand (cyan, �40 �19 54) and face (orange, �49 �11 35) regions are shown below. Auditory-face correlations are significantly higher than auditory-hand

correlations in both cohorts (p < 0.001, two-sample two-tail t test).

Bottom: slices from the 4% tie density modified voxelwise analysis, with labels on relevant thalamic nuclei (numbers are z coordinates).

Middle: two cingulo-opercular subgraphs shown from the 3% areal (spheres) and 2% tie density modified voxelwise analysis (surface). Middle, published ROIs

(cingulo-opercular task control [Dosenbach et al., 2007]; salience [Seeley et al., 2007]) or modified voxelwise subgraphs, with an overlaid heat map of on-cue

meta-analysis activation. On-cue activity localizes to the purple subgraph.

Bottom: very strong fc-Mapping gradients are displayed separating the black and purple subgraphs, indicating that they possess distinct rs-fcMRI signals.

Right: at top, three unknown subgraphs from the 0.5% tie density modified voxelwise analyses are shown. The salmon subgraph (gray in all other figures, here

salmon for contrast) is reproduced with a 2% areal subgraph overlaid as spheres, and the strongest activations from the memory retrieval meta-analysis are

shown below. The light blue subgraph is also reproduced and the coordinates of a putative functional system from Nelson et al. (2010a) are overlaid as tan

spheres.
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cortex: a cingulo-opercular control system first described by

Dosenbach et al. (2006) as the ‘‘core’’ of a task performance

system, which is thought to instantiate and maintain set during

task performance, and the salience system of Seeley et al.

(2007). Relative to the black subgraph, the purple subgraph

lies anterior and ventral in aCC, lateral in aPFC, and dorsal in

the aI. Three pieces of data hint at the identities of these

subgraphs. First, the coordinates reported for the task control

network are dorsal to salience coordinates in the insula (Dosen-

bach et al., 2007; Seeley et al., 2007), although most other coor-

dinates do not distinguish the competing functional systems.

Second, on-cue activity localizes to the purple subgraph in the

aI, aCC, and aPFC (the task control system was defined over

a range of tasks by on-cue activity entering a task block, sus-

tained activity during a task block, and error-related activity).

Finally, the fc-Mapping technique detects a strong border

between the black and purple subgraphs atmany locations, indi-

cating that rs-fcMRI signal differs strongly between these

subgraphs, consistent with prior reports (Nelson et al., 2010b).

We suggest that the purple subgraph more closely represents

the cingulo-opercular task control system, whereas the black
670 Neuron 72, 665–678, November 17, 2011 ª2011 Elsevier Inc.
subgraph more likely relates to a salience system, though the

evidence for such assignments is provisional.

At least three distributed subgraphs with previously unknown

functional identities are also found (Figure 4, right). The first

subgraph (salmon in Figure 4, gray in Figure 1) includes parts

of posterior cingulate, posterior medial parietal, and lateral

parietal cortex. We are unaware of any earlier characterizations

of this collection of brain regions as a coherent functional

system, but we found that these regions display the strongest

activation in our memory retrieval meta-analysis. Another distrib-

uted subgraph (light blue) is found in frontal, parietal, and

temporal cortex at higher thresholds of the modified voxelwise

analysis. This set of regions is not a commonly described

functional system, but recent work (fMRI and rs-fcMRI) (Nelson

et al., 2010a) has indicated that a very similar set of regions

(tan spheres in Figure 4) interposed between fronto-parietal

and default regions may be a functional system, also implicated

in memory retrieval. Another novel subgraph is shown in

plum, with representation in fusiform cortex, the precuneus,

lateral and medial posterior parietal cortex, and superior frontal

cortex.



Figure 5. The ‘‘Task Positive System’’ Consists of Multiple

Subgraphs, Including Dorsal Attention, Fronto-Parietal Task
Control, and Cingulo-Opercular Task Control Systems

At left, the ‘‘task+ system’’ of Fox et al. (2005). At right, three subgraphs from

the 0.5% tie density modified voxelwise analysis. The task+ system is

composed of at least three subgraphs, corresponding to the fronto-parietal

task control, cingulo-opercular task control, and dorsal attention systems.
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We now shift from examining individual subgraphs to collec-

tions of subgraphs and their relationships to one another.

