
Neuron

Article
Individual Variability in Functional Connectivity
Architecture of the Human Brain
Sophia Mueller,1,2,3 Danhong Wang,1 Michael D. Fox,4 B.T. Thomas Yeo,1,5 Jorge Sepulcre,1,2,6 Mert R. Sabuncu,1

Rebecca Shafee,2 Jie Lu,7,* and Hesheng Liu1,*
1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown,

MA 02129, USA
2Harvard University, Center for Brain Science, Cambridge, MA 02138, USA
3Ludwig Maximilians University Munich, Institute of Clinical Radiology, Munich 81377, Germany
4Department of Neurology, Massachusetts General Hospital, Brigham and Women’s Hospital, Boston, MA 02114, USA
5Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
6Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical

School, Boston, MA 02114, USA
7Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China

*Correspondence: jielu@nmr.mgh.harvard.edu (J.L.), hesheng@nmr.mgh.harvard.edu (H.L.)
http://dx.doi.org/10.1016/j.neuron.2012.12.028
SUMMARY

The fact that people think or behave differently from
one another is rooted in individual differences in
brain anatomy and connectivity. Here, we used
repeated-measurement resting-state functional MRI
to explore intersubject variability in connectivity.
Individual differences in functional connectivity
were heterogeneous across the cortex, with signifi-
cantly higher variability in heteromodal association
cortex and lower variability in unimodal cortices. In-
tersubject variability in connectivity was significantly
correlated with the degree of evolutionary cortical
expansion, suggesting a potential evolutionary root
of functional variability. The connectivity variability
was also related to variability in sulcal depth but
not cortical thickness, positively correlated with the
degree of long-range connectivity but negatively
correlated with local connectivity. A meta-analysis
further revealed that regions predicting individual
differences in cognitive domains are predominantly
located in regions of high connectivity variability.
Our findings have potential implications for under-
standing brain evolution and development, guiding
intervention, and interpreting statistical maps in
neuroimaging.

INTRODUCTION

The human brain is characterized by striking interindividual vari-

ability in neuroanatomy and function (Frost and Goebel, 2012;

Rademacher et al., 2001; Sugiura et al., 2007; van Essen and

Dierker, 2007) that is reflected in great individual differences in

human cognition and behavior. Such variability is a joint output

of genetic and environmental influences that may differentially

impact on different brain systems (Glendenning and Masterton,
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1998). For example, structural variability of association cortex

is less influenced by genetic factors during development

(Brun et al., 2009), allowing more variable impact of postnatal

environmental factors that lead to the diversity of neural connec-

tions beyond their genetic determination (Petanjek et al., 2011).

A plethora of evidences suggest that neural systems subserv-

ing higher-order association and integration processes are

more variable than those implicated in unimodal processing.

Language areas for example exhibit overproportionally high

variability in cytoarchitectonically defined volume (Amunts

et al., 1999), as well as in fMRI-derived localization (Frost and

Goebel, 2012). At a macroscopic scale, structural variability in

cortical folding is higher in association areas than in the motor

cortex (Hill et al., 2010a). In addition, long association white

matter fiber tracts are more variable than the optic radiation

and the corticospinal tract (Bürgel et al., 2006). In contrast to

the large amount of work assessing structural variability across

brain areas, individual variability in functional connectivity has

not been systematically investigated and quantified.

An individual brain might be best characterized by its connec-

tome (Seung, 2012). One powerful technique for assessing

connectivity utilizes fMRI data obtained under resting conditions,

often referred to as intrinsic functional connectivity (Fox and

Raichle, 2007). Individual differences in intrinsic functional

connectivity can predict individual performance variability in

several cognitive domains in the healthy (Andrews-Hanna

et al., 2007; Seeley et al., 2007; van den Heuvel et al., 2009)

and symptom severity in neuropsychiatric disorders (Fox and

Greicius, 2010; Greicius, 2008). Quantifying the spatial distribu-

tion of intersubject variability in connectivity could therefore

provide new insights into the neural underpinnings of individual

differences in human functions. This distribution could also

have practical implications in guiding surgical mapping, inter-

preting imaging results (if results are averaged across subjects,

it is less likely to obtain a significant effect in highly variable

regions) and understanding which areas are the most likely to

relate to variability in behavior.

In the present article, we collected intrinsic functional connec-

tivity MRI data on 23 healthy subjects each scanned five times
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Figure 1. Intersubject Variability in Resting-State Functional

Connectivity Is Heterogeneous across the Human Cortex

Intersubject variability was quantified at each surface vertex across 23

subjects after correction for underlying intrasubject variability. Values below

the global mean are shown in cool colors while values above the global mean

are shown in warm colors. See also Figure S1.

