
Fog-based Data Offloading in Urban IoT Scenarios

Pranvera Kortoçi∗, Liang Zheng†, Carlee Joe-Wong‡, Mario Di Francesco∗, and Mung Chiang§

∗Dept. of Computer Science †Dept. of Electrical Engg. ‡Electrical and Computer Engg. §Electrical and Computer Engg.
Aalto University Princeton University Carnegie Mellon University Purdue University

Abstract—Urban environments are a particularly important
application scenario for the Internet of Things (IoT). These envi-
ronments are usually dense and dynamic; in contrast, IoT devices
are resource-constrained, thus making reliable data collection
and scalable coordination a challenge. This work leverages the
fog networking paradigm to devise a multi-tier data offloading
protocol suitable for diverse data-centric applications in urban
IoT scenarios. Specifically, it takes advantage of heterogeneity
in the network so that sensors can collaboratively offload data
to each other or to mobile gateways. Second, it evaluates the
performance of this offloading process through the amount of
data successfully reported to the cloud. In detail, it provides an
analytical characterization of data drop-off rates as a random
process and derives a light-weight yet efficient method for
collaborative data offloading. Finally, it shows that the proposed
fog-based solution significantly decreases the data drop-off rate
through both analysis and extensive trace-driven simulations
based on human mobility data from real urban settings.

Index Terms—Fog networking, collaborative offloading, data
drop-off rate, Internet of Things

I. INTRODUCTION

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Our life increasingly relies on smart objects that collect data
from the environment and perform actions on the physical
world [1]. These objects form the so-called Internet of Things
(IoT) by interacting with each other through Internet-based
standards and a global communication infrastructure [2]. In
turn, the IoT is the foundation for several emerging applica-
tions and services in cyber-physical systems, from intelligent
transportation to the industrial Internet and smart cities [3].

Many IoT devices are deployed in cities as well as large
metropolitan areas for, e.g., security surveillance, traffic and
pollution monitoring, infotainment and energy management [4,
5]. This proliferation of urban IoT applications creates an
unprecedented volume of data containing physical quanti-
ties sampled from the environment [6]. As IoT devices are
resource-constrained and battery-powered, they generally can-
not process such data locally and usually rely on the cloud to
perform data analysis and long-term storage [3]. However, a
long-range wireless Internet connection is either very energy
hungry (as in Long Term Evolution or WiFi) or provides only a
very limited bitrate (as with Narrowband IoT and LoRa) [7].
To overcome these limitations, the concept of opportunistic
IoT has been introduced by applying the paradigm of delay-
tolerant networking to urban scenarios [8, 9]. Accordingly,
quantities measured by IoT sensors are collected by mobile
gateways, e.g., cars or people carrying smartphones [10].

IoT sensors can effectively support urban applications only
when they successfully transfer their data to the gateways
in the first place. However, these sensors’ limited storage
resources prevent them from indefinitely keeping the data they
generate. It is then crucial that they transfer their data to the
gateways before running out of storage; this issue is referred
to as the “data drop-off problem.” Yet designing solutions to
prevent data drop-off is very challenging: effective solutions
require careful co-operation between sensors and gateways,
but the sensors’ limited computing and bandwidth resources
preclude coordination mechanisms with significant overhead.
Moreover, gateway mobility in urban IoT scenarios is often
uncontrolled and unpredictable, inducing significant dynamic
heterogeneity between different sensors’ environments. The
sensors then need to adapt to changes in gateway mobility,
again without significant overhead.

Many solutions have been proposed for data collection in
wireless sensor networks and opportunistic communications
in urban scenarios [11]. In particular, mobile nodes have
been leveraged for energy-efficient data collection in wireless
sensor networks [12]. Several data offloading schemes have
been devised for mobile devices too, with a particular focus
on content distribution and caching [13]. However, most of
these solutions assume that end devices are homogeneous and
directly communicate with each other or with an Internet-
connected gateway: thus, they do not fully address today’s
urban IoT scenarios (Section VI). Instead, this work proposes
the first data offloading scheme based on a fog networking
architecture [14] to solve the data drop-off problem.

The fog is an extension of the traditional cloud paradigm
that addresses the distinctive challenges of the IoT, where
multiple edge and end-user devices collaboratively carry out
a substantial amount of computation, storage, communication
and management [4]. Fog networking explicitly considers the
resources available on each device, as well as latency, effi-
ciency, and network cost, while attempting to meet application-
specific performance requirements [15]. Thus, unlike existing
sensor data collection schemes, an approach built on fog can
handle the heterogeneity of dynamic environments.

This work focuses on optimizing communications in fog
networks where devices have limited buffering capability.
First, it leverages the fog networking paradigm to devise
a multi-tier data offloading protocol suitable for diverse
data-centric applications in urban IoT scenarios (Section II).
Specifically, it takes advantage of heterogeneity in the network

Fig. 1: Interactions in the reference three-tier fog network.

so that sensors can collaboratively offload data to each other
or to mobile gateways. Second, it quantifies the performance
of this offloading process through the amount of data suc-
cessfully reported to the cloud (Section III). In particular,
it derives a tractable stochastic model for the expected data
drop-off rates, using this analytical characterization to adapt
the offloading protocol to the prevailing environment. Finally,
it shows that the proposed fog-based solution significantly
decreases the data drop-off rate through both analysis and
extensive trace-driven simulations based on human mobility
data from real urban settings (Section V).

II. BACKGROUND

This section introduces the reference fog architecture em-
ployed by the proposed solution, then details its system model.