The ‘‘Task-Positive System’’ Is Composed of Multiple
Subgraphs Whereas the ‘‘Task-Negative System’’
Is Composed of a Single Subgraph
In an influential article, Fox et al. (2005) described a task-positive

network that is broadly activated across tasks, and a task-nega-

tive network that is broadly inactivated across tasks (Figure 5).

Seed timecourses demonstrated that rs-fcMRI signal in one

network tended to rise as the signal in the other network fell,

and the authors used seed correlation maps to suggest that

large portions of the brain are organized into two anticorrelated

networks. This framework is a useful heuristic, but the present

results suggest a more complicated picture.

The ‘‘task-negative system’’ corresponds predominantly to

a single subgraph (the default mode system), with possible

additional correspondence to the memory retrieval (salmon)

subgraph described above. The ‘‘task-positive system’’ is,

from a graph theoretic perspective, composed of at least three

major subgraphs: the dorsal attention system (green), the

fronto-parietal task control system (yellow), and the cingulo-

opercular task control system (purple). Because subgraphs are

formed of nodes that are more related to one another than to

the rest of the network, the rs-fcMRI timecourses of these

subgraphs must be distinct from one another.

This highlights a fundamental difference between ‘‘resting

state networks’’ defined by seed map analyses and the sub-

graphs defined by graph-based approaches. Seed maps

measure only the relationships between a seed ROI and other

brain regions (usually voxels), whereas a graph of N nodes inte-

grates the information of N seed maps to capture not only the

relationships of a seed region to other brain regions, but also
the second-order relationships among those other brain regions.

In other words, seed maps measure relationships in isolation,

whereas graphs capture these relationships and their context.

There is no necessary conflict in saying that a seed from dorsal

attention regions highlights broad swaths of cortex (the seed’s

voxelwise neighbors) and that graph-based analyses indicate

that some of these neighbors belong to other discrete sub-

graphs. Thus, the ‘‘task-positive system’’ seems to be com-

posed of at least three subgraphs, corresponding to distinct

attentional and task control systems.

The Default Mode System Is, from a Graph Theoretic
Perspective, Like Sensory and Motor Systems
Classic models of cognitive control posit that sensory informa-

tion is received, processed according to the demands of

a task, and an output is generated (Norman and Shallice,

1986). Processing at the input and output stages is thought to

be relatively modular (not strictly in the graph theoretic sense),

whereas cognitive control mechanisms must flexibly adapt pro-

cessing to awide range of task sets (Posner and Petersen, 1990).

On such an account, within a graph theoretic context, subgraphs

thought to be responsible for task set or ‘‘control’’ ought tomain-

tain a relatively diverse set of relationships, whereas sensory or

motor ‘‘processing’’ systems ought to have relatively compart-

mentalized sets of relationships.

The compartmentalization and diversity of relationships in

graphs can be measured by two related, standard graph

measures: the local efficiency and participation coefficients of

nodes. Local efficiency is a measure of integration among the

neighbors of a node (the nodes a node has ties with): high local

efficiency means that a node is embedded within a richly con-

nected environment, and low local efficiency means that the

neighbors of the target node are sparsely connected to one

another. The participation coefficient measures the extent to

which a node connects to subgraphs other than its own. Low

participation coefficients indicate that nodes are confined to

interactions within their own subgraphs, whereas higher coeffi-

cients indicate that nodes connect to a variety of subgraphs.

Figure 6 plots subgraphs, local efficiency, and participation

coefficients for the areal graph over a range of thresholds.

‘‘Processing’’ systems ought to have high local efficiency and

low participation coefficients, reflected as hot colors in the

middle panel and cool colors in the right panel of Figure 6. The

visual (blue) and hand SSM (cyan) subgraphs meet this predic-

tion, as expected, and, intriguingly, so does the default mode

system (red). The more diverse relationships of ‘‘control’’

systems, on the other hand, ought to be reflected in lower local

efficiencies and higher participation coefficients, seen as cooler

colors in themiddle panel andwarmer colors in the right panel. In

comparison to ‘‘processing’’ systems, the fronto-parietal task

control (yellow) subgraph has significantly lower local efficiency

and higher participation indices, as one would expect. ANOVA

and t tests confirm that these findings hold over a range of

thresholds (see Figure 6).

