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Abstract—Caching popular content at small-cell base stations
(SCBSs) and user equipments (UEs) can significantly reduce
the network backhaul traffic while improving user satisfaction.
This is also enabled by novel video encoding techniques, such
as scalable video coding (SVC), which combine layers to offer
content with different qualities without re-encoding. Despite some
recent works, the performance of layered video delivery in crowd-
sourced heterogeneous networks (HetNets) is still unexplored.
This article provides an analytical characterization the delay of
video delivery in a network with multiple cache-enabled SCBSs
and UEs, each storing part of the available video layers based
on their popularity. Accordingly, video requests from an UE can
be served by either SCBSs or UEs nearby. Our main objective
is to maximize the cache hit probability by caching appropriate
video layers, thereby minimizing the average video delivery delay.
We formulate the problem of minimizing the delivery delay of
layered video caching as an integer linear program. We then
apply the difference of convex functions technique to identify
the set of optimal video layers to be cached at each SCBS
and UE in an iterative manner. Our results obtained by using
a real video dataset demonstrate that our proposed solution
significantly reduces the video download time of all UEs in the
network.

I. INTRODUCTION

The global mobile traffic is expected to grow from 7.2 ex-
abytes per month in 2016 to 49 exabytes by 2021, where video
data will account for 78% of the mobile traffic [1]. To cope
with such a traffic growth, mobile network operators (MNOs)
aim at expanding their network capacity by using different
strategies, such as acquiring more radio spectrum or extend-
ing network infrastructure, both of which are often costly
and time-consuming. Heterogeneous networks (HetNets) have
emerged as a cost-effective alternative solution to increase the
network capacity and alleviate the network backhaul traffic.
In HetNets, cache-enabled small-cell base stations (SCBSs)
with high-speed transmission technologies (e.g., LTE-A) are
deployed at strategic locations to provide high-quality data
delivery services and improve user satisfaction [2]. With the
advent of mobile crowdsourcing, user-provided networking
(UPN) also becomes part of HetNets where user equipments
(UEs) in proximity serve content to each other through high-
speed interfaces (e.g., Wi-Fi), eventually reducing network
congestion and the cost of Internet access [3].

Several video caching strategies have been proposed in
HetNets (see [2] for a survey). A number of studies leveraged
the popularity of content to increase the cache hit rate prob-
ability. For instance, Golrezaei et al. [4] showed that caching
popular videos in SCBSs can significantly improve the system

throughput without deploying any additional infrastructure. Li
et al. [5] evaluated multi-bitrate video caching, where a video
is encoded in different qualities, each divided into multiple
segments (or chunks). Once a user requests a video, the
appropriate segments are dynamically fetched according to the
current wireless link quality. Chen et al. [6] took user mobility
into account and proposed a geographic caching strategy to
maximize the cache hit probability at both SCBSs and UEs.
The results showed that the reliability of data transmission
between UEs considerably affects the caching throughput.

A limited number of recent studies have addressed caching
layered videos, particularly, based on scalable video coding
(SVC) [7]. SVC is an emerging video encoding technique over
HTTP networks, which is an extension of the H.264/MPEG-
4 encoding. SVC-based (or layered) video encoding is very
suitable for wireless communications because it can adapt to
fast varying wireless links without re-encoding [8]. The SVC
format of a video includes a basic layer for a low-quality
demand, which can be combined with several enhancement
layers to provide users with high-quality videos. However,
caching layered videos is complex since the dependencies
between the different layers should be considered during both
the caching and the streaming process. In this respect, Xie et
al. [9] proposed an energy-efficient placement approach for
layered videos with the aim of minimizing the energy saving
of the SCBSs in cellular networks. Poularakis et al. [10] stud-
ied layered video caching in multi-operator cellular networks
and found that cooperation of co-located SCBSs reduces
the delivery delay up to 25%. However, prior work did not
address minimizing the download delay of layered videos
when SCBSs and UEs jointly perform content caching and
delivery.

This article studies the problem of minimizing the delivery
delay for layered video caching in crowdsourced HetNets.
Each SCBS in the network caches a subset of the layers
for each video based on its popularity, so as to maximize
the number of UE requests that can be served through the
cached video layers. In addition, UEs cache layered videos
based on both popularity and their location to maximize the
average hit rate probability of user requests served within the
UPN. In summary, the major contributions of this work are
the following.
• We provide an analytical model for the delay of layered

video caching in crowdsourced HetNets based on the
popularity of videos and the size of network caches.