A. Reference Architecture

A three-tier fog network architecture is considered in this
work [14], as illustrated in Figure 1. The bottom tier comprises
IoT sensors, namely, wireless embedded devices with limited
battery, computing, and storage resources. Sensors are static,
periodically collecting data from the environment through
short- or medium-range communication technologies (such as
Bluetooth Low Energy [16, 17]) and storing it in a local buffer.
They forward the data to other sensors or to the intermediate
tier based on their buffer occupancy and communication
opportunities. The intermediate tier of the network consists of
mobile gateways, namely, mobile devices in the urban area (for
instance, smartphones carried by people or vehicles). These
gateways have two radio transceivers, one for exchanging data
with the IoT sensors and another for Internet connection (e.g.,
Long Term Evolution or WiFi). They receive data from the
IoT sensors and forward them to the top tier located in the
cloud. A central network controller therein stores the collected
messages and carries out data analytics. The controller also
performs network management by dynamically reconfiguring
the devices in the lower tiers.

The interactions between the system components are illus-
trated in Figure 1. To reduce coordination overhead between
the sensors and gateways, sensors are logically divided into in-
need and helper categories, based on their buffer availability
and expected probability to be in contact with a gateway over
time. In-need sensors are rarely in reach of a mobile gateway,
resulting in a high data drop-off rate due to unavailable buffer
space. In contrast, helper sensors encounter mobile gateways
more frequently and can temporarily store the data collected

TABLE I: Summary of used notation.

Symbol Definition

S Set of M sensors S = {s1, . . . , sM}
U Set of N mobile gateways U = {u1, . . . , uN}
B Buffer size of each sensor
d Size of individual data items sampled in a time slot
L Maximum number of data items that fit in the buffer

pm(t) Probability that sensor m meets a gateway in time slot t
ϕm Probability of data drop-off for sensor m
bm(t) Buffer occupancy of sensor m at time slot t
H Set of K helper sensors H = {s1, . . . , sK} ⊂ S
I Set ofM−K in-need sensors I = {sK+1, . . . , sM} ⊂ S
ε Threshold of data drop-off rate to distinguish between

helper and in-need sensors
δ Amount of data items offloaded from an in-need sensor to

a neighboring helper sensor at once

by other sensors in their own buffers. Accordingly, in-need
sensors offload their data to helper sensors; individual sensors
may switch between categories as they learn about contact
opportunities with the mobile gateways. These gateways col-
lect messages from all sensors as well as status information
(including contact opportunities) and forward them to the cen-
tral network controller. The latter processes the received data
and sends control messages back to the sensors through the
mobile gateways. In particular, the central network controller
dynamically partitions IoT sensors into in-need and helpers.
Section IV proposes methods for this partitioning based on an
analysis of the resulting data drop-off rates.

B. System Model

The network includes the set S = {s1, s2, . . . , sM} of
M = |S| static IoT sensors deployed at fixed locations, as well
as the set U = {u1, u2, . . . , uN} of N = |U| mobile gateways.
The mobility of the gateways is exogenous to the system [12].
Sensors may not all have physical neighbors, however, each
group of connected sensors is visited at least once by a mobile
gateway during the lifetime of the network [18], which is
realistic for densely populated urban scenarios [17].

Each sensor has a buffer of size B and periodically samples
items of d � B bytes each. Sensors operate on a cyclical
schedule. The time between two consecutive cycles is called
a time slot. The size of a time slot is fixed and such that a
sensor can transmit all the data stored in its buffer to a gate-
way within a single contact; this is a reasonable assumption
given currently available technologies (see [19]). The buffer
occupancy bm(t) ≤ B is defined as the amount of data stored
by sensor m at time slot t. Sensors do not have any prior
knowledge about the gateways’ mobility patterns, so pm(t) is
used to express the probability1 that sensor m meets any of
the N gateways at time slot t, which can be updated over time.
These probabilities are considered independent across different
groups of sensors due to the unpredictable mobility of the
gateways. Moreover, the gateways have sufficient resources to

1For clarity, the dependency on the time slot is dropped from the notation
when there is no ambiguity.

store and forward the data received from the sensors to the
cloud [9, 20] without any data loss.

Table I summarizes the notation used in this work. Unless
otherwise specified, time and data size are measured in sec-
onds and bytes, respectively.

III. ANALYSIS OF DATA DROP-OFF RATES

This section characterizes the communications between IoT
sensors and mobile gateways as a random process. For the sake
of clarity in the exposition, the simple case of no offloading
is addressed first; the analysis is then extended to cover
collaborative data offloading.

A. Baseline Scheme: No Offloading

The following discussion derives first the probability of
meeting a mobile gateway at a certain time slot as a function
of the data generation process. It then characterizes the data
drop-off rate when sensors do not collaborate with each other.

The probability pm of meeting a gateway at time slot t is:

pm(t) =

(
1− λ

t

)
pm(t− 1) +

λ

t
1
t
{sm→un}, (1)

where λ ∈ (0, 1] encodes the relative weight on the probability
of meeting a gateway recently compared to further in the past,
while 1t{sm→un} is equal to one if sensor m is in contact with
a gateway at time slot t and zero otherwise. Eq. (1) can be
rewritten in the equivalent form of pm(t) = (1−λ)pm(t−1)+
λp̂m(t), where p̂m(t) =

(
(t− 1)pm(t− 1) + 1

t
{sm→un}

)
/t is

the empirical probability of meeting a gateway before time slot
t. The analysis below assumes that the pm(t) have converged
to a probability pm.

Figure 2 illustrates the state transitions of sensor m without
any cooperation mechanisms. The sensor sends all sampled
data in its buffer to a mobile gateway once in reach; sampled
data are otherwise stored in the local buffer until it is filled.
If the buffer is full, older data are dropped and replaced with
more recent data until a gateway is met. In particular, L = B/d
is the maximum number of time slots2 a sensor can wait for a
gateway without incurring a buffer overflow. Once the buffer
occupancy hits Ld, it remains in this state until a gateway
is met, after which the occupancy resets to zero. The state
transitions in Figure 2 form an ergodic Markov chain [21].

The data drop-off rate at a given time t can be derived as
the probability of buffer overflow according to:

ϕm = pm(1− pm)L
∞∑
t=1

(1− pm)t = (1− pm)L+1. (2)

Correspondingly, the expected amount of dropped data is:

dϕm = pm(1− pm)L
∞∑
t=1

t(1− pm)td =
(1− pm)L+1

pm
d. (3)

An infinite buffer size B = +∞ leads to ϕm = 0 in Eq. (2)
and dϕm = 0 in Eq. (3) irrespective of the actual pm. Since

2It is reasonable to assume bB/dc ' B/d due to d� B.