These findings have several implications. Viewed from a graph

theoretic perspective, sensory and motor systems and the

default mode system have similar levels of self-integration

and self-containment. From the cognitive control perspective
Neuron 72, 665–678, November 17, 2011 ª2011 Elsevier Inc. 671



Figure 6. Default, Visual, and Somatosensory-Motor Systems Are Well-Integrated on Local Scales but Are Relatively Isolated in Relation to

Other Functional Systems

At top, the subgraphs, local efficiencies, and participation coefficients for all nodes in the areal network over a range of thresholds are shown. The local efficiency

of each node indicates the extent to which a node is embedded in a richly connected local environment. High (hot color) values indicate a richly connected local

environment. The participation coefficient of each node indicates the extent towhich a node has ties to other subgraphs. Here, low (cool color) values indicate that

nodes are connected almost exclusively tomembers of their own subgraph. One-factor ANOVAs indicate a significant effect of subgraph at all thresholds for both

indices (all with p < 10�6), and post hoc t tests indicate that the cyan, blue, and red subgraphs have significantly higher local efficiencies and lower participation

coefficients at most or all thresholds than the yellow subgraph. Node assignments for a single threshold (4% tie density) are shown on a brain and in a spring

embedded layout, and the local efficiencies and participation coefficients of relevant subgraphs at this threshold are shown. Note that local efficiency is inde-

pendent of subgraph assignment, whereas participation coefficients depend upon subgraph assignment.
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outlined above, these similarities would suggest that the default

mode system acts more as a ‘‘processing system’’ than

a ‘‘control system’’ (in contrast with the fronto-parietal system).

Viewed from a perspective of temporal dynamics, the high simi-

larity of node relationships within SSM and visual systems and

the default mode system might indicate that these systems in

particular are relatively stationary, whereas other subgraphs

such as task control systems might have more dynamic sets

of relationships. It should also be noted that several studies

(Buckner et al., 2009; Cole et al., 2010) have implicated the

default mode system as the seat of the most prominent ‘‘hubs’’

in rs-fcMRI brain graphs. Although default mode nodes may
672 Neuron 72, 665–678, November 17, 2011 ª2011 Elsevier Inc.
indeed have many ties, the isolated nature of the default mode

subgraph recasts the meaning of these nodes as hubs in the

context of brain-wide rs-fcMRI networks.

Functional Systems Are Arranged in Topological Motifs
across the Cortex
One of the more striking features of the modified voxelwise anal-

ysis is that subgraphs appear to be arranged in spatial motifs

throughout the cortex. Figure 7 demonstrates the presence of

motifs at a single threshold of the modified voxelwise analysis.

For each subgraph, the distribution of its spatial interfaces

(defined as en face voxels) with other subgraphs is plotted,



Figure 7. Functional Systems Are Arranged into Topological Motifs across the Cortex

In charts, particular subgraphs at a single threshold are selected, the spatial boundaries of that subgraph are found, and the distribution of spatial interfaces (en

face voxels) to other subgraphs are calculated. Themost frequent interfaces are plotted as percents of the total subgraph interface volume. Motifs are inferred by

finding instances where subgraphs interfacing with a subgraph are themselves very unlikely to interface. For instance, in the top chart, the light blue subgraph

interfaces most frequently with the yellow and red subgraphs, but red is only 3.6% of yellow’s interface, and yellow is only 2.6% of red’s interface. Below each

chart, plots of relevant subgraphs on brain surfaces visually demonstrate the repeated spatial patterns of subgraphs. Data from themodified voxelwise analysis at

1% tie density in the replication cohort are presented.
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and then these neighboring subgraphs are examined to see

whether they are themselves unlikely to interface (implying a

3-step motif). For example, the light blue subgraph interfaces
predominantly with red and yellow subgraphs, which are them-

selves miniscule portions of each others’ borders (red is 3.5%

of yellow’s border, and yellow is 2.6% of red’s border), implying
Neuron 72, 665–678, November 17, 2011 ª2011 Elsevier Inc. 673



Neuron

Functional Brain Networks
a yellow-light blue-red motif. Plots of relevant subgraphs on

brain surfaces visually confirm the presence of motifs. Three

instances of this motif are demonstrated, for the light blue, black

(salience), and green (dorsal attention) subgraphs. Other 3-step

motifs are present but not shown (e.g., red-teal-purple), and

these motifs can be found up and down subgraph hierarchies

(i.e., thresholds).