Figure 2. Functional Connectivity Variability Quantified across

Cortical Networks

The analysis was based on our prior parcellation of the cerebrum (Yeo et al.,

2011) into seven functional networks (top row), namely the frontoparietal

control (FPN), ventral and dorsal attention (vATN, dATN), default (DN), limbic

(LMB), sensory-motor (Mot), and visual (Vis) networks. Intersubject variability

within the boundary of each network (black curves in the middle row) was

averaged and plotted (bars in the bottom row). The dotted line indicates the

global mean of intersubject variability in the entire cerebral cortex. See also

Figure S2.
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over 6 months. This unique data set allows us to assess the

spatial distribution of intersubject variability while controlling

for measurement instability based on intrasubject variance.

This map of intersubject variability was then directly compared

to maps of evolutionary cortical expansion, anatomical vari-

ability, and long-range integration and regional segregation

(Sepulcre et al., 2010). Finally we performed a meta-analysis to

explore how functional connectivity variability may relate to

previously observed individual differences in cognition and

behavior.

RESULTS

Intersubject Connectivity Variability Is Nonuniformly
Distributed across Brain Networks
Intersubject variability in intrinsic functional connectivity was

quantified at each vertex of the brain surface after correction

for nuisance variance (see Figures S1A and S1B, available on-

line, and Experimental Procedures for the details). Intersubject

variability demonstrated a nonuniform distribution across brain

regions (Figure 1). Individual differences were largest in hetero-

modal association cortex including the lateral prefrontal lobe

and the temporal-parietal junction and minimal in unimodal

sensory and motor cortices. Functional variability was also

assessed within 7 specific brain networks (Yeo et al., 2011;

Figure 2, top row). Intersubject variability within the boundary

of each network was averaged and compared (Figure 2). We

found that frontoparietal control and attentional networks

demonstrated a high level of functional variability, whereas

sensory-motor and visual systems were least variable. The

default network demonstrated a moderate level of variability,
which is lower than that of frontoparietal and attentional

networks, but higher than the variability of sensorimotor and

visual networks.

Functional Connectivity Variability Is Highly Correlated
with Evolutionary Cortical Surface Expansion
Functional connectivity variability was found to be highest in

frontal, temporal, and parietal association cortex areas. These

brain regions are phylogenetically late-developing regions

(Kaas, 2006; Smaers et al., 2011) that are essential to complex

and human specific cognitive functions like reasoning and

language (Goldman-Rakic, 1988). As evolutionary history is

usually represented by the phylogenetic tree, the fact that higher
Neuron 77, 586–595, February 6, 2013 ª2013 Elsevier Inc. 587
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Figure 3. Functional Connectivity Variability and Evolutionary

Cortical Expansion Are Highly Correlated

(A) The regional evolutionary cortical expansion between an adult macaque

and the average human adult PALS-B12 atlas. Data were provided by van

Essen and colleagues (van Essen and Dierker, 2007). On awhole-surface level,

evolutionary expansion and functional variability (B) were significantly asso-

ciated (r = 0.52, p < 0.0001). The correlation was shown in the scatter plot (C)

where each 100th vertex is represented by a small circle.
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variability exists in the phylogenetically late regions may indicate

an evolutionary root of the variability in functional connectivity.

To test this hypothesis, we compared the functional variability

map (Figures 1 and 3B) to a map of regional evolutionary cortical

expansion between an adult macaque and the average human

adult PALS-B12 atlas (Figure 3A) provided by David van Essen

and colleagues (Hill et al., 2010b; van Essen and Dierker, 2007;

http://sumsdb.wustl.edu/sums/directory.do?id=7601585). On a

whole-surface level, evolutionary expansion and functional vari-

ability were significantly correlated (r = 0.52, p < 0.0001; Fig-

ure 3C), indicating that the extent of functional variability is
588 Neuron 77, 586–595, February 6, 2013 ª2013 Elsevier Inc.
related to the evolutionary cortical expansion. To verify that

this correlation is not influenced by the spatial dependence

between neighboring vertices, we randomly sampled 7% of

the vertices 1,000 times and computed the correlation coeffi-

cient based on these subsets of vertices. These vertices were

spatially independent as confirmed by Durbin-Watson test (see

Experimental Procedures). All of the reported correlation coeffi-

cients in our paper have been tested using this procedure and

were not affected by spatial dependence between neighboring

vertices.