• We formulate the problem of minimizing the delay of
layered video caching as an integer linear programming
problem, then apply the difference of convex (DC) func-
tions technique to identify the video layers cached at each
SCBS and UE.

• Numerical results demonstrate that our proposed solu-
tion significantly reduces the average download time of
layered videos.

II. SYSTEM MODEL

In this section, we model video caching in crowdsourced
HetNets which can be supplied by an MNO. The key notation
used is summarized by Table I.

A. Network and User Equipment

As shown in Fig. 1, we consider a wireless network
including a macro base station (MBS) M connected to the
core network through a high-capacity backhaul link (e.g.,
fiber optics). The transmission capacity and range of M are
denoted as cwM≥0 Mbps and rM>0 meters, respectively. The
network includes a set S={1, 2, . . . , S} of S small-cell base
stations (SCBSs) and a set U={u1, u2, . . . , uU} of U user
equipments (UEs) with caching capabilities. The MBS covers
all SBSs and UEs in the network. The SCBSs are uniformly
placed in |S| locations that are connected to the core network
through a wired or wireless backhaul link. The transmission
capacity and range of each SCBS in S are denoted as cws ≥0
Mbps and rs>0 meters, respectively. The caching capacity
of each SCBS s is indicated as cs>0 MB. We assume that
orthogonal frequency bands are assigned to SCBSs to manage
the interference between them.

The location of users is described through a homogeneous
Poisson point process (PPP) with intensity λU . We assume
that at least one SCBS covers each ui∈U , where ui only
communicates with its nearest associated SCBS s. Two UEs
communicate with each other over unlicensed bands (e.g.,
by using Wi-Fi Direct) when their distance is less than ru
(meters). The UEs can simultaneously access the Internet
through cellular and Wi-Fi connections [11]. The average
Internet download capacity of each ui∈U through cellular con-
nection c and Wi-Fi channel f∈F are denoted as ccui≥0 and
cfui≥0 Mbps, respectively. Moreover, the average transmission
capacity of link (ui, uj)∈Et through Wi-Fi channel f∈F is
denoted as cfui,uj≥0 Mbps. We assume that each UE can store
different amount of data, where the caching capacity of ui∈U
is denoted as cui>0 MB.

The UEs create a mesh network that is modeled by
a time-varying graph, where Gt=(U,Et, ξt) represents the
graph at fixed-length time slot t∈T , T =1, 2, . . . , T . In Gt,
Et={(ui, uj)|i, j∈U, i6=j} denotes the set of communication
links and ξt={(ui, uj)|i, j∈U, i 6=j} denotes the set of links
subject to interference between ui and uj at time t. In other
words, the existence of (ui, uj)∈ξt implies that simultaneous
data transmissions by users ui and uj at time t interfere with
each other.
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Fig. 1: The system model.

B. Video Encoding and User Demand
The MNO owns a finite set V={1, 2, . . . , V } of V video

files, where each video is encoded with scalable video cod-
ing (SVC) [7]. Accordingly, each video consists of a set
Q={1, 2, . . . , Q} of Q layers (or qualities) including one base
layer and Q−1 enhancement layers; layer 1 realizes quality 1,
the combination of layers 1 and 2 realizes quality 2, and so on.
Unlike [9], we assume that the size of individual video layers
can differ: the size of q-th layer of video v, denoted as ovq>0
(MB), typically decreases with q (ov1>ov2> . . .>ovQ). When
a user requests the q-th quality level of video v, all layers of
v from layer 1 up to layer q should be delivered to the user,
where the size of the q-th quality level of v is Ovq =

∑q
l=1 ovl.

Similar to some existing works (e.g., [4]), we identify the
demand vector of each UE based on the file popularity, which
can be characterized through a Zipf-like distribution. Such a
popularity is available to the system, for instance, as predicted
by employing learning methods [12]. We assume that the
popularity of videos does not significantly change within a
certain period (e.g., few hours or days), according to recent
analysis of real video traces [13]. Thus, we sort the files in V
in the descending order of their popularity and calculate the
popularity of the i-th ranked video in V as:

pi =
i−γ∑V
j=1 j

−γ
(1)

where γ is the skewness of the popularity distribution, which
typically ranges between 0 and 1. For instance, γ=0 implies
that all videos have the same popularity, where γ near to 1
implies that a few videos are viewed by a large number of
UEs. We also denote each UE’s video demand rate as ζu and
the probability of requesting the q-th quality level of each
video as lq>0 (q=1, 2, . . . , Q).