0 d 2d

...

... Ldpm

1−pm 1−pm 1−pm

1−pmpm

pm pm

Fig. 2: State transitions for sensor m without data offloading. Each
circle signifies an independent state of buffer occupancy, while arrows
represent the probability of changes in the buffer occupancy between
two consecutive time slots. The probabilities at the bottom of the
figure realize when the sensor meets a gateway, while those on the top
realize when the sensor adds a new item of size d to its buffer. The
rightmost arrow denotes buffer overflows, implying that the buffer
occupancy does not change (as it is equal to the buffer size).

the buffer size B is finite in practice, however, the amount of
dropped data is determined by the value of pm.

The buffer occupancy in the steady-state can be derived
following the ergodicity of the Markov chain in Figure 2. In
particular, the expected buffer change between two adjacent
time slots can be reformulated as E [bm(t+ 1)− bm(t)] =
(1−ϕm)

(
(1− pm)d− pmE [bm(t)]

)
+ϕm

(
− pmE [bm(t)]

)
.

Solving this equation leads to

lim
t→∞

E [bm(t)] =
(
1− (1− pm)L+1

) 1− pm
pm

d, (4)

which clearly decreases with pm. Moreover,
∑∞
t=1 t(1 −

pm)t−1pm = 1/pm is the average number of time slots that a
sensor must wait between consecutive contacts with a gateway.
Thus, a sensor with smaller pm is expected to have a higher
expected data drop-off rate.

B. Data Offloading for IoT Scenarios

The analysis in the previous section assumed no collabora-
tion between sensors (i.e., no offloading). However, IoT sce-
narios are highly heterogeneous; sensors have different buffer
availability and likelihood to meet a mobile gateway over time,
since some of them may be deployed in locations visited
more frequently by the gateways. We use these individual
characteristics to divide sensors into two categories: in-need
and helpers, as discussed in Section II-A.

Formally, the set of helper sensors is denoted as H =
{s1, s2, . . . , sK}. The set of all other sensors (i.e., in-need
sensors) is indicated as I = {sK+1, sK+2, . . . , sM} (K ≤M ,
I ∩ H = ∅ and I ∪ H = S). Helper and in-need sensors
are referred to with indices k and j, respectively. In addition,
the subset of in-need sensors that are neighbors of the helper
sensor k is indicated by Ik ⊂ I; similarly, the subset of
helper sensors neighboring in-need sensor j is denoted by
Hj ⊂ H. Due to the assumption on network connectivity (see
also Section II-B), all sensors are either in-need or helpers for
at least one or possibly multiple other sensors.

The following derives the probability that an in-need sensor
offloads data and a helper sensor receives the data. The discus-
sion here considers static parameters; Section IV-A presents
dynamic adaptation of network-related parameters over time.

0 d 2d

...

... αd
(α+1)
d

...

... Ld
pj

1−pj 1−pj 1−pj 1−pj 1−pj

pj pj
pj pj

1−pj

pj

(a) In-need

0 d ...
...

βd (β+1)
d

...

...

...

(α−1)
d

...

αd ...
...

Ld
pk

(1−pk)

(1−ρk)

(1−pk)

(1−ρk)

(1−pk)

(1−ρk)
(1−pk)

(1−ρk)

(1−pk)ρk

(1−pk)

(1−ρk) 1−pk

(1−pk)ρk (1−pk)ρk (1−pk)ρk

pk
pk pk pk pk pk

1−pk

(b) Helper

Fig. 3: State transitions for a sensor performing collaborative offloading by role: (a) in-need and (b) helper, with the same notation used in
Figure 2. For the sake of readability, buffer occupancy is indicated through auxiliary variables α = L− δ and β = δ + 1. The probabilities
corresponding to the top-most transitions in the diagrams realize when data is offloaded from an in-need to a helper sensor.

1) In-need sensors: An in-need sensor only offloads data
when it cannot store any further sensed items since its buffer
is full. If this happens, the sensor broadcasts the least recent
δd amount of data to its neighbors and removes the data from
its buffer. It then takes another consecutive δ time slots to
fill the buffer again. This is described by the last δ circles in
Figure 3a. Thus, the probability that the buffer at the in-need
sensor j is full is given by:

Pr(bj=Ld) = pj(1−pj)L
∞∑
t=0

(1−pj)(δ+1)t =
pj(1−pj)L

1−(1−pj)δ+1
.

At each time slot, a helper sensor stores the data sent by an
in-need sensor, as long as it is not currently transmitting to
a gateway and has enough buffer to fit the offloaded data.
The rest of the data transmitted by in-need sensors is either
received by other helper sensors or dropped. Since all in-need
sensors are independent, the probability of in-need sensor j
successfully offloading its data to helper sensor k is given by:

Pr(sj −→ sk) =

(1− pk)Pr(bk ≤ (L− δ)d)
|Ik\sj |−1∑
n=0

∑
[Ik\sj]n⊂Ik\sj

1

n+ 1∏
sm∈[Ik\sj]n

Pr(bm = Ld)
∏

si∈{Ik\sj−[Ik\sj]n}

(
1− Pr(bi = Ld)

)
,

(5)

where |Ik \ sj | and [Ik \ sj]n are the cardinality and n-subset
of Ik \sj , respectively. The derivation of Pr(bk ≤ (L−δ)d) in
Eq. (5) is discussed in the next subsection. In this communica-
tion process, data is dropped only when no neighboring helper
is available to store it. The data drop-off rate for in-need sensor
j is then derived according to the following proposition.

Proposition 1: The steady-state data drop-off rate for in-
need sensor j is given by:

ϕj = Pr(bj = Ld)
∏

sm∈Hj

(
1− Pr(sj → sm)

)
.