A principal concern about such spatial motifs is that they are

artifactual—that they arise as intermediate mixtures of adjacent

signals, particularly when averaging over subjects. Although

these concerns cannot be entirely excluded, several interposed

subgraphs (e.g., the green dorsal attention system or the teal

ventral attention system) have firm and extensive experimental

bases. If these are not considered artifactual, then other

subgraphs deserve similar consideration.

DISCUSSION

Task-Free Approaches Delineate Functional Systems
across the Cortex
At the onset of functional neuroimaging some 25 years ago,

investigators made educated guesses about the types of opera-

tions that the human brain must perform, and designed experi-

mental paradigms to elicit such operations (Lueck et al., 1989;

Pardo et al., 1991; Petersen et al., 1988; Posner et al., 1988).

Over time, evidence accumulated implicating collections of brain

regions that were assumed to share the burden of some set of

cognitive operations, defining functional systems (Corbetta and

Shulman, 2002; Dosenbach et al., 2006; Raichle et al., 2001).

Until the study of spontaneous BOLD activity, however, the

association of regions within a functional system was to some

extent dependent upon sets of task paradigms. Task-based

approaches left functional systems open to an interpretation

that rather than being a fundamentally related group of brain

regions within a brain-wide context, a functional system thus

defined might be just a transient and task-specific association

of brain regions.

The subgraphs presented herein were derived in task-free

data using methods with no prior information about node iden-

tity. There is substantial agreement between aspects of para-

digm-driven functional system definition in neuroimaging, and

paradigm-free subgraphs derived in task-free activity. Even if

one were to object that the areal network included functional

assumptions viameta-analytic localizers, themodified voxelwise

analysis, which returned very similar results, made no such

assumptions. In a brain-wide context, several functional systems

are distinguished from each other by spontaneous activity.

This task-free definition of brain functional organization can

inform perspectives on cognitive function. For example, dorsal

and lateral frontal cortex appears to be apportioned among

a variety of distributed subgraphs, many of which correspond

to functional systems with known characteristics (Figure 2).

This organization does not appear consistent with accounts of

cognition that posit rostro-caudal gradients or hierarchies across

frontal cortex (Badre and D’Esposito, 2009; O’Reilly, 2010).

In a related manner, the finding of similar graph properties

(relatively dense internal relationships and relatively few external

relationships) in visual, SSM, and default mode systems may
674 Neuron 72, 665–678, November 17, 2011 ª2011 Elsevier Inc.
inform the degree to which the default mode system is seen as

a processing type of system versus a control type of system.

Such a finding need not contradict the description of posterior

members of the default mode system as cortical hubs (Buckner

et al., 2009), but it may alter the understanding of what it means

to be a hub.

Integrating the Present Findings with Other Approaches
to Whole-Brain rs-fcMRI Analysis
Recent investigations into the structure of functional brain orga-

nization using a variety of methods (Erhardt et al., 2010; Yeo

et al., 2011) have found some similar (but not identical) sets of

resting state networks as the subgraphs reported here. We

consider convergence across methods to be a key indicator of

the validity of findings. We find the graph theoretic framework

to be especially useful, because it is capable of describing

the overall graph (no such measures are presented in this article,

but small-world measures are an example), portions of the

system (e.g., subgraphs), or individual nodes of the system

(e.g., local efficiency) within a common framework.

Our findings have substantial implications for past and future

graph-based analyses. By examining multiple network defini-

tions within a single data set, we were able to show how network

definition profoundly affects the properties of a network, and

therefore the conclusions one would draw about the brain. Our

results demonstrate drawbacks in some previous approaches,

while offering new approaches that appear to more plausibly

represent brain organization.