Functional Connectivity Variability Is Associated with
Brain Folding Pattern but Not Cortical Thickness
It has been well recognized that across individuals the cortical

folding patterns are consistent in some regions but highly vari-

able in some other regions (Hill et al., 2010a). Here, we investi-

gated how the functional connectivity variability may relate to

the known anatomical variability. Sulcal depth (see Experimental

Procedures for definition and caveats) and cortical thickness

were estimated for each subject using FreeSurfer (Figures 4A

and 4B). To properly model the anatomical variability, we em-

ployed the intraclass correlation (ICC; see Experimental Proce-

dures) with the intrasubject variance sufficiently accounted for.

Consistent with previous findings (Hill et al., 2010a), sulcal depth

variability was most pronounced in lateral frontal and temporo-

parietal regions but was low in the motor cortex. The default

network showed moderate sulcal depth variability. In contrast,

cortical thickness demonstrated a very distinct pattern with

high variability in the motor area but low variability in the fronto-

parietal network (see also Figure S3 for a quantification across

seven functional networks). When quantified on the whole brain

surface, sulcal depth variability showed a moderate but signifi-

cant correlation with functional variability (r = 0.30, p < 0.0001),

while cortical thickness variability was uncorrelated with func-

tional variability (r = 0.05, p > 0.05).

Functional Variability Is Positively Associated with the
Degree of Long-Range Connectivity but Negatively
Associated with Local Connectivity
It has been suggested that developmental reorganization of

functional connectivity is characterized by a shift of functional

connectivity hubs from sensory-motor cortex toward default

(Fransson et al., 2011) and frontoparietal network areas (Power

et al., 2010). In adults, functional connectivity is known to form

preferentially local connections within sensory and motor

cortical regions, while hubs of distant connections are located

in phylogenetically and ontogenetically later multimodal associ-

ation cortices (Sepulcre et al., 2010). Here, we explored whether

this special network organization of the human brain is related to

functional variability. The degree of distant and local functional

connectivity was quantified at each voxel in the brain volume

according to Sepulcre et al. (2010). Distant connectivity was

defined as the connection (r > 0.25) between two regions with

a distance larger than 25 mm. Local connectivity was define as

the connection (r > 0.25) within 12mm. The percentage of distant

connectivity (Figure 5A) demonstrated amoderate but significant

correlation with the functional variability (r = 0.32, p < 0.0001)

across the entire cerebral cortex (Figure 5B). Within the regions
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A B Figure 4. Relationship between Functional

and Anatomical Variability

Functional connectivity variability is significantly

associated with the variability in sulcal depth (A)

but not the variability in cortical thickness (B).

Intersubject anatomical variability was calculated

using intraclass correlation (ICC), with the intra-

subject variance properly accounted for. Sulcal

depth variability showed a significant correlation

with functional variability (r = 0.30, p < 0.0001)

while cortical thickness variability was uncorre-

lated with functional variability (r = 0.05, p > 0.05).

See also Figure S3.
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dominated by local connectivity (blue regions in Figure 5A), func-

tional variability showed a negative correlation (r = �0.33, p <

0.0001) to the degree of local connectivity (Figure 5C). The rela-

tion between functional variability and the degree of connectivity

is exemplified in the default network. It has been reported that

the default network is a hybrid hub of both local and long-range

cortical-cortical interactions (Sepulcre et al., 2010). In our data,

we have observed a moderate level of functional variability in

the default network, consistent with the notion that functional

variability is associated with the degree of long-range connec-

tivity but negatively correlated with the degree of local

connectivity.

Regions Predicting Individual Differences in Cognitive
and Behavioral Domains Are Predominantly Located in
Regions of High Functional Connectivity Variability
Intrinsic functional connectivity has been shown to reflect indi-

vidual performance variability in several cognitive domains in

healthy individuals (Seeley et al., 2007; van den Heuvel et al.,

2009). To determine if these regions previously shown to relate

to individual differences in performance overlap with the

currently identified regions of high intersubject variability, we

performed a PubMed-based search of studies that reported

associations between functional connectivity measures and

individual differences in cognitive or behavioral domains

including personality traits, memory performance, anxiety, risk

seeking behavior, response inhibition, intelligence, and visual

perception (for inclusion criteria, see Experimental Procedures;

for a list of included studies, see Table S1). A total of 15 studies,

comprising 573 subjects and 139 foci were retrieved. Quantifica-

tion was performed on the brain surface (Figure 6) and the results

revealed that about 73% percent of the clusters overlap with

regions of high functional variability. Regions of high variability

were defined as regions displaying variability above the global

mean and covered about 51% of the cortical surface.

