On Bayes Cross Validation and Widely Applicable Information Criterion for Gaussian process models

The Second Workshop on Bayesian Inference for Latent Gaussian Models with Applications

Aki Vehtari¹
with Ole Winther², Tommi Mononen¹, Ville Tolvanen¹

¹Department of Biomedical Engineering and Computational Science (BECS)
Aalto University

²Informatics and Mathematical Modelling (IMM)
Technical University of Denmark (DTU)
Goal: estimate the predictive performance of Gaussian process (GP)
 - useful for model assessment and selection
Ideal criterion: Bayes generalization utility
 - can be estimated with LOO and WAIC
 - DIC is related to WAIC but estimates something else
Comparison: LOO, approximated LOO, WAIC, DIC
• \(p(\tilde{y}|\tilde{x}, D, M_k) \) is the posterior predictive distribution
 - \(p(\tilde{y}|\tilde{x}, D, M_k) = \int p(\tilde{y}|\tilde{x}, \theta, M_k)p(\theta|D, \tilde{x}, M_k)d\theta \)
 - \(\tilde{y} \) is a future observation
 - \(\tilde{x} \) is a future random or controlled covariate value
 - \(D = \{(x^{(i)}, y^{(i)}); i = 1, 2, \ldots, n\} \)
 - \(M_k \) is a model
 - \(\theta \) denotes parameters
• Future outcome \tilde{y} is unknown (ignoring \tilde{x} in this slide)

• If true future distribution $p_t(\tilde{y})$ would be known, the expected utility would be

$$\bar{u}(a) = \int p_t(\tilde{y})u(a; \tilde{y})d\tilde{y}$$

where u is utility and a is action
Predictive performance

- Future outcome \tilde{y} is unknown (ignoring \tilde{x} in this slide)
- If true future distribution $p_t(\tilde{y})$ would be known, the expected utility would be

$$\bar{u}(a) = \int p_t(\tilde{y}) u(a; \tilde{y}) d\tilde{y}$$

where u is utility and a is action

- Bayes generalization utility

$$BU_g = \int p_t(\tilde{y}) \log p(\tilde{y}|D, M_k) d\tilde{y}$$

where $a = p(\cdot|D, M_k)$ and $u(a; \tilde{y}) = \log(a(\tilde{y}))$
- a is to report the whole predictive distribution
- utility is the log-density evaluated at \tilde{y}
• Bayes generalization utility

\[BU_g = \int p_t(\tilde{x}, \tilde{y}) \log p(\tilde{y}|\tilde{x}, D, M_k) d\tilde{x} d\tilde{y} \]

• Since \(p_t(\tilde{x}, \tilde{y}) \) is unknown, we have to estimate it
 - LOO and WAIC re-use observations \((x^{(i)}, y^{(i)})\) to approximate \(p_t(\tilde{x}, \tilde{y}) \)
Estimating predictive performance

- Bayes training utility

\[BU_t = \frac{1}{n} \sum_{i=1}^{n} \log p(y_i | x_i, D, M_k) \]

- biased (overoptimistic)
Estimating predictive performance

- Bayes training utility

$$BU_t = \frac{1}{n} \sum_{i=1}^{n} \log p(y_i|x_i, D, M_k)$$

- biased (overoptimistic)

- Bayes leave-one-out cross-validation

$$LOO = \frac{1}{n} \sum_{i=1}^{n} \log p(y_i|x_i, D_{-i}, M_k),$$

- almost unbiased (Watanabe 2010)

$$E[LOO(n)] = E[BU_g(n - 1)]$$

Aki.Vehtari@aalto.fi

Bayes-LOO and WAIC for GP
Estimating predictive performance

- Bayes training utility

\[BU_t = \frac{1}{n} \sum_{i=1}^{n} \log p(y_i|x_i, D, M_k) \]

- biased (overoptimistic)

- Bayes leave-one-out cross-validation

\[LOO = \frac{1}{n} \sum_{i=1}^{n} \log p(y_i|x_i, D_{-i}, M_k) \]

- almost unbiased (Watanabe 2010)

\[E[LOO(n)] = E[BU_g(n - 1)] \]

- simplest approach requires computation of \(n \) LOO-posteriors
Widely applicable information criterion

- Watanabe (2009,2010abc) proposed Widely applicable information criterion (WAIC)