It is important to recognize that these new approaches to

graph definition are not equivalent or interchangeable. Note

that in this article we examine several graph theoretic properties

of the areal graph, but restrict our discussions of modified voxel-

wise data to spatial observations. The areal graph is formed

using our best estimates of the functional ‘‘units’’ in the brain,

andmany properties of this network should be fairly direct reflec-

tions of functional brain organization. On the other hand, the

modified voxelwise graph is defined using volumetric elements

(voxels), and this graph reflects volumetric properties of func-

tional organization. In this graph, most functional areas are prob-

ably represented bymany voxels, and large functional areas (and

functional systems) will dominate the graph structure regardless

of their roles in information processing relative to smaller areas or

systems. This volume-based definition thus warps representa-

tions of information processing, limiting the conclusions that

can be drawn from this graph.

Directions for Future Work
The analyses presented here suggest several avenues for future

inquiry. Within graphs that possess many subgraphs with strong

correspondence to functional systems, we have detected addi-

tional subgraphs with no such identity but with hints of shared

activity in certain contexts (e.g., memory retrieval activity in the

salmon and light blue subgraphs). Unifying functional attributes

among these subgraphs should be sought and tested. Our

results demonstrate strong within-subgraph connectivity in

sensory, motor and default mode systems, especially in contrast

to task control systems, suggesting that these systems may

differ in the dynamics of their relationships with other subgraphs
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over time. Our analyses only examined static pictures of graphs

obtained by summarizing activity over entire epochs into a single

correlation coefficient, and future work should explore if and

how these relationships change over time. Perhaps the most

obviousavenue for futureworkwill lie in thecomparison of graphs

across the lifespan and in disease. A recognized limitation within

graph theoretic investigations of structural and functional

brain networks is the current lack of validated parcellation strat-

egies (see Fornito et al., 2010; Wig et al., 2011; Zalesky et al.,

2010) for comprehensive discussions).We have derived and pre-

sented a graph of 264 putative functional areas that displays a

plausible functional structure that should be sensitive to the orga-

nization of many functional systems. If the locations of functional

areas do not greatly differ across populations (Barnes et al.,

2011), this graph should be applicable to a wide variety of

populations, such as clinical or developmental cohorts.

Limitations
The present study should be considered a preliminary draft

of functional brain networks and has many limitations. The

methods of locating putative functional areas may certainly

have overlooked, misplaced, or fabricated some areas. Addi-

tionally, the spherical ROIs used to model functional areas

do not reflect the true shapes of functional areas. However,

because subgraph structures in areal and modified voxelwise

networks were remarkably alike, this does not seem to have

crippled the endeavor. This study used a single signal (BOLD)

with known susceptibility artifacts in temporal and orbitofrontal

cortex. Accordingly, much remains to be discovered about

the organization of the ventral surface of the brain, as well as

subcortical and cerebellar organization (see Buckner et al.,

2011). One additional limitation inherent to fMRI is resolution:

voxels are 3 mm on each side, and partial voluming as well as

the smoothing inherent in data processing limit the resolution

that these studies can achieve. To offset these undesired effects,

short-distance relationships were eliminated from areal and

modified voxelwise analyses, and single subjects were exam-

ined. Future efforts that refine rs-fcMRI techniques and integrate

findings from other modalities, such as structural imaging, EEG,

or MEG, will provide valuable additions and refinements to our

observations, both in terms of identifying the functional ‘‘units’’

of the human brain and in more completely modeling functional

brain networks in space and time.

CONCLUSIONS

We close with two broad points. First, there is a growing trend

to examine healthy and pathological brain activity in terms of

networks (Bullmore and Sporns, 2009; Church et al., 2009;

Seeley et al., 2009). The sensitivity and specificity of such anal-

yses is directly linked to the comprehensiveness and accuracy

of the framework used to examine brain networks. The frame-

work used in this report appears to be reasonably accurate,

and is capable of describing networks as a whole, as subgraphs,

or as individual nodes, making it a powerful tool for examining

functional relationships in the human brain. Second, the accu-

racy of connectivity analyses depends upon the isolation of

relevant or unique signals. As the areal and modified voxelwise
analyses demonstrate, the human cortex possesses a complex

and dense topography of functional systems, underscoring the

need for ‘‘tedious anatomy’’ in neuroimaging studies (Devlin

and Poldrack, 2007).

EXPERIMENTAL PROCEDURES

Subjects

Healthy young adults were recruited from the Washington University campus

and the surrounding community. All subjects were native English speakers and

right-handed. All subjects gave informed consent and were compensated for

their participation.