Ruling Out Potential Confounding Factors
To rule out the possibility that the observed functional connec-

tivity variability was dominated by intersubject differences in

head motion during the scan sessions, we calculated the mean

relative displacement (Van Dijk et al., 2012) for each session of

each subject. We chose a subset of ten subjects that displayed

higher intra- than intersubject variance in headmotion and quan-

tified intersubject variability in functional connectivity using the
same procedure as in Figure 1. The functional variability map

derived from this subset of subjects displayed the same charac-

teristic topography as shown in Figure 1 (r = 0.77, p < 0.0001),

suggesting that the functional variability observed was not due

to the intersubject variance in head motion.

Higher degree of convolution in association cortex areas may

also lead to lower fidelity of intersubject alignment in these

regions (van Essen, 2005). To investigate this potential confound

we regressed out sulcal depth variability, which comprises vari-

ability due to alignment error, from the functional variability map.

Figure S3 demonstrates that the overall pattern of functional

connectivity variability remains stable after regression. Never-

theless, this approach only partially accounts for alignment

errors as it disregards cytoarchitectonic information of cortical

areas, whose positions in relation to gyral and sulcal folds are

themselves variable. We therefore further quantified functional

connectivity variability in several histologically defined architec-

tonic brain areas (Fischl et al., 2008) that are known to show

different susceptibility to misalignment. Previous studies have

suggested that MT had a larger alignment error than BA 44/45

(Yeo et al., 2010). We found that MT, although more prone to

alignment variability, showed lower variability (0.60) in functional

connectivity than BA 44/45 (0.64 and 0.65, respectively). This

discrepancy may suggest that functional variability is influenced

but not dominated by alignment variability. However, future

investigation on architectonic variability across the brain will be

useful to better address this potential confound.

Two left-handed subjects had been included in our data set in

order to roughly represent the handedness distribution in the

healthy population. To investigate the potential impact of this

handedness variability on our results, intersubject functional

connectivity variability was recalculated after excluding the

left-handed subjects (Figure S1C). The variability maps derived

from these two data sets were highly correlated (r = 0.99), sug-

gesting that the observed variability distribution was not domi-

nated by the handedness variability in the data set.

DISCUSSION

Several findings in the current article add to our understanding of

individual differences in functional connectivity. We demon-

strated that functional connectivity variability has a specific

topographic distribution with heteromodal association cortex

being most variable and unimodal sensorimotor regions being
Neuron 77, 586–595, February 6, 2013 ª2013 Elsevier Inc. 589
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Figure 5. Functional Connectivity Variability Is Positively Associated with the Degree of Long-Range Functional Connectivity but Negatively

Correlated with Local Connectivity

Distant connectivity was defined as the connection (r > 0.25) between two regions with a distance larger than 25 mm. Local connectivity was defined as the

connection (r > 0.25) within 12 mm. The percentage of distant connectivity was projected to the brain surface (A). Regions above the global mean are shown in

yellow; regions below the global mean are shown in blue. Significant correlation (r = 0.32, p < 0.0001) was found between the functional connectivity variability and

the percentage of distant connectivity across the entire cerebral cortex (B). In the regions dominated by local connectivity, functional connectivity variability was

negatively correlated (r = �0.33, p < 0.0001) with the degree of local connectivity (C).
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least variable. This functional connectivity variability is related to

evolutionary cortical expansion and variability in cortical folding

pattern but not cortical thickness. Further analyses revealed

that functional connectivity variability is associated with network

properties of functional integration and segregation. Finally, we

demonstrated that our map of functional connectivity variability

overlaps well with prior reports linking individual differences in

functional connectivity to behavioral performance.

Potential Causes of Strong Variability in Association
Cortex
Functional variability in human cerebral cortex is likely to be the

result of evolution that has shaped a unique distribution of

susceptibility to genetic and environmental influences. Associa-

tion cortex areas, where functional architecture appeared to be

most variable, are phylogenetically late-developing regions that

underwent a disproportionate enlargement during human evolu-

tion (Kaas, 2006; Smaers et al., 2011; van Essen and Dierker,

2007). Evolutionary trajectories can be partially retraced in indi-

vidual development (Clancy et al., 2000), where association

cortex exhibits the most protracted course of white (Yakovlev

and Lecours, 1967) and gray (Gogtay et al., 2004; Shaw et al.,

2008) matter maturation andmost pronounced postnatal cortical

expansion (Hill et al., 2010b). This prolonged maturation course

of association cortex implicates a prolonged exposure to vari-

able extrinsic experience during a time of high neuroplasticity

(Petanjek et al., 2011). In addition, structural variability of late

maturing association cortex is probably less genetically influ-

enced during development (Brun et al., 2009), again enabling

more variable impact of postnatal environmental factors that

lead to the diversity of neural connections beyond their genetic

determination (Petanjek et al., 2011; but also see Chen et al.,

2011; Rimol et al., 2010; Thompson et al., 2001 for different

explanations). Besides this prior evidence on heritability of

anatomical properties, functional connectivity, e.g., of the

default network, is known to be influenced by genetic factors,

which cannot necessarily be attributed to anatomical variability
590 Neuron 77, 586–595, February 6, 2013 ª2013 Elsevier Inc.
(Glahn et al., 2010). Nevertheless, the spatial distribution of the