C. Video Caching and Dissemination
Without loss of generality, we analyze layered video

caching in a network with one SCBS s and its associated
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Fig. 2: A sample video placement in SCBS s and user ui.

UEs in N⊆U . As a general principle, SCBS s or each ui∈N
cannot cache the q-th layer of video v unless all its previous
layers (i.e., layer 1 up to layer q−1) have already been cached
locally [10]. We define the placement for SCBS s as the set
of parameters Xs=xs,Q≤xs,Q−1≤ . . .≤xs,1≤V (xs,Q ≥ 0),
where s caches Q layers of the xs,Q most popular videos,
Q−1 layers of the videos with popularity between xs,Q−1
and xs,Q, and so on. Furthermore, the placement parameters
should be related to the storage capacity of SCBS s as
expressed by the following constraint:

Q∑
j=1

n(s,j)∑
k=1

j∑
q=1

oz(s,j)+k,q ≤ cs (2)

The term n(s, j) in Eq. (2) denotes the number of videos with
the j-th quality level cached by SCBS s:

n(s, j) =

{
xs,j if j = Q

xs,j − xs,j+1 if 1 ≤ j < Q
(3)

while z(s, j) is the index of the (j+1)-th placement parameter
in Xs:

z(s, j) =

{
0 if j = Q

xs,j+1 if 1 ≤ j < Q
(4)

Similar to SCBS s, we define the set of video place-
ment parameters for ui∈N as XU= [Xu1, Xu2, . . . , XuN ].
Here, the placement parameters of each ui are defined as
Xui=xui,Q≤ xui,Q−1≤ . . .≤xui,1≤V ,(xi,Q≥0) and are sub-
ject to the following constraint:

Q∑
j=1

n(ui,j)∑
k=1

j∑
q=1

oz(ui,j)+k,q ≤ cui,∀i = 1, . . . , |N | (5)

where n(ui, j) and z(ui, j) are given similar to Eqs. (3) and
(4), respectively.

TABLE I: Used symbols and their meaning

Symbol(s) Definition

cwM , rM Transmission capacity and range of MBS M
S, s Set of SCBSs and a single SCBS
cws , rs Transmission capacity and range of SCBS s
cs Storage capacity of SCBS s
U , ui Set of UEs and a single UE ui
λU Density of UEs in PPP distribution
ccui, c

f
ui Cellular and Wi-Fi transmission capacity of ui

cui, ru Storage capacity and transmission range of ui
cfui,uj Wi-Fi transmission capacity between ui and uj
V , v Set of videos and a single video
Q Number of video layers or qualities
ovq Size of the q-th layer of video v
ζu User demand rate per time slot
lq Probability of requesting the q-th quality level of a video
pi, γ Popularity of the i-th ranked video and its skewness

Fig. 2 illustrates a possible placement of V videos – each
with 5 layers – in SCBS s and a given UEs ui associated
to s. The figure shows that more layers of the most popular
videos are cached because they are more frequently requested
by the UEs. Specifically, SCBS s caches the 5-th quality level
of video 1, the 4-th quality level of videos 2 and 3, the 3-rd
quality level of videos 4 and 5, the 2-nd quality level of videos
6-8, and the 1-st quality level of videos 9-12. It is worth noting
that the number of video layers cached by SCBS s is higher
than those in ui because the caching capacity of s is usually
larger than that of UEs.

Once SCBS s and each ui∈N caches the video layers based
on the placement policy, video offloading operates as follows.
When ui requests the q-th quality level of video v ∈ V , all
layers of v from layer 1 up to layer q are served by ui itself,
if it has already cached them (self-response). If ui has not
cached any or some layers of the demanded video quality,
the remaining layers are fetched from the UEs in its UPN,
eventually over multiple hops (UPN-response). In case none
of the UEs in the UPN has cached the needed layers, the
request is served by its associated SCBS (SCBS-response);
otherwise, the layers are served by the MBS, thereby resulting
in the highest delivery delay (MBS-response).

III. PROBLEM FORMULATION

In this section, we formulate the problem of minimizing the
delay of layered video caching (LVC), for the case where both
the SCBSs and UEs have caching capabilities. Our objective is
to determine the placement parameters X = [Xs XU ] in such
a way that the average video delivery delay is minimized. To
achieve this goal, we first consider a case in which the video
requests of each ui∈N are served by the MBS M (MBS-
response). In this case, the aggregated delivery delay of video
requests of UEs can be derived as:

DNoCache
M =

∑
ui∈N

∑
v∈V

∑
q∈Q

pvlq
ovq
cwM,ui

(6)

where cwM,ui denotes the achievable transmission rate between
MBS M and user ui. We assume that the transmission rate



between M and ui decreases from cwM=c1+c2 to c1 (c1 > 0),
as the physical distance between them (dM,ui) increases (e.g.,
due to the impact of path loss and interference).