2) Helper sensors: A helper sensor k has neighboring in-
need sensors with data to offload with probability

ρk = 1−
∏
sj∈Ik

(
1− Pr(bj = Ld)

)
.

Figure 3b shows that helper sensor k is able to store the δd
amount of offloaded data (and keep it together with its own
newly-sensed data item of size d) when it has enough available
buffer to offer help, i.e., bk ≤ (L− δ− 1)d. In fact, there is a
probability of (1 − pk)ρk that helper sensor k adds (δ + 1)d
amount of data to its own buffer. However, the helper sensor
does not collect any data from in-need sensors when bk ≥
(L − δ)d; thus, the increase in buffer occupancy is only due
to its own sensing task with probability 1 − pk. This creates
the following dynamic system for the probabilities associated
with the buffer state of helper sensor k:

Pr(bk = τd) =
pk
(
(1− pk)(1− ρk)

)τ
, if τ≤δ

(1− pk)(1− ρk)Pr(bk=(τ−1)d)
+(1− pk)ρkPr(bk=(τ−δ−1)d), if δ<τ≤L−δ

(1− pk)Pr(bk=(τ−1)d)
+(1− pk)ρkPr(bk=(τ−δ−1)d), ifL−δ<τ≤L−1,

The steady-state probabilities of the buffer states at δ < τ ≤
L− δ are solved according to the following lemma.

Lemma 1: The probability that the buffer of helper sensor
k contains τd data at the steady-state is given by

Pr(bk=τd) = pk

b τ
δ+1 c∑
i=0

(
τ−
(
b τ
δ+1c−i

)
δ

b τ
δ+1c−i

)(
(1−pk)ρk

)b τδ+1c−i

(
(1− pk)(1− ρk)

)τ−(b τ
δ+1 c−i)(δ+1)

(6)
for δ + 1 ≤ τ ≤ L− δ.

Eq. (6) can be better understood by recognizing that the
first term within the summation is the binomial coefficient for
counting the permutations for which the buffer grows by an
amount d for b τ

δ+1c − i times and by an amount (δ+1)d for
τ −

(
b τ
δ+1c − i

)
(δ+1) times. As such, the data drop-off rate

is equivalent to the probability of not meeting a gateway after
the buffer reaches Ld:

Proposition 2: The steady-state data drop-off rate for helper
sensor k is given by

ϕk =
1− pk
pk

L∑
τ=L−δ

(1− pm)L−τ+1ρkPr(bk=(τ − δ − 1)d)

where 1−pk
pk

is calculated from
∑∞
t=1(1 − pk)t and Pr(bk =

(τ − δ − 1)d) is obtained from Eq. (6).

IV. FOG-BASED CONTROL OF DATA OFFLOADING

This section presents an adaptive data offloading strategy
and a supporting protocol to dynamically change network-
related parameters over time.

A. Adaptive Network Control

The central network controller calculates two network-wide
offloading parameters, ε and δ, which express the likelihood of
a sensor to drop data and the number of data items a sensor
offloads, respectively. Sensors locally update the probability
pm to meet a gateway and whenever a sensor meets a gateway,
such a value is then reported to the central network controller.
In turn, the central network controller updates ε and δ based
on the considerations detailed next.

As helper sensor k is expected to meet a gateway in 1/pk
time slots, the expected fraction of the buffer needed to store
its own data should be less than the total size (i.e., 1/pk < L)
to ensure that these helper sensors will have some available
buffer to receive offloaded data from in-need sensors. To
guarantee that this condition is met, the threshold probability
pm in Eq. (10) should be larger than 1/L.

Lemma 2: The threshold ε of the data drop-off rate for a
helper sensor must satisfy

ε <

(
1− 1

L

)L+1

. (7)

Observing Eq. (7) reveals that the condition on ε is relaxed
with larger values of L, meaning that a larger buffer size
improves the data drop-off rate, as expected.

With similar considerations to those leading to Lemma 2,
the amount of offloaded data should be less than the expected
available buffer – i.e., B − limt→∞ E [bk(t)] ≥ δd – at any
helper sensor k, to ensure that the buffer of a helper sensor
can accommodate the data received from at least one in-need
sensor. Combining the expression above with pk > 1/L for the
helper sensors and substituting Eq. (4) leads to the condition
in the following lemma.

Lemma 3: The amount of data δd offloaded to helper sensors
must satisfy:

δ < 1 + (L− 1)

(
1− 1

L

)L+1

.

The central network controller chooses the values of ε and
δ, subject to the constraints of Lemmas 2 and 3, based on the
pm values reported by the gateways. These values should be
chosen carefully: if ε is too large, only a few sensors would be
allowed to offload their data, and some helper sensors might
drop data due to not meeting gateways frequently enough. As
ε decreases, however, some sensors which could have stored
offloaded data may instead be designated as in-need sensors,

Algorithm 1 Data offloading protocol run by sensor m

1 foreach time slot t do
2 if a gateway is in range then
3 pm ← (1− λ/t) pm + λ/t
4 transmit all data and pm to the gateway
5 obtain new ε and δ from the gateway

6 else
7 pm ← (1− λ/t) pm
8 if pm ≤ 1− ε

1
L+1 and bm(t) = B then

9 extract and broadcast δd data // IN-NEED

10 else if pm > 1− ε
1

L+1 and bm(t) < (L− δ)d then
11 store received δd data // HELPER

again resulting in dropped data. Similarly, a large value of δ
may lead to frequent buffer overflows, whereas a small value
may trigger in-need sensors to offload too much data.