heritability of functional connection strength across the entire

brain is yet to be unveiled. Finally, the dynamics of synaptic over-

production in early childhood and consecutive synaptic pruning

may contribute to a similar functional hierarchy, where synaptic

overproduction is highest in the prefrontal cortex and lowest in

primary sensory regions (Elston et al., 2009; Jacobs et al.,

1997). High synaptic overproduction may provide more freedom

for selective stabilization to operate on during development.

Taken together, a protracted maturation, weaker genetic influ-

ence on structure andmore synaptic over-productionmay jointly

contribute to the high functional variability of multimodal associ-

ation cortices as reported in this study.

Functional Variability Is Related to Evolutionary Cortical
Expansion and Cortical Folding
Functional variability is correlated with variability of sulcal depth,

a proxy of cortical folding. From an evolutionary perspective, the

degree of gyrification is highest in phylogenetically young asso-

ciation cortex and lowest in phylogenetically older occipital and

motor cortex (Zilles et al., 1997), resulting in highest sulcal depth

variability and positional variability in association cortex (Hill

et al., 2010a). It is striking how well the regional evolutionary

cortical expansion and sulcal depth variability maps match the

distribution of variability in functional connectivity as revealed

in this study. In contrast, no significant correlation was found

between cortical thickness variability and functional variability.

This finding is consistent with the fact that brain evolution has

been characterized by huge surface expansion (e.g., ten-fold

between macaque and human [Preuss, 1995]) without a signifi-

cant increase in cortical thickness (Rakic, 1995).

Functional Variability Is Related to the Need for
Long-Range Information Exchange
The human brain possesses a complex architecture with some

areas highly specialized for local, modular processing and

certain areas connecting and integrating these otherwise



Figure 6. Loci that Predict Individual Differences in Behavioral and

Cognitive Domains Are Predominantly Located in Cortical Areas of

High Functional Connectivity Variability

Loci were derived from a meta-analysis that included 15 studies that found

associations between functional connectivity and individual differences in

cognitive and behavioral domains. Loci weremerged in the volume. Frequency

of contributing foci was estimated for each voxel. Results were smoothed,

normalized, and projected to the surface. Quantification revealed that about

73% of the clusters associated with individual differences are located in

cortical regions that display high functional connectivity variability (above the

global mean, 51% of the cortical surface in total). For an overview of included

studies, see Table S1.

Neuron

Individual Differences in Connectivity
segregated brain regions or systems (Buckner et al., 2009;

Sepulcre et al., 2010). Such arrangement may maintain high

information processing efficiency given that the human brain

has tripled the size over past several million years. The ratio of

local to distributed areal projections is suggested to be critical

to the evolution of higher-order cognitive functions including

language, reasoning, and foresight (Kaas, 2005; Semendeferi

et al., 2001). We have previously reported that regions within or

near primary sensory andmotor areas display high local connec-

tivity consistent with a modular organization. In contrast, distant

connectivity is prominent across association areas in parietal,

lateral temporal, and frontal cortices as well as paralimbic cortex

including posterior cingulate (Sepulcre et al., 2010). Here, we

extend these insights by showing that functional variability is

strongly correlated with the degree of distant connectivity but

negatively correlated with the degree of local connectivity. A

potential inference from this observation is that functional vari-

ability may not become prominent until distant connectivity

emerges, i.e., species with smaller brains dominated by local,

modular processing may have limited functional variability,

hence the more uniform and predictable behavior.

A particularly intriguing observation is that the default network,

which represents a hybrid hub for local and distant connections

(Sepulcre et al., 2010), exhibitedmoderate variability in functional

connectivity across subjects. Given that the DMN has been
described as a network that subserves mostly internal thought

processes and human specific functions such as autobiograph-

ical memory retrieval (Svoboda et al., 2006), imagining the future

(Schacter et al., 2007), and mind wandering (Mason et al., 2007)

one would predict the DMN to be among the most variable

networks, both across and within subjects. Neither of those two

predictions was proven correct in this study. The DMN showed

low intrasubject variability (Figure S1B) and intermediate inter-

subject variability (Figures 2 and S2). Taking into account that

the DMN is present in rodents (Lu et al., 2012) and anaesthetized

monkeys (Vincent et al., 2007) it seems plausible that the DMN

subserves both phylogenetically older, putatively less complex

functions and human specific higher order cognitive functions.