We then consider the case where SCBS s caches the
most popular videos, possibly allowing UEs to download the
requested content directly from s with a lower delay than
from M (SCBS-response). We again leverage file popularity
to identify the cumulative probability that q-th quality level
of a video cached by SCBS s is hit by a UE:

P qs =

∑xs,q

k=1 k
−γ∑V

j=1 j
−γ
≈ (xs,q)

1−γ

(1− γ)
∑V
j=1 j

−γ
(7)

where xs,q is the number of the most popular videos whose at
least first q layers are cached by SCBS s. The rightmost term
in Eq. (7) is derived by using a similar approximation as the
one in [9]. Finally, videos requested by ui could be found in
its own cache (Self-response) or in the cache of the UEs in
its UPN (UPN-response). Based on geographic caching (e.g.,
in [14]), the probability that there are n UEs within a distance
r from a reference location for a PPP distribution with density
λ is:

F (n, r, λ) =
(πλr2)

n

n!
e−πλr

2

(8)

Consequently, the probability that the q-th quality level of a
video requested by ui is found in its own cache or in the
cache of at least one UE in the UPN of ui within radius ru
is:

P qui = 1−e−πλUr
2
up

q
ui (9)

where e−πλUr
2
up

q
ui is the probability that there is no UE within

a distance ru from ui that cached the q-th quality level of the
video. In Eq. (9), pqui is derived as:

pqui =
(xui,q)

1−γ

(1− γ)
∑V
j=1 j

−γ
(10)

Thus, the aggregated delivery delay of the requests of UEs
served by the MBS M when some requested layers are served
by SCBS s, UPN UEs, or each ui∈N is:

DCache
M =

∑
ui∈N

∑
v∈V

∑
q∈Q

(1− P qui)(1− P
q
s )pvlq

ovq
cwM,ui

(11)

Moreover, the aggregated delivery delay of the video requests
of UEs served by SCBS s is:

DCache
s =

∑
ui∈N

∑
v∈V

∑
q∈Q

(1− P qui)P
q
s pvlq

ovq
cws

(12)

where P qui and P qs are derived by using Eqs. (7) and (9),
respectively. Here, cws is characterized with respect to the
physical distance between SCBS s and each ui∈N .

Finally, the aggregated delivery delay of UEs’ video re-
quests served by the UE itself or its UPN is:

DUPN=
∑
ui∈Ns

∑
v∈V

∑
q∈Q

P quipvlq
ovq

cfui,uj
(13)

According to Eqs. (6) and (11)-(13), the delay saving when
SCBS s and UEs participate in caching is given by:

DSaving = DNoCache
M −DCache

M −DCache
s −DUPN=∑

ui∈N

∑
v∈V

∑
q∈Q

pvlq
ovq
cwM,ui

−

∑
ui∈N

∑
v∈V

∑
q∈Q

(1−P qui)(1−P
q
s )pvlq

ovq
cwM,ui

−

∑
ui∈N

∑
v∈V

∑
q∈Q

(1−P qui)P
q
s pvlq

ovq
cws,ui
−

∑
ui∈N

∑
v∈V

∑
q∈Q

P quipvlq
ovq

cfui,uj
(14)

Consequently, maximizing the delay saving time in the
LVC problem can be stated as the following integer linear
programming problem:

max
X=[Xs XU ]

DSaving=
∑
ui∈N

∑
v∈V

∑
q∈Q

pvlqovq

(
1

cwM,ui

−

(1−P qui)(1−P qs )
cwM,ui

− (1−P qui)P qs
cws,ui

− P qui

cfui,uj

)
(15)

subject to
Q∑
j=1

n(s,j)∑
k=1

j∑
q=1

oz(s,j)+k,q ≤ cs (16)

Q∑
j=1

n(ui,j)∑
k=1

j∑
q=1

oz(ui,j)+k,q ≤ cui ∀i = 1, . . . , |N | (17)

xs,Q≤ xs,Q−1≤ . . .≤xs,1≤V (xs,Q≥0) (18)
xi,Q≤ xi,Q−1≤ . . .≤xi,1≤V (xi,Q≥0)∀i = 1, . . . , |N | (19)

which is equivalent to the following minimization problem:

min
X=[Xs XU ]

−DSaving=−
∑
ui∈N

∑
v∈V

∑
q∈Q

pvlqovq

(
1

cwM,ui

−

(1−P qui)(1−P qs )
cwM,ui

− (1−P qui)P qs
cws,ui

− P qui

cfui,uj

)
(20)

subject to the constraints in Eqs. (16)-(19).