 - WAIC has two alternative approximations

 \[
 \text{WAIC}_G = BU_t - 2(BU_t - GU_t)
 \]
 \[
 \text{WAIC}_V = BU_t - V/n
 \]
Widely applicable information criterion

- Watanabe (2009,2010abc) proposed Widely applicable information criterion (WAIC)

 WAIC has two alternative approximations

 \[\text{WAIC}_G = BU_t - 2(BU_t - GU_t) \]
 \[\text{WAIC}_V = BU_t - V/n \]

 where \(GU_t \) is Gibbs utility

 \[GU_t = \frac{1}{n} \sum_{i=1}^{n} \int p(\theta|D, M_k) \log p(y_i|x_i, \theta, M_k) d\theta \]

 and \(V \) is functional variance

 \[V = \sum_{i=1}^{n} \left\{ E_{\theta|D,M_k} \left[(\log p(y_i|x_i, \theta, M_k))^2 \right] \right\} \]
 \[- \left(E_{\theta|D,M_k} [\log p(y_i|x_i, \theta, M_k)] \right)^2 \]
Widely applicable information criterion (WAIC)
- only the full data posterior is needed
- WAIC is asymptotically equal to BU_g and LOO

$$E[\text{WAIC}(n)] = E[BU_g(n)] + o(1/n)$$
$$E[\text{LOO}(n)] = E[BU_g(n - 1)]$$

- WAIC_G and WAIC_V are asymptotically equal, but the series expansion of WAIC_V has closer resemblance to the series expansion of LOO
- in experiments WAIC_V was better, and rest of results are using WAIC_V
Asymptotic equivalency of WAIC
- does not tell how well it works for finite n
- assumes infill (or fixed domain) asymptotics

LOO \approx WAIC only if

$$p(\tilde{y}|x_i, D_{-i}, M_k) \approx p(\tilde{y}|x_i, D, M_k)$$
Let’s examine individual terms of LOO and WAIC

\[
\text{LOO}_i = \log p(y_i|x_i, D_{-i}, M_k)
\]
\[
\text{WAIC}_i = \log p(y_i|x_i, D, M_k) - V_i/n
\]
Let’s examine individual terms of LOO and WAIC

\[\text{LOO}_i = \log p(y_i|x_i, D_{-i}, M_k) \]
\[\text{WAIC}_i = \log p(y_i|x_i, D, M_k) - V_i/n \]

Example: Outliers and Gaussian observation model (model misspecification)
Let’s examine terms of LOO and WAIC

$$LOO_i = \log p(y_i|x_i, D_{-i}, M_k)$$

$$WAIC_i = \log p(y_i|x_i, D, M_k) - V_i/n$$

Example: Outliers and Student’s t observation model (with EP)
- If length scale is small, WAIC differs from LOO
 - datapoints far from others almost independent
 (only little or no borrowing of information)
 - WAIC uses information from y_i, LOO does not

- Example: Gaussian noise and Gaussian model
- We made comparisons with 9 different data sets
 - brute-force LOO as baseline
 - classification, binomial, Poisson, Student’s-t
 - number of covariates 2–60, n=100–911
 - I show here results from 3 datasets, but other results are similar (or less interesting)

- Models
 - integration over latent values with Expectation propagation (EP) or Laplace (LA)
 - integration over the parameters with CCD
- WAIC is not a reliable replacement for LOO

Aki.Vehtari@aalto.fi Bayes-LOO and WAIC for GP
Commonly used DIC can be written as

\[\text{DIC} = PU_t - 2(PU_t - GU_t), \]

where

\[PU_t = \frac{1}{n} \sum_{i=1}^{n} \log p(y_i|x_i, \bar{\theta}_k, M_k) \]

is the plug-in training utility with point estimate \(\bar{\theta}_k \)

- DIC estimates plug-in generalization utility
- DIC works only for regular models (not for singular models)
- DIC is not Bayesian
• DIC is worse than WAIC
Approximations of Bayes LOO-CV