This could be reflected in the intermediate variability of the DMN

where information processing that involves modular computa-

tion could be consistent across subjects, whereas processing

whichassociatesdistributed information fromkey limbic, parietal,

and prefrontal regions exhibits strong individual differences.

Clinical Relevance of Individual Differences
While functional variability in association cortex has important

implications for the evolution of higher-order cognitive abilities,

it might also relate to an increased susceptibility to the formation

of abnormal circuitry as manifested in neuropsychiatric disor-

ders. Here, we demonstrate that individual differences in mental

domains such as personality traits can be linked to brain regions

of high functional variability. A caveat is that based on the avail-

able literature the majority of included studies investigated indi-

vidual differences in higher cognitive functions, which might

constitute a publication bias favoring higher order association

cortex areas in displaying individual differences.

Functional development of the human brain is characterized

by a general trend toward increases in connectivity across

widely distributed regions, conceptualized as the development

of a ‘local to distributed’ organization (Fair et al., 2009). Studies

have suggested that abnormal development leading to variable

disconnection of focal brain regions, especially regions that are

functionally integrated network hubs, might be present in many

neuropsychiatric disorders (Zhang and Raichle, 2010). In this

context, it is noteworthy that many neuropsychiatric diseases

such as anxiety disorders, bipolar disorder, depression, eating

disorder, psychosis (including schizophrenia), and substance

abuse most commonly emerge during adolescence (Kessler

et al., 2007), a period critical for the establishment of long-range

connection hubs that signify functional variability. Brain circuits

susceptible to neuropsychiatric diseases may therefore be iden-

tified based on the abnormal range of connectivity variability in

patients. Knowing cortical areas of highest individual variability

may furthermore help guide investigations into individual differ-

ences in disease susceptibility.

As clinical practice moves ever closer to the goal of individual-

ized therapy, knowing the distribution of individual differences in

brain connectivity is likely to be important. For example, func-

tional and connectivity data are playing an increasing role in

guiding operative approaches (Liu et al., 2009). Knowing that

a surgical resection is near an area of high intersubject variability

may inform acquisition of preoperative imaging. Similarly, there

is increasing evidence that therapeutic brain stimulation might
Neuron 77, 586–595, February 6, 2013 ª2013 Elsevier Inc. 591
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be guided by differences in connectivity (Fox et al., 2012).

Knowing whether a target of brain stimulation is in an area of

high or low individual variability will be important for determining

whether one can target based on group averages or if one should

obtain information on a patient’s specific connectivity pattern.

Relevance to Interpretation of Group Maps in
Neuroimaging
Regardless of whether one is studying functional connectivity

or task-based activations, neuroimaging results are generally

presented as a statistical map computed across a group of

subjects. The creation of these statistical maps necessarily

incorporates the variance across the group. As such, the map

of individual differences presented here is highly relevant for

interpretation of these statistical images. Specifically, one is

more likely to get a significant result in areas of low individual

variability such as primary sensory or motor cortex and less likely

to get a significant result in areas of high individual variability.

Therefore, the risk of false-positives and false-negatives in neu-

roimaging is likely non-uniformly distributed across the human

cortex. Variance maps from an independent data set such as

the one presented here might eventually be used to formally

correct for this heterogeneity in creating statistical images.

EXPERIMENTAL PROCEDURES

Participants and Data Collection

Twenty-five healthy subjects (age 51.8 ± 6.99, 9 female) were recruited for

a longitudinal fcMRI study. The data was collected as a control sample of

a longitudinal stroke study. Therefore the age range is slightly higher than

what would be expected for a study of healthy adult subjects. The data

set also included two left-handed subjects, roughly representing the handed-

ness distribution in the healthy population (Connolly and Bishop, 1992).

Participants were screened to exclude individuals with a history of neurologic

or psychiatric conditions as well as those using psychoactive medications.

Participants provided written informed consent in accordance with guidelines

set by institutional review boards of Xuanwu Hospital. Each subject under-

went five scanning sessions within 6 months (7, 14, 30, 90, and 180 days

from the enrollment). All participants performed two or three rest runs per

session (6 m 12 s per run) to estimate intrinsic functional connectivity. After

quality control, 23 subjects who had at least two good runs (tSNR > 100) in

each session were included in this study (mean = 2.02 runs). All data were

acquired on a 3 Tesla TimTrio system (Siemens) using the 12-channel

phased-array coil supplied by the vendor. Functional data were obtained

using a gradient echo-planar pulse sequence (TR, 3,000 ms; TE, 30 ms; flip

angle, 90�; 3 mm isotropic voxels, transverse orientation, 47 slices fully

covering cerebral cortex and cerebellum). Subjects were instructed to stay

awake and keep their eyes open; no other task instruction was provided.