A simple and intuitive way to divide the sensors into in-
need and helpers is to set ε to be the average drop-off rate
of all sensors without data offloading, according to Eq. (2).
However, this choice can lead to a disparity between the
numbers of helper and in-need sensors. For instance, if most
sensors experience a very small pm, employing the average
would lead to too few helper sensors. Consequently, ε is set to
be the harmonic mean of the probabilities of buffer overflow:

ε = min

{
M∑

sm∈S(1− pm)−(L+1)
,

(
1− 1

L

)L+1
}
, (8)

where the minimum operator ensures that the condition derived
in Lemma 2 is satisfied. Note that the harmonic mean enables
a conservative decision (i.e., ε is likely to be small) as the
expression in Eq. (2) is dominated by its small arguments.
Furthermore, δ is set to the ratio between the expected buffer
available at helper sensors and the data dropped by in-need
sensors [refer to Eq. (3) and Eq. (4) for more details]:

δ = min

{⌊∑
sk∈H

(
L−

(
1− (1− pk)L+1

)
1−pk
pk

)
∑
sj∈I

(1−pj)L+1

pj

⌋
,

1 + (L− 1)

(
1− 1

L

)L+1
}
.

(9)

Here pk and pj are the probabilities that a helper and an in-
need sensor meet a gateway when ε is set by Eq. (8). Thus,
the expected available buffer capacity for offloaded data is just
equal to the amount of offloaded data.

B. Data Offloading Process

The data offloading process is carried out locally at indi-
vidual sensors as detailed in Algorithm 1. When a gateway
is in range (lines 2-5), the sensor first updates its observed
probability pm of encountering a gateway according to Eq. (1).
It then transfers pm and all buffered data to the gateway, which

replies with the updated values of the operating parameters, ε
and δ. When no gateway is in range (lines 6-11), the sensor
similarly updates its observed probability pm. It then derives
its class (i.e., in-need or helper) based on the its last known
value of the parameter ε and acts accordingly. Namely, a sensor
is in-need when ϕm ≥ ε, i.e., the probability of a buffer
overflow from Eq. (2) is greater than ε. Equivalently, we have:

pm ≤ 1− ε
1

L+1 . (10)

In this case, the sensor extracts an amount of δd data from its
buffer and broadcasts it to all neighboring helper sensors when
its buffer is full (lines 8-9). Otherwise, the sensor is a helper,
thus, available to store the data broadcasted by other sensors
as long as there is enough room in its buffer (lines 10-11).

For the sake of simplicity, the data offloading process in
Algorithm 1 is explained as a set of operations repeated at
every time slot. In practice, gateway discovery and sensor
cooperation could be performed asynchronously. Moreover,
IoT sensors could employ power management mechanisms
to save energy for communication. In practice, sensors could
use Bluetooth Low Energy, which is particularly suitable
for opportunistic scenarios [19, 20]. In fact, it is robust to
interference; it has a very low power consumption and high-
enough bitrate. According to [19], a Bluetooth Low Energy
sensor can transfer a few megabits of data for several years
despite the overhead of neighbor discovery.

V. PERFORMANCE EVALUATION

A performance evaluation of the proposed data offloading
scheme is conducted next. First, the data drop-off rates are
evaluated numerically based on the analytical model of the
fog network in Section III. Next, experimental results under
dynamic network conditions are performed through trace-
driven simulations in a realistic urban scenario. In all cases,
λ = 0.01 and ten replications are performed. The figures report
the average values over all sensors and the ten runs along with
the related standard deviations as error bars when meaningful.

A. Numerical Results

The following evaluates the data drop-off rate in the network
by applying the analytical model in Section III-B with L = 10.
A network with a varying number of sensors is considered
based on the following representative scenarios, which express
different levels of sensor heterogeneity in terms of their
connectivity with mobile gateways.
• Uniform: all sensors have a probability pm to meet a

gateway uniformly distributed between zero and one.
• Helper bias: 80% of the sensors have a probability pm

to meet a gateway uniformly distributed between 0.3 and
0.5, while pm < 0.2 for all other sensors. This setting
induces a strong bias towards sensors being helpers.

• In-need bias: 80% of the sensors have a probability pm
to meet a gateway below 0.2, while pm is uniformly
distributed between 0.3 and 0.5 for all other sensors. This
setting induces a strong bias towards sensors being in-
need rather than helpers.

Figure 4 illustrates the data drop-off rate as a function of
the number of sensors for the different scenarios. All figures
show the baseline approach when no offloading is employed
(i.e., when individual sensors transfer their own data directly
to the gateway) as well as the collaborative data offloading
approach. Clearly, the proposed scheme outperforms no of-
floading, achieving data drop-off rates consistently below 2.5%
as compared to drop-off rates up to 15% without offloading.
Moreover, collaborative offloading exhibits almost constant
data drop-off rates with few fluctuations as the number of
sensors increases, while the drop-off rate without offloading
increases with the number of sensors. However, these fluctua-
tions are smoother for the helper bias scenario, implying that
the proposed data offloading protocol scales better to larger
deployments by leveraging network heterogeneity.

The network-wide offloading parameters ε and δ are shown
in Figures 5a and 5b, respectively, as a function of the number
of sensors and for different scenarios. Recall that sensors with
drop-off rates below the threshold ε are designated as helper
sensors. This is reflected in the results reported in Figure 5a:
the availability of more helpers results in lower values of ε,
since setting a lower threshold will still leave many helper
sensors. The figure also shows that ε is less sensitive to the
network size when there are more helper sensors. In fact,
setting a low value of ε always yields enough helper sensors to
offload data in this case, even if there are fewer total sensors
in the network. Similarly, the presence of more helpers allows
sensors to maintain lower buffer occupancies overall, which in
turn allows in-need sensors to offload more data (i.e., a higher
parameter δ). This trend is apparent from Figure 5b, where
the scenarios with more helpers incur in higher values of δ.

B. Trace-based Simulations

A custom Python simulator was employed to assess the
performance of the proposed data offloading scheme according
to the protocol presented in Section IV-B (i.e., Algorithm 1)
in dynamic conditions. The considered urban IoT scenario
is represented by a varying number of sensors randomly
deployed in a metropolitan area of 4.5 by 3.5 kilometers and
two gateway densities: 50 and 100 mobile gateways. The ONE
simulator v1.6.0 was employed to generate mobility traces
based on the roads in the city of Helsinki and pedestrians
walking with a speed between 0.5 and 1.5 m/s along streets
as well as pedestrian paths. All sensors used a transmission
range of 100 m, a buffer size B = 5, 000, and items of size
d = 10. All sensors were initialized with the same value of
pm = 0.002 to be in-need at the beginning of the simulation;
each sensor then dynamically updated the observed probability
of meeting a gateway over time and set their role accordingly.
The length of the time slot was set to one second and the
experiments lasted for 5 hours of simulated time.