IV. DELAY OPTIMIZATION OF LAYERED VIDEO CACHING

The LVC problem is an instance of the fractional knapsack
problem [15], which is NP-hard. The −DSaving function in
Eq. (20) is non-convex since its second order derivative (i.e.,
its Hessian matrix) is not positive definite. To find a solution
to the problem, we employ an iterative approach, namely, the
difference of convex (DC) functions programming [16]. The
main idea in DC programming is to decompose a non-convex
function into two convex functions in such a way that their
combination is convex. Accordingly, we decompose function
−DSaving into two convex functions G(X) and H(X) such
that:

−DSaving(X)=G(X)−H(X) (21)



Algorithm 1 DC programming for the LVC problem

1 k=0 . assign initial values
2 foreach q ∈ Q do
3 Xk

s,q=
(Q−q+1)V cs
QDsize

4 Xk
ui,q =

(Q−q+1)V cs
QDsize

(∀i = 1, . . . , |N |)

5 while ‖Xk −Xk+1 > ε ‖ do
6 solve the following integer linear program:

min G(X)−H(Xk)−(X−Xk)∂H(Xk)
∂X

subject to Equations (16)-(19)
7 k = k + 1

8 return Xk

Once the two functions G(X) and H(X) are found, a
standard convex optimization method can be applied to solve
function G(X)−H(X) instead of function −DSaving in
Eq. (20). The main challenge in this step is to determine
function H(X) in such a way that both functions H(X) and
G(X) are convex. We identify function H(X) as follows:

H(X)=
∑
ui∈N

∑
v∈V

∑
q∈Q

pvlqovqπλUr
2
uP

q2

ui︸ ︷︷ ︸
hivq

(22)

The Hessian matrix of hivq is:

Hess(hivq)=

 ∂2hi

∂(P q
s )2

∂2hi

∂P q
s ∂P

q
ui

∂2hi

∂P q
ui∂P

q
s

∂2hi

∂(P q
ui)

2

=

[
0 0

0 2pvlqovqπλUr
2
u

]
which is positive definite and H(X) is convex in X . Simi-
larly, the Hessian matrix of G(X)=H(X)−DSaving is pos-
itive definite and G(X) is convex. Thus, we can consider
G(X)−H(X) instead of −DSaving with the same constraints
in Eqs. (16)-(19). Accordingly, we design Algorithm 1 to find
the values of X in an iterative manner. First, we assign the
initial values of X (lines 1-4), where Dsize is the size of
the dataset. Even though the initial values can be assigned
at random, identifying suitable starting points can accelerate
convergence. Next, we solve the integer linear programming
problem in line 6 until Xk−Xk+1 converges (lines 5-7).

V. NUMERICAL RESULTS

We now present numerical results obtained by simulation to
evaluate the performance of our proposed caching scheme. We
consider a wireless network consisting of one MBS located at
the center of a circular area, as in Fig. 1. The network includes
4 SCBSs and 300 UEs distributed according a PPP. The
parameters employed in the simulation are detailed in Table II.
We use the real video dataset in [17], with a total size of about
1 TB, to generate layered videos. We run 10 replications of
the experiments, each lasting for T = 1, 000 time slots of one
second. The results show the resulting average values; the
standard deviations were very small, thus, we did not report
them in the plots for the sake of readability.

We consider four different schemes: NoCache in which the
requests of UEs are only served by the MBS (i.e., no caching

TABLE II: Simulation parameters

Parameter Value

Transmission range of MBS M: rM 300 (m)
Transmission capacity of MBS M: cwM 1 (Mbps)
Number of SCBSs: |S| 4
Transmission range of each SCBS: rs 80 (m)
Storage capacity of each SCBS: cs 100 (GB)
Number of UEs: |U | 300
Poisson point process (PPP) density: λU 300/π3002=0.001