Data Sets and Data Collection

This study utilized multiple data sets. The first and second data sets were used

for meta-analytic and fc-mapping analyses, respectively. The third data set

was used for rs-fcMRI network analysis. The first (n > 300, detailed in Table

S1) and second data sets (n = 40) were acquired on a Siemens 1.5 Tesla

MAGNETOM Vision MRI scanner (Erlangen, Germany) as described in Dosen-

bach et al. (2010). The third data set (n = 106: a 53 subject cohort, 52 subject

cohort, and an additional single subject) was acquired on a Siemens

MAGNETOM Tim Trio 3.0T Scanner with a Siemens 12 channel Head Matrix

Coil (Erlangen, Germany) as described in Dosenbach et al. (2010). See Supple-

mental Experimental Procedures for acquisition details.

Data Processing

Functional images underwent standard fMRI preprocessing to reduce arti-

facts, register subjects to a target atlas, and resample the data on a 3 mm

isotropic grid (Shulman et al., 2010). See Supplemental Experimental Proce-

dures for further details.

rs-fcMRI Processing

For rs-fcMRI analyses, several additional preprocessing steps were utilized to

reduce spurious variance unlikely to reflect neuronal activity (Fox et al., 2009).

These steps included: (1), a temporal band-pass filter (0.009 Hz < f < 0.08 Hz)

and spatial smoothing (6 mm full width at half maximum); (2), regression of six

parameters obtained by rigid body head motion correction; (3), regression of

the whole brain signal averaged across the whole brain; (4), regression of

ventricular signal averaged from ventricular ROIs; and (5), regression of white

matter signal averaged from white matter ROIs. The first derivatives of these

regressors were also regressed.

Meta-Analytic ROI Definition

The first method of identifying putative functional areas searched a large fMRI

data set acquired in a single scanner (data set 1) for brain regions that reliably

displayed significant activity when certain tasks were performed (e.g., button-

pressing) or certain signal types (e.g., error-related activity) were expected

(see Table S1). Meta-analyses identified 322 ROIs (10 mm diameter spheres,

see Figure S1), which were reduced to a final collection of 151 nonoverlapping

meta-analytic ROIs. Full details of meta-analyses are available in Supple-

mental Experimental Procedures.

fc-Mapping ROI Definition

fc-Mapping techniques were applied to eyes-open fixation rs-fcMRI data from

40 healthy young adults (data set 2: 27 M/13 F, average age = 26.4 years old,

average RMS movement = 0.42 mm, average number of volumes = 432). See

Cohen et al. (2008) and Nelson et al. (2010a) for full conceptual and technical

descriptions of fc-Mapping on cortical patches. Here, patches extending over

the entire cortical surface (one per hemisphere) were used to define putative

functional areas. This technique generated 254 ROIs across the cortex, which

were reduced to a final set of 193 nonoverlapping ROIs. See Supplemental

Experimental Procedures for further details.

Areal ROI Set Formation

Meta-analytic ROIs and fc-Mapping ROIs were merged to form a maximally-

spanning collection of ROIs. Meta-analytic ROIs were given preference, and
Neuron 72, 665–678, November 17, 2011 ª2011 Elsevier Inc. 675
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nonoverlapping fc-Mapping ROIs were then added, resulting in 264 indepen-

dent ROIs.

Parcel-Based, Voxel-Based, and Modified Voxelwise

Network Formation

A 90-node parcel-based network was formed by using the 90-parcel auto-

mated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) to assign

all voxels (n = 44,100) within the atlas into 90 parcels. An average timecourse

was formed for each parcel by averaging the timecourses of all nodes within

the parcel. A 44,100-node voxelwise network was defined from all voxels

within the AAL atlas (Tzourio-Mazoyer et al., 2002). The modified voxelwise

networks arose by masking out ties that terminated within 20 mm of the

source voxel. Distances of 15–25 mm were tested, with similar results across

networks. Analyses were performed on all voxels in both hemispheres (n =

44,100), and also on all voxels within a single hemisphere (n = 22,050). Single

hemisphere analyses were much less computationally demanding, permitting

a wider range of analysis), and results between single- and dual-hemisphere

analyses were similar. All figures except Figure 3 (both hemispheres were

used for consistency with the voxelwise analysis and the rest of the literature

in this figure) in the article portray single-hemisphere analyses.