The proposed collaborative offloading approach is compared
against three other schemes: an approach with no offloading
(as a baseline); a naive approach wherein sensors try to offload
one data item every time their buffer is full; and a static
approach wherein sensors try to offload 20% of their buffer

10 15 20 25 30
Number of sensors

0

2

4

6

8

10

12

14

16

18

Da
ta

 d
ro

p-
of

f r
at

e
With offloading Without offloading

(a) Uniform

10 15 20 25 30
Number of sensors

0

2

4

6

8

10

12

14

16

18

Da
ta

 d
ro

p-
of

f r
at

e

With offloading Without offloading

(b) 80% helpers

10 15 20 25 30
Number of sensors

0

2

4

6

8

10

12

14

16

18

Da
ta

 d
ro

p-
of

f r
at

e

With offloading Without offloading

(c) 80% in-need

Fig. 4: Data drop-off rate as a function of the number of nodes in the network for three representative scenarios: (a) uniform distribution of
in-need and helper sensors, (b) 80% helper sensors, and (c) 80% in-need sensors.

10 15 20 25 30
Number of sensors

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Ep
si

lo
n

Uniform In-need bias Helper bias

(a)

10 15 20 25 30
Number of sensors

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
lta

Uniform In-need bias Helper bias

(b)

Fig. 5: Network-wide offloading parameters: (a) likelihood ε to drop data and (b) number δ of offloaded data items as a function of the
number of sensors in the network for the considered scenarios.

size, irrespective of the local network conditions. Data in the
naive and static approaches is assumed to be dropped if there
is no nearby gateway or sensor with available buffer.

1) Data Drop-off Rate: Figures 6a and 7a illustrate the
data drop-off rate as a function of the network size (i.e., the
number of sensors) and two gateway densities for the four
considered offloading schemes. Note that the data drop-off
rate without offloading is roughly constant irrespective of the
network size, whereas it slightly decreases with the number
of deployed sensors when naive and static offloading (20%
of the full buffer) is performed. Given a gateway density, the
gap between the data drop-off rate without and with naive
(or static) offloading increases with the number of deployed
sensors. A higher number of sensors leads to a higher chance
for a single sensor to have neighbors that, in turn, would have
a higher chance to meet a gateway – in other words, neighbors
able to help. The static offloading scheme performs better than
the naive one for the case with 50 gateways, while there is no
significant difference between the two schemes for the case
with 100 gateways as a result of sensors’ buffers being less
full. The data drop-off rate with collaborative offloading is
clearly well below the data drop-off rate of the other three
schemes. However, the drop-off rate increases with the number
of sensors for the collaborative schemes. This trend can be
explained based on the clustering of sensors with respect
to gateway movements. An analysis of the simulation data
revealed that gateways tend to frequent specific locations (e.g.,
cross intersections) much more than others. As the network
size increases, a smaller fraction of sensors is located near

these spots, leading to a faster increase of in-need sensors
compared to helpers and a larger data drop-off rate. However,
as observed in Figure 7a, the collaborative offloading scheme
performs better in networks with higher gateway density, since
a larger number of gateways still allows sensors to have more
contact opportunities. More data can then be offloaded to
helper sensors, leading to lower data drop-off rates.

Figures 6b and 7b illustrate the CDF (cumulative distri-
bution function) of the data drop-off rate across the sensors
for a fixed network size of 50 sensors and varying gateway
densities. Such a CDF is shown for four different schemes:
without, naive, static, and collaborative offloading. Figure 6b
shows that collaborative offloading with 50 gateways results
in most of the sensors having a data drop-off rate below 20%,
whereas no, static and naive offloading lead to data drop-off
rates as high as 55% for most of the sensors. Moreover, as
seen in Figure 7b, as the gateway density reaches 100, the
data drop-off rate decreases for all the four cases. However,
the collaborative offloading scheme still outperforms the other
three, offering low data drop-off rates of less than 15% for
most of the sensors and drop-off rates of less than 30% for
all of them. The large gap in the data drop-off rate holds for
all the sensors in the network. The performance of the naive
and static offloading scheme closely follows the no offloading
one, with only slightly lower data drop-off rates.

2) Fraction of Helper vs. In-need Sensors: Figures 6c
and 7c show the fraction of the helper sensors as a func-
tion of simulated time for different values of the network
size and gateway densities in the network. According to the

30 50 100 150
Number of sensors

0
10
20
30
40
50
60
70

Da
ta

 d
ro

p-
of

f r
at

e
(%

)
No offloading
Naive offloading

20% static offloading
Collaborative offloading

(a)

0 10 20 30 40 50 60 70 80
Data drop-off (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

No offloading
Naive offloading

20% static offloading
Collaborative offloading

(b)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (s)

16

17

18

19

20

21

22

He
lp

er
 n

od
es

 (%
)

30 nodes
50 nodes

100 nodes
150 nodes

(c)

Fig. 6: (a) Drop-off as a function of the number of sensors in the network from the trace-driven simulations, (b) the CDF of the data drop-off
rate, and (c) the fraction of helper sensors over time for 50 gateways.

30 50 100 150
Number of sensors

0
10
20
30
40
50
60
70

Da
ta

 d
ro

p-
of

f r
at

e
(%

)

No offloading
Naive offloading

20% static offloading
Collaborative offloading

(a)

0 10 20 30 40 50 60
Data drop-off (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

No offloading
Naive offloading

20% static offloading
Collaborative offloading

(b)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (s)

18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5

He
lp

er
 n

od
es

 (%
)

30 nodes
50 nodes

100 nodes
150 nodes

(c)

Fig. 7: (a) Drop-off as a function of the number of sensors in the network from the trace-driven simulations, (b) the CDF of the data drop-off
rate, and (c) the fraction of helper sensors over time for 100 gateways.

initialization process described above, all sensors are in-need
at the beginning of the simulation. Later, they start reporting
the observed values of pm to the gateways; in turn, the
central network controller recalculates and disseminates the
offloading parameters ε and δ to the network. Accordingly,
sensors change their role over time: while they initially tend to
offload data often, they eventually become helpers [Eq. (10)].