Structural images were acquired using a sagittal MP-RAGE three-dimensional

T1-weighted sequence (TR, 1600 ms; TE, 2.15 ms; flip angle, 9�; 1.0 mm

isotropic voxels; FOV, 256 3 256).

Data Preprocessing

Resting-state fMRI data were processed using previously described proce-

dures (Van Dijk et al., 2010; Yeo et al., 2011). Structural data was processed

using the FreeSurfer version 4.5.0 software package (http://surfer.nmr.mgh.

harvard.edu). Surface mesh representations of the cortex from each individual

subject’s structural images were reconstructed and registered to a common

spherical coordinate system (Fischl et al., 1999). The structural and functional

images were aligned using boundary-based registration (Greve and Fischl,

2009). The resting-state BOLD fMRI data were then aligned to the common

spherical coordinate system via sampling from themiddle of the cortical ribbon

in a single interpolation step. See Yeo et al. (2011) for details.
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In this study, a symmetric surface template of the cerebral cortex (unpub-

lished) was constructed using FreeSurfer. fMRI data of each individual were

then registered to this template. The data were resampled on this template

with a mesh of 1,284 vertices. For each vertex in this mesh, the nearest vertex

in the higher resolution template was extracted and if multiple nearest vertex

existed, the values on these vertices were averaged. We have used this lower

resolution template to achieve computational efficiency but this re-sampling

procedure may introduce noise. This was mitigated by a smoothing prepro-

cessing step that we have taken.

Estimating Intersubject Functional Variability

Functional correlation maps were computed by taking each of the 1,284

vertices as the seed, resulting in 1,284 maps for each subject and session.

The correlation map based on each seed vertex can be denoted as Fiðs; tÞ,
where i = 1; 2;.1284, and Fi is a 1 3 1284 vector, s indicates the subject, t

indicates the session.

For a given seed vertex i, the similarity between the 23 maps derived from

23 subjects was quantified by averaging the correlation values between any

two maps:

RiðtÞ=E½corrðFiðsp; tÞ;Fiðsq; tÞÞ�;where p;q= 1;2;.23;psq:

The intrasubject variance was estimated using the 5 maps derived from 5

scanning sessions of each subject:

NiðsÞ= 1� E½corrðFiðs; tmÞ;Fiðs; tnÞÞ�;where m; n= 1;2;.5;msn:

The intrasubject variance was then averaged across 23 subjects and

assigned to the seed vertex i (see Figure S2 top row):

Ni =E½NiðsÞ�:

Note that the intrasubject variance consists of the variance caused by

technical noise, which may be reflected by the tSNR of the BOLD signal

(Figure S1B, middle row), as well as the biological variance related to the brain

state change within subjects (Figure S1B, bottom row).

To estimate intersubject variability, the similarity map RiðtÞwas first inverted

(by subtraction from 1; see Figure S1A) and then the intrasubject variance was

regressed out using ordinary least-squares regression (i.e., a general linear

model, GLM). The residual map was taken as the estimate of functional

variability,

ViðtÞ= ½1� RiðtÞ� � bNi � c;

where b and c are parameters determined via ordinary least-squares. Vari-

ability maps derived from each session t are averaged and shown in Figure 1.

Parcellation and Seed-Based Network Analysis

To quantify variability in specific functional networks, we used the functional

atlas derived from a clustering approach (http://surfer.nmr.mgh.harvard.edu/

fswiki/CorticalParcellation_Yeo2011; Yeo et al., 2011). The boundaries of

seven networks were projected to the symmetric surface template. Intersub-

ject variability values were then averaged within each network (Figure 2A).