Communication range of each UE: ru 30 (m)
Storage capacity of each UE: cui 2∼5 (GB)
Max. LTE-A downloading capacity: cwui 12 (Mbps) [18]
Max. Wi-Fi downloading capacity: cfui 4 (Mbps) [18]
Max. Wi-Fi downloading between UEs: cfui,uj 64 (Mbps) [18]
Number of videos: |V| 5000
Number of video layers: Q 5
Demand rate of each UE: ζu 0.2 (per time slot)
Skewness of Zipf distribution: γ 0.8 [10]

takes place in the network); LVC-NoUPN in which video
layers are cached at the SCBSs based on our solution to the
LVC problem, and the requests of each UE are served only
by either its associated SCBS or the MBS; RandomCache in
which video layers at both the SCBSs and UEs are selected at
random, and the requests of each UE are served by its UPN,
its associated SCBS, or the MBS; LVC-Optimized in which
video layers are determined based on our solution to the LVC
problem, and the requests of each UE are served by its UPN,
its associated SCBS, or the MBS. In the following, we focus
on the cumulative delay, namely, the total time it takes for
UEs to download all the requested videos.

Fig. 3 shows the cumulative delay for the different schemes
as a function of the cache size of SCBSs and UEs. In
particular, Fig. 3a shows that the cumulative delay for all
schemes excluding NoCache decreases as the cache size of
SCBS increases, whereas the delay of NoCache remains the
same. The figure also demonstrates that the cumulative delay
is considerably lower for LVC-Optimized compared to the
other schemes. For instance, when the cache size of SCBSs
is 150 GB, LVC-Optimized outperforms the LVC-NoUPN,
RandomCache and NoCache schemes by 90%, 95%, and
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Fig. 3: Cumulative delay as a function of the cache size of
(a) SCBSs and (b) UEs.
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Fig. 4: Cumulative delay as a function of (a) the demand ratio
of UEs and (b) the skewness of video popularity.

116%, respectively. The main reason is that LVC-Optimized
caches the most popular video layers in SCBSs, which in-
creases the cache hit probability, resulting in a lower delay.
Moreover, Fig. 3a shows that the delay of LVC-NoUPN is
higher than that of RandomCache when the cache size of
SCBSs is less than about 100 GB, whereas LVC-NoUPN
outperforms RandomCache when the cache size of SCBSs
exceeds 100 GB. The reason is that the cache hit ratio in
SCBSs is higher for LVC-NoUPN, because the SCBSs in this
case caches the most popular videos, while SCBSs and UEs
in RandomCache cache the videos randomly. The trends in
Fig. 3b are similar to those Fig. 3a for all the scenarios, as
the cache size of UEs increases.

Fig. 4a illustrates the cumulative delay as a function of
the video demand ratio for the different schemes. The figure
clearly shows how the delay increases as the demand ratio
of UEs increases too. While the delay of LVC-Optimized in-
creases gradually over the considered range, the other schemes
exhibit a much sharper increase when the demand ratio
exceeds 0.6. Specifically, when the demand ratio is 0.8, the
delay in LVC-Optimized is 154%, 126%, and 116% less than
NoCache, LVC-NoUPN, and RandomCache, respectively. The
reason is that, in contrast to the other schemes, a large portion
of the video requests of UEs in LVC-Optimized are served
through the layers cached at the SCBSs or UPN.

Finally, Fig. 4b illustrates the cumulative delay as a function
of the skewness in the video popularity for the different
schemes. Clearly, the download delay of UEs in all schemes
except NoCache decreases as the skewness increases. How-
ever, the delay in LVC-Optimized is considerably lower than
that of other schemes. For instance, when the skewness param-
eter is 0.6, the cumulative delay of UEs in LVC-Optimized is
129%, 88%, and 87% less than the NoCache, LVC-NoUPN,
and RandomCache, respectively. The reason is that LVC-
Optimized caches the most popular videos at the UEs and
SCBSs, resulting in a higher number of requests that can
be served through cached layers. This happens because UEs
request popular videos more frequently than others.

VI. CONCLUSION

In this article, we analyzed the delay of layered video
caching and delivery in crowdsourced HetNets. Our main

objective was to identify the best layers to be cached at SCBSs
and UEs based on their popularity, so as to minimize the
video download time. Since delay minimization in layered
video caching is NP-hard, we employed DC programming and
obtained the set of video layers to be cached in an iterative
manner. Our evaluation showed that caching more layers of
the most popular videos significantly decreases the video
download time. Moreover, cooperative caching and delivery
of video layers through UPN considerably reduces the average
download delay too. As a future work, we plan on addressing
the energy-delay trade-off of layered video caching.
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