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Abstrat� We demonstrate the advantages of using

Bayesian neural networks in regression, inverse and

lassi�ation problems, whih are ommon in indus-

trial appliations. The Bayesian approah provides

onsistent way to do inferene by ombining the evi-

dene from data to prior knowledge from the problem.

A pratial problem with neural networks is to selet

the orret omplexity for the model, i.e., the right

number of hidden units or orret regularization pa-

rameters. The Bayesian approah o�ers e�ient tools

for avoiding over�tting even with very omplex mod-

els, and failitates estimation of the on�dene inter-

vals of the results. In this ontribution we review the

Bayesian methods for neural networks and present om-

parison results from ase studies in predition of the

quality properties of onrete (regression), eletrial

impedane tomography (inverse problem) and forest

sene analysis (lassi�ation). The Bayesian networks

provided onsistently better results than other meth-

ods.

I. Introdution

In lassi�ation and non-linear funtion approxima-

tion neural networks have beome very popular in re-

ent years. With neural networks the main di�ulty

is in ontrolling the omplexity of the model. Another

problem of standard neural network models is the lak

of tools for analyzing the results (on�dene intervals,

like 10 % and 90 % quantiles, et.).

The Bayesian approah provides onsistent way to

do inferene by ombining the evidene from data to

prior knowledge from the problem. Bayesian methods

use probability to quantify unertainty in inferenes

and the result of Bayesian learning is a probability

distribution expressing our beliefs regarding how likely

the di�erent preditions are. Preditions are made by

integrating over the posterior distribution. In ase of

insu�ient data the prior dominates the solution, and

the e�et of the prior diminishes with inreased evi-

dene from the data.

For neural networks, MaKay introdued Bayesian

approah [1℄ based on Gaussian approximation. Neal

has introdued hybrid Monte Carlo method [2℄ that fa-

ilitates Bayesian learning for neural networks with no

ompromising approximations. The main advantages

of Bayesian neural networks are:

• Automati omplexity ontrol: Bayesian inferene

tehniques allow the values of regularization oe�-

ients to be seleted using only the training data,

without the need to use separate training and vali-

dation data.

• Possibility to use prior information and hierarhial

models for the hyperparameters.

• Preditive distributions for outputs.

In this ontribution we demonstrate the advantages

of Bayesian neural networks in three ase problems.

First we brie�y reviewMulti Layer Pereptron network

in setion II and in setion III we give a review of the

Bayesian methods for neural networks. In setion IV

we present results using Bayesian neural networks in

a regression problem for prediting the quality prop-

erties of onrete. In setion V we present results us-

ing Bayesian neural networks to solve inverse problem

in image reonstrution and void fration estimation

in eletrial impedane tomography. Results ompar-

ing Bayesian neural networks and other lassi�ation

methods for lassi�ation of objets in forest senes

are presented in setion VI.

II. Multi Layer Pereptron

In this setion we brie�y review Multi Layer Per-

eptron (MLP) neural network. See [3℄ for thorough

introdution to MLPs. We onentrate here to one

hidden layer MLP networks with hyperboli tangent

(tanh) ativation funtion, but Bayesian methods de-

sribed an be used for other types of neural networks

too. Basi MLP network model with k outputs is

fk(x,w) = wk0 +

m
∑

j=1

wkj tanh

(

wj0 +

d
∑

i=1

wjixi

)

,

(1)

where x is a d-dimensional input vetor, w denotes

weights and indies i and j orrespond to hidden and

output units, respetively.

MLP is often onsidered as a generi semiparametri

model whih means that the e�etive number of pa-

rameters may be less than the number of available pa-

rameters. E�etive number of parameters determines

the omplexity of the model. For small weights the

network mapping is almost linear and has low e�etive

omplexity, sine the entral region of sigmoidal ati-

vation funtion an be approximated by linear trans-

formation. Traditionally omplexity of MLP has been

ontrolled with early stopping or weight deay [3℄.

In early stopping weights are initialized to very small

values. Part of the training data is used to train the

MLP and the other part is used to monitor the val-

idation error. Iterative optimization algorithms used

for minimizing the training error gradually take pa-

rameters in use. Training is stopped when the valida-

tion error begins to inrease. Sine training is stopped

before a minimum of the training error, the e�etive

number of parameters remains less than the number

of available parameters.

The basi early stopping is rather ine�ient, as it is

very sensitive to the initial onditions of the network



and only part of the available data is used to train the

model. These limitations an easily be alleviated by

using a ommittee of early stopping networks, with dif-

ferent partitioning of the data to training and stopping

sets for eah network. When used with aution MLP

early stopping ommittee is good baseline method for

neural networks.

In weight deay penalizing term is added to the error

funtion. Using sum of squares of weights the weights

are enouraged to be small. In pratie eah layer in

an MLP should have di�erent regularization parame-

ter [3℄, giving the penalty term

α1

∑

j,i

w2
ji + α2

∑

j,k

w2
kj . (2)

Problem is how to selet good values for αi. Tradition-

ally this has been done with ross validation (CV).

Sine CV gives noisy estimate for error, it does not

guarantee that good values for αi an be found. Also

it beomes easily omputationally prohibitive as om-

putational expenses grow exponentially with number

of parameters to be seleted.