For the ROI-based analysis described in Figure S2, we used a group of

regions of interest (ROI) associated with different brain functions (Van Dijk

et al., 2012), including the ATN (paraCG, FEF, MFG, Insula, MTplus, TPJ,

sPL), the FPN (aPFC, ApCC, dlPFC, SFG, IPL), the DN (PCC, aMPFC, dMPFC,

LPC, SFG, LTC), the motor cortex (hand, foot, tongue region), the visual cortex

(medial and lateral V1), and the auditory cortex (STG). Seeds were created by

projecting the center of each volume ROI (MNI152 volumetric space) to the

FreeSurfer spherical surface model and constructing a circle (radius = 8 mm,

defined as the arc length on the sphere) around each projected peak vertex

on the sphere. The coefficient of variance of the correlation strength between

a given pair of seeds was computed as the standard deviation divided by the

mean across 23 subjects. To account for the measurement instability, the raw

intersubject variance was normalized by the mean intrasubject variance for

each seed pair. The coefficient of variance was then averaged across all

seed pairs of one network. The surface-based ROIs may correspond to

different sizes of brain volume but this source of variability is not significantly

affecting the result. The ROI-based analyses described above were repeated

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
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using standard volumetric spherical seeds in the volumetric space, the re-

ported ranking of variability among functional networks remained unchanged.

Relation to Evolutionary Cortical Expansion

The map of regional evolutionary cortical expansion between an adult

macaque and the average human adult PALS-B12 atlas was published previ-

ously (Hill et al., 2010b; van Essen and Dierker, 2007) and made publicly avail-

able. The right hemisphere evolutionary expansion map and the functional

variability map were projected to the Conte69 164k_fs_LR mesh (van Essen

et al., 2012) (http://sumsdb.wustl.edu/sums/directory.do?id=8291494&dir_

name=CONTE69). The data were extracted using the Caret Surface Statistics

Toolbox (Diedrichsen, 2005) for the correlation analysis. The absolute expan-

sion ratio was normalized by taking the logarithm and subtracted with a

constant.

Relation to Anatomical Variability

Sulcal depth and cortical thickness measurements were calculated using

FreeSurfer (Fischl et al., 1999). The sulcal depth estimated by FreeSurfer is

not a direct measure of distance to the outer cortical margin, but the integrated

dot product of the movement vector with the surface normal during inflation. It

highlights large-scale geometry as deep regions consistently move outward

and get a positive value while superficial regions move inward and get a nega-

tive value. Intersubject variability in sulcal depth and cortical thickness was

estimated vertex-wise using intraclass correlation (Shrout and Fleiss, 1979)

with the intrasubject variance accounted for. The Pearson’s correlation

coefficient was calculated between functional variability and anatomical vari-

ability across the whole brain. To demonstrate the topological impact of

anatomical variability on functional variability, a GLM approach was applied

to regress out sulcal depth and cortical thickness variability from the functional

variability map.

Testing the Potential Impact of Spatial Dependence on Correlation

Analyses

To test the potential impact of spatial dependence between neighboring

vertices on correlation analysis, we performed a repeated (n = 1,000) random

sampling of 7% of the vertices and computed the correlation coefficient on the

subsets of the vertices. For each subset, the Durbin-Watson test was per-

formed to estimate the spatial dependence (DW > 2). Correlation coefficients

were averaged across the 1,000 iterations.

Meta-analysis of Individual Differences Predicted by Functional

Connectivity

We performed a voxel-wise frequency-based meta-analysis. A PubMed

search was conducted using three sets of search terms: (1) search: individual

differences, intrinsic connectivity; (2) search: individual differences, resting-

state fMRI; (3) search: individual differences, connectivity, MRI. After

accounting for redundancies, this resulted in 182 studies to be reviewed.

The following inclusion criteria were applied: healthy, adult human subjects,

original research, fMRI study, reported cerebral/cortical coordinates in stan-

dardized stereotaxic space (Talairach or Montreal Neurological Institute

[MNI] template) and association between an individual cognitive/behavioral/

psychological trait and a functional connectivity measure. Fifteen studies

met inclusion criteria. The meta-analysis was conducted in MNI space. For

studies that reported coordinates in Talairach space (Talairach and Tournoux,

1988), used SPM or FSL, and did not specify the use of Lancaster transforma-

tion (Laird et al., 2010), conversion to MNI coordinates was performed using

the reversed Brett transformation (Brett et al., 2001). For studies that reported

coordinates in Talairach space and used neither SPM nor FSL, conversion to

MNI coordinates was performed using the (reversed) Lancaster transformation

(Laird et al., 2010). Three millimeter spheres around each focus were merged

in MNI 152 volumetric space. For each voxel, the number of contributing foci

was calculated. The resulting volume map was spatially smoothed (FWHM

12 mm), normalized (z score) and projected to the surface.

Visualization

Since the main analyses were performed in FreeSurfer symmetric surface

space, the final results of both hemispheres were projected only to the left
hemisphere of the inflated PALS cortical surface using CARET (van Essen,

2005) for the purpose of visualization. The right hemisphere results shown in

the figures were mirrored from the results rendered on left CARET surface.
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