In fact, the collaborative offloading process relies on sensors
that learn and update their status accordingly – the fraction
of helper sensors for both gateway densities slowly increases
over time. Note that the fraction of helpers increases faster for
lower network densities. Such a trend occurs as more sensor
nodes in the network lead to a higher number of sensors per
cluster. Consequently, one helper sensor would have to serve
more in-need sensors, resulting in a rapid increase of buffer
occupancy and a lower capability to remain a helper sensor for
a long time. Moreover, comparing Figures 6c and 7c reveals
that a higher gateway density leads to a higher fraction of
helper sensors for all network densities. This derives directly
from the fact that when more gateways are present, in-need
sensors are more likely to meet a gateway, possibly triggering
them to act as helpers. In fact, for a gateway density of 50, the
fraction of helper sensors is roughly between 16 and 21.5%
(Figure 6c); whereas for 100 gateways, the fraction of helper
nodes is approximately between 18 and 22.5% (Figure 7c).

VI. RELATED WORK

Data offloading has been widely studied in opportunistic
communication scenarios [22]. For instance, Li et al. [23] pro-
posed an optimal offloading strategy under buffer constraints
for heterogeneous end-users. After showing that the considered

problem is NP-hard, they devise and evaluate several of-
floading heuristics. However, they consider data dissemination
from the infrastructure to the mobile devices, while the focus
of this work is on sending data from devices to the cloud
infrastructure, resulting in different data drop-off patterns. Lu
et al. [13] proposed collaborative data offloading to address
the reliability of communications from mobile devices to
the infrastructure. This article similarly targets reliable data
communication through device cooperation, but our solution
explicitly targets collaboration between static sensors visited
by mobile gateways, rather than between mobile devices.

This work is very related to data collection in wireless
sensor networks by means of mobile sinks [12, 24, 25]. In
this context, Gao et al. [18] attempted to maximize the data
collected by mobile sinks by designating nearby nodes as
intermediate data collectors. Their solution assumes that nodes
have enough buffer to store all data, whereas sink mobility is
fixed and known in advance. Similarly, Maia et al. [26] rely
on more powerful nodes to store replicated data, which are
then collected by mobiles sinks. Wen et al. [27] constructed
an energy-aware path for mobile sinks to collect data from
sensors, under the assumption that the location of the sensors
and of the mobile sinks are known. In contrast, this article
specifically addresses potential buffer overflows and attempts
to learn the gateway arrivals over time. A few works have
focused on learning the sink mobility pattern to improve
sensor data collection. For instance, Shah et al. [28] employed
distributed reinforcement learning for sensor nodes to predict
arrivals of a mobile sink for sparse scenarios where at most
one node is simultaneously in contact with the mobile sink.
Our work instead addresses scenarios where groups of nodes

can collaboratively forward data to mobile gateways. Pozza et
al. [29] considered opportunistic IoT scenarios by means of a
prediction framework based on temporal-difference learning,
but do not address communication reliability.

Finally, this work shares some similarities with the literature
on mobile crowdsensing [30]. Jin et al. [31] addressed the de-
ployment of mobile access points to support mission-oriented
sensing, but did not leverage mobile users for sensor data
collection, as done here. Xiao et al. [32] considered mobile
users that perform pre-assigned sensing tasks with a certain
probability depending on their mobility relative to specific
points of interest. Our work does not consider pre-determined
sensing tasks carried out by mobile users, but rather periodic
data reporting by IoT devices.

VII. CONCLUSION

Fog networking brings forth new opportunities to improve
the efficiency of IoT scenarios with resource-constrained de-
vices by locating functionalities close to the network edge. In
such a context, this work studies a multi-tier IoT network com-
posed of sensors, mobile gateways, and a network controller. It
leverages the fog networking paradigm to introduce a collab-
orative data offloading scheme that is adaptive and network-
driven while minimizing the data drop-off rate. The proposed
data offloading protocol accounts for the unpredictable mo-
bility of gateways, allowing the sensors to reconfigure their
roles according to their real-time data drop-off rates. This
collaborative data offloading is shown to significantly reduce
the data drop-off rates in the considered IoT scenario, by both
numerical results and trace-driven simulations.

Future research might introduce a new control parameter to
trade off between energy expenditure and drop-off rates for
extremely low-power sensors. More broadly, one may utilize
a similar collaborative architecture for data pre-processing or
other computing needs within a fog context.

ACKNOWLEDGMENTS

This work was partially supported by: the Academy of
Finland under grants number 299222 and 319710; the US
National Science Foundation under grants CNS-1751075,
CNS-1759652, and CNS-1759655; and the Defense Advanced
Research Projects Agency (DARPA) DCOMP program under
contracts number HR001117C0052 and HR001117C0048.

REFERENCES

[1] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497–1516, 2012.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing: A
Platform for Internet of Things and Analytics, pp. 169–186. Springer
International Publishing, March 2014.

[4] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE IoT Journal, vol. 3, no. 6, pp. 854–864, 2016.

[5] D. Yuan, S. S. Kanhere, and M. Hollick, “Instrumenting wireless sensor
networks — a survey on the metrics that matter,” Pervasive and Mobile
Computing, vol. 37, pp. 45–62, 2017.

[6] T. Yu, X. Wang, and A. Shami, “A novel fog computing enabled
temporal data reduction scheme in IoT systems,” in The 2017 IEEE
Global Communications Conference, pp. 1–5, Dec 2017.

[7] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area
networks: An overview,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 855–873, 2017.