- k-fold-CV
- Mixed LOO
- Importance sampling LOO
- EP-LOO
- Laplace-LOO
For Gaussian process the LOO-CV density

\[p(y_i|x_i, D_{-i}, \theta, M) = \int p(y_i|f_i, \theta, M)p(f_i|x_i, D_{-i}, \theta, M) df_i \]

conditioned on the hyperparameters can be either
- computed analytically for Gaussian case
- approximated with EP or Laplace approximation
If the hyperparameter posterior is not sensitive to leaving one data point out

\[p(y_i | x_i, D_{-i}, M) = \int p(y_i | x_i, D_{-i}, \theta, M) p(\theta | D_{-i}, M) d\theta \approx \int p(y_i | x_i, D_{-i}, \theta, M) p(\theta | D, M) d\theta \]

we can use the full posterior for hyperparameters
LOO posterior for hyperparameters can be approximated using importance sampling (Gelfand et al, 1992)

- for GP weights are inversely proportional to conditional LOO densities

\[
p(\theta^t | D_{-i}, M) \propto \frac{1}{p(y_i | x_i, \theta^t, D_{-i}, M)} = w_{(\setminus i),t}
\]
LOO posterior for hyperparameters can be approximated using importance sampling (Gelfand et al, 1992)
- for GP weights are inversely proportional to conditional LOO densities

\[
\frac{p(\theta^t | D_{-i}, M)}{p(\theta^t | D, M)} \propto \frac{1}{p(y_i | x_i, \theta^t, D_{-i}, M)} = w(\backslash i, t)
\]

For these datasets there was not much difference between mixed LOO and IS-LOO
• With Gaussian observation model, exact LOO can be computed quickly analytically (Sundararajan & Keerthi, 2001)
• Opper & Winther (2000) showed using linear response theory that cavity distributions can be used to approximate LOO distributions
 - EP-LOO is obtained as free byproduct of EP
Opper & Winther (2000) showed using linear response theory that cavity distributions can be used to approximate LOO distributions.

- EP-LOO is obtained as a free byproduct of EP.
Held et al. (2010)

\[p(y_i | x_i, D_{-i}, \theta, M) = \frac{1}{\int \frac{p(f_i | D, \theta, M)}{p(y_i | f_i, \theta, M)} df_i} \]
Held et al (2010)

\[
p(y_i | x_i, D_{-i}, \theta, M) = \frac{1}{\int p(f_i | D, \theta, M) p(y_i | f_i, \theta, M) df_i}
\]
Held et al (2010)

\[p(y_i | x_i, D_{-i}, \theta, M) = \frac{1}{\int \frac{p(f_i | D, \theta, M)}{p(y_i | f_i, \theta, M)} df_i} \]

Zoomed to corner, we see that this works for easy predictions.
• New: linear response style for Laplace approximation

\[E[f_i|D_{-i}, \theta] = E[f_i|D, \theta] - \text{Var}[f_i|D_{-i}, \theta]g_i \]

\[\text{Var}[f_i|D_{-i}, \theta] = \left[(K + \Lambda)^{-1} \right]_{ii}^{-1} - \Lambda_{ii} \]

where \(K \) is prior covariance and \(g \) and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \) contain first and second derivatives of the likelihood
- obtained as free byproduct of Laplace approximation
LA-LOO Linear response -style

- New: linear response style for Laplace approximation

\[
E[f_i|D_{-i}, \theta] = E[f_i|D, \theta] - \text{Var}[f_i|D_{-i}, \theta]g_i
\]

\[
\text{Var}[f_i|D_{-i}, \theta] = \left[(K + \Lambda)^{-1}\right]_{ii}^{-1} - \Lambda_{ii}
\]

where \(K \) is prior covariance and \(g \) and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \) contain first and second derivatives of the likelihood - obtained as free byproduct of Laplace approximation
Conclusions

• Don’t use DIC or WAIC
• New linear response style Laplace-LOO
• If posterior samples for hyperparameters
 - IS for hypers, EP-LOO or LA-LRS-LOO for latents
 - if IS weights bad → k-fold-CV
• If optimized hyperparameters
 - EP-LOO or LA-LRS-LOO for latents
 - if in doubt → k-fold-CV

Code available in free **GPstuff** toolbox (just Google it)
In the next episode:

- WAIC might be useful for fixed x and no outliers
- Don’t use LOO, WAIC, or DIC for model selection if there is a large number of models (e.g. in covariate selection)
 - because they have relatively large variance
 - because they are negatively correlated with BU_g