Formation of Two Subject Cohorts for rs-fcMRI Network Analysis

rs-fcMRI networks were studied in continuous eyes-open fixation data from

two cohorts (data set 3) of healthy young adults, matched for age, sex, move-

ment and number of volumes in scans, as shown in Table S1. These subjects

underwent a rigorous quality control process to correct for subject motion

(Power et al., 2011). See Supplemental Experimental Procedures for details.

Reported numbers of volumes (time frames of rs-fcMRI data) and RMS are

for the final, usable, data (Table S1). Data cleaning for subject movement

during the scan removed 6% of the data from subjects (range 4%–8%), and

each cohort contained a mean of 350 frames of data per subject (range

215–501 frames). The single subject in Figure 2 had 1181 frames of data.

rs-fcMRI Graph Formation

Given a collection of N ROIs (parcels, voxels, or putative areas), within each

subject, timecourses are extracted for all ROIs and an N3N correlation matrix

is calculated. An average matrix is formed across all subjects in a cohort, and

the diagonal is set to zero. This defines a weighted graph.

Typical graph analyses of weighted networks ignore negative ties and are

obliged to explore a range of thresholds to characterize the properties of

a network (Power et al., 2010; Rubinov and Sporns, 2010). Recent proposals

to incorporate negative weights into analyses of subgraph detection have

been made (Rubinov and Sporns, 2011; Traag and Bruggeman, 2009), but

here we follow the traditional approach. Many real-world networks have tie

densities of a few percent or less (Newman, 2010), and the graph analytic

techniques utilized here were developed upon such networks (Fortunato,

2010; Newman, 2010; Rosvall and Bergstrom, 2008). Accordingly, the anal-

yses presented here typically span a threshold range on the order of 10%

down to 1% tie density though the precise range depends upon the network

(for example, the AAL-based parcel network becomes severely fragmented

below 4% tie density and we do not present results from such thresholds).

In general, results are presented over a range of thresholds to give the reader

a sense of the dependence of a property upon thresholds, and no formal defi-

nition of threshold ranges is proposed, because it is essentially arbitrary.

As noted in the text, short-range correlations can arise from shared patterns

of local neuronal activity, but they can also arise from aspects of data process-

ing (e.g., reslicing, blurring), as well as motion-induced artifacts (Power et al.,

2011). Local correlations are thus combinations of neurobiological and artifac-

tual signal. To minimize the effects of questionable correlations on network

structure, ties terminating within 20 mm of the source ROI are set to zero in

all areal network analyses and in the modified voxelwise analysis. Although

this process does not completely remove the effect of reslicing and blurring

on correlations in the data (consider a voxel’s correlations to distant but adja-

cent voxels), it removes a considerable portion of correlations of questionable

origin. This procedure eliminated 635 (4.1%) of the 15,375 positive ties in the

areal network, and 15.3 million (4.2%) of 470 million ties in the single hemi-

sphere voxelwise network.
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Subgraph Detection and Graph Analysis

For a given network at a given threshold, the correlations below the threshold

were set to zero, and the resultingmatrix was subjected to subgraph detection

algorithms. We utilized the Infomap algorithm, one of the best-performing

algorithms on multiple benchmark networks (Fortunato, 2010; Lancichinetti

and Fortunato, 2009). Other algorithms were tried, with similar results.

Subgraph assignments were returned as numbers, which were then mapped

onto nodes and ROIs as colors.

Local efficiency was calculated after (Latora andMarchiori, 2001). Participa-

tion coefficients were calculated after (Guimerà et al., 2005). Binary networks

were used for calculations.

Computations and Visualizations

MRI images were processed using in-house software. Network calculations

were performed using MATLAB (The MathWorks, Natick, MA). The Infomap

algorithm was provided by Rosvall and Bergstrom (2008). Network visualiza-

tions were created using the Social Network Image Animator (SoNIA) software

package (Bender-deMoll and McFarland, 2006). Brain surface visualizations

were created using Caret software and the PALS surface (Van Essen, 2005;

Van Essen et al., 2001).

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.neuron.2011.09.006.
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Spoormaker, V.I., Schröter, M.S., Gleiser, P.M., Andrade, K.C., Dresler, M.,
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