[8] B. Guo et al., “Opportunistic IoT: Exploring the harmonious interaction
between human and the Internet of Things,” Journal of Network and
Computer Applications, vol. 36, no. 6, pp. 1531–1539, 2013.

[9] G. Aloi et al., “Enabling IoT interoperability through opportunistic
smartphone-based mobile gateways,” Journal of Network and Computer
Applications, vol. 81, pp. 74–84, 2017.

[10] R. Pozza, M. Nati, S. Georgoulas, K. Moessner, and A. Gluhak,
“Neighbor discovery for opportunistic networking in Internet of Things
scenarios: A survey,” IEEE Access, vol. 3, pp. 1101–1131, 2015.

[11] B. Rashid and M. H. Rehmani, “Applications of wireless sensor net-
works for urban areas: A survey,” Journal of Network and Computer
Applications, vol. 60, pp. 192–219, 2016.

[12] M. Di Francesco, S. K. Das, and G. Anastasi, “Data collection in
wireless sensor networks with mobile elements: A survey,” ACM Trans-
actions on Sensor Networks, vol. 8, August 2011.

[13] Z. Lu, X. Sun, and T. L. Porta, “Cooperative data offload in oppor-
tunistic networks: From mobile devices to infrastructure,” IEEE/ACM
Transactions on Networking, vol. 25, pp. 3382–3395, Dec 2017.

[14] OpenFog Consortium, “The OpenFog Consortium Reference Architec-
ture: Executive Summary.” https://goo.gl/cIrzuT, 2017.

[15] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
orchestration for Internet of Things services,” IEEE Internet Computing,
vol. 21, pp. 16–24, Mar 2017.

[16] M. Uddin, S. Mukherjee, H. Chang, and T. V. Lakshman, “SDN-based
service automation for IoT,” in 2017 IEEE 25th International Conference
on Network Protocols (ICNP), pp. 1–10, Oct 2017.

[17] M. Tomasini et al., “On the effect of human mobility to the design of
metropolitan mobile opportunistic networks of sensors,” Pervasive and
Mobile Computing, vol. 38, pp. 215–232, 2017.

[18] S. Gao, H. Zhang, and S. K. Das, “Efficient data collection in wireless
sensor networks with path-constrained mobile sinks,” IEEE Trans. on
Mobile Computing, vol. 10, no. 4, pp. 592–608, 2011.

[19] S. Aguilar, R. Vidal, and C. Gomez, “Opportunistic sensor data collec-
tion with Bluetooth Low Energy,” Sensors, vol. 17, no. 1, 2017.

[20] H. Wirtz, J. Rüth, M. Serror, J. A. Bitsch Link, and K. Wehrle,
“Opportunistic interaction in the Challenged Internet of Things,” in The
9th ACM MobiCom Workshop on Challenged Networks, pp. 7–12, 2014.

[21] J. G. Kemeny et al., Finite Markov chains, vol. 356. van Nostrand
Princeton, NJ, 1960.

[22] D. Xu et al., “A survey of opportunistic offloading,” IEEE Comm. Sur-
veys & Tutorials, vol. 20, no. 3, 2018.

[23] Y. Li, M. Qian, D. Jin, P. Hui, Z. Wang, and S. Chen, “Multiple mobile
data offloading through disruption tolerant networks,” IEEE Transactions
on Mobile Computing, vol. 13, pp. 1579–1596, July 2014.

[24] S. Yang, U. Adeel, Y. Tahir, and J. A. McCann, “Practical opportunistic
data collection in wireless sensor networks with mobile sinks,” IEEE
Trans. on Mobile Computing, vol. 16, no. 5, pp. 1420–1433, 2017.

[25] A. Mehrabi and K. Kim, “Maximizing data collection throughput on a
path in energy harvesting sensor networks using a mobile sink,” IEEE
Transactions on Mobile Computing, no. 3, pp. 690–704, 2016.

[26] G. Maia et al., “A distributed data storage protocol for heterogeneous
wireless sensor networks with mobile sinks,” Ad Hoc Networks, vol. 11,
no. 5, pp. 1588–1602, 2013.

[27] W. Wen, S. Zhao, C. Shang, and C.-Y. Chang, “EAPC: Energy-aware
path construction for data collection using mobile sink in wireless sensor
networks,” IEEE Sensors Journal, vol. 18, no. 2, pp. 890–901, 2018.

[28] K. Shah, M. Di Francesco, and M. Kumar, “Distributed resource
management in wireless sensor networks using reinforcement learning,”
Wireless Networks, vol. 19, pp. 705–724, July 2013.

[29] R. Pozza, M. Nati, S. Georgoulas, A. Gluhak, K. Moessner, and S. Krco,
“CARD: Context-aware resource discovery for mobile Internet of Things
scenarios,” in IEEE WoWMoM 2014, pp. 1–10, June 2014.

[30] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou,
“Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm,” ACM Computing Surveys, vol. 48,
pp. 7:1–7:31, September 2015.

[31] H. Jin, H. Huang, L. Su, and K. Nahrstedt, “Cost-minimizing mobile
access point deployment in workflow-based mobile sensor networks,” in
The 22nd Int. Conf. on Network Protocols, pp. 83–94, Oct 2014.

[32] M. Xiao, J. Wu, H. Huang, L. Huang, and C. Hu, “Deadline-sensitive
user recruitment for mobile crowdsensing with probabilistic collabora-
tion,” in The 24nd Int. Conf. on Network Protocols, pp. 1–10, Nov 2016.

https://goo.gl/cIrzuT

	Introduction
	Background
	Reference Architecture
	System Model

	Analysis of Data Drop-off Rates
	Baseline Scheme: No Offloading
	Data Offloading for IoT Scenarios
	In-need sensors
	Helper sensors

	Fog-based Control of Data Offloading
	Adaptive Network Control
	Data Offloading Process

	Performance Evaluation
	Numerical Results
	Trace-based Simulations
	Data Drop-off Rate
	Fraction of Helper vs. In-need Sensors

	Related Work
	Conclusion