III. Bayesian Learning for MLP

Bayesian methods use probability to quantify uner-

tainty in inferenes and the result of Bayesian learn-

ing is a probability distribution expressing our be-

liefs regarding how likely the di�erent preditions are.

Bayesian paradigm o�ers onsistent way to do infer-

ene using models with even very large number of

parameters. See, e.g., [4℄ for good introdution to

Bayesian methods.

A. Bayesian Learning

Consider a regression or lassi�ation problem in-

volving the predition of a noisy vetor y of target

variables given the value of a vetor x of input vari-

ables.

The proess of Bayesian learning is started by de�n-

ing a model, M, and prior distribution p(θ) for

the model parameters. Prior distribution expresses

our initial beliefs about parameter values, before any

data has observed. After observing new data D =
{(x(1),y(1)), . . . , (x(n),y(n))}, prior distribution is up-
dated to the posterior distribution using Bayes' rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ L(θ|D)p(θ), (3)

where the likelihood funtion L(θ|D) gives the proba-
bility of the observed data as funtion of the unknown

model parameters.

To predit the new output y
(n+1)

for new input

x
(n+1)

, preditive distribution is obtained by integrat-

ing the preditions of the model with respet to the

posterior distribution of the model parameters

p(y(n+1)|D) =

∫

p(y(n+1)|x(n+1), θ)p(θ|D)dθ. (4)

This is same as taking the average predition of all the

models weighted by their goodness.

Note that preditive distribution for y
(n+1)

is im-

pliitly onditioned on hypotheses that hold through-

out and to be more expliit notation as the following

might be used

p(y(n+1)|D, H) =

∫

p(y(n+1)|x(n+1), θ, H)p(θ|D, H)dθ,

(5)

where H refers to the set of hypotheses or assumptions

used to de�ne the model.

B. Models

Statistial model is de�ned with the likelihood fun-

tion, whih in ase of independent and exhangeable

data points is given by

L(θ|D) =

n
∏

i=1

p(y(i)|x(i), θ), (6)

where n is the number of data points.

In the likelihood equation the term p(y(i)|x(i), θ)
depends on our problem. In regression problems, it

is generally assumed that the distribution of target

data an be desribed by a deterministi funtion of

inputs, orrupted by additive Gaussian noise of a on-

stant variane. Probability density for a target yj is

then

p(yj |x,w, σ) =
1√

2πσj

exp

(

− 1

2σ2
j

[yj − fj(x,w)]2

)

,

(7)

where σ2
j is the noise variane for the target. See [2℄ for

per-ase normal noise variane model. For a two lass

lassi�ation (logisti regression) model, the probabil-

ity that a binary-valued target, yj , has the value 1 is

p(yj = 1|x,w) = [1 + exp(−fj(x,w))]−1
(8)

and for many lass lassi�ation (softmax) model, the

probability that a lass target, y, has value j is

p(y = j|x,w) =
exp(fj(x,w))

∑

k exp(fk(x,w))
. (9)

In (7), (8) and (9) funtion fj(x,w) is in this ase

an MLP network. Traditionally in many methods one

of the problems has been to �nd a good topology for

the MLP. In Bayesian approah we ould use in�nite

number of hidden units [2℄. We do not need to restrit

the size of the MLP based on the size of the training

set, but in pratie, we will have to use �nite number

of hidden units due to omputational limits. MCMC

methods (setion III-E) produe the orret answer

eventually, but it may sometimes take unreasonable

amount of time[2℄.



C. Priors

Next, we have to de�ne the prior information about

our model parameters, before any data has been seen.

Usual prior is that the model has some unknown om-

plexity but the model is not onstant or extremely

�exible. To express this prior belief we set hierarhi-

al model spei�ation.

Parameters w de�ne the model f(x,w). As dis-

ussed in setion II, omplexity of the MLP network

an be ontrolled by ontrolling the size of the weights

w. Corresponding prior to weight deay is to use

Gaussian prior distribution for weights w given hy-

perparameter α

p(w|α) = (2π)−m/2αm/2 exp(−α

m
∑

i=1

w2
i /2). (10)

This prior states that smaller weights are more proba-

ble, but how muh more is determined by the value of

hyperparameter α. Sine we do not know the orret

value for hyperparameter α, we set a vague hyperprior
p(α) expressing our belief that omplexity ontrolled

by α is unknown but the model is not onstant or ex-

tremely �exible. A onvenient form for this hyperprior

is vague Gamma distribution with mean µ and shape

parameter a

p(α) ∼ Gamma(µ, a) ∝ αa/2−1 exp(−αa/2µ). (11)

In order to have prior for weights whih is invariant un-

der the linear transformations of data, separate priors

(eah having its own hyperparameters αi) for di�erent

weight groups in eah layer of a MLP are used.

In MLP networks, the weights from less important

inputs are typially smaller than weights from more

important inputs

1

. Prior belief that some inputs are

likely to be more relevant than others an be imple-

mented by using di�erent priors for weight groups from

eah input, and hierarhial hyperpriors for these pri-

ors. The posteriors for hyperparameters should then

adjust aording to relevane of the inputs. This prior

is alled Automati Relevane Determination (ARD)

[5, 2℄.

For regression models we need prior for σ in (7),

whih is often spei�ed in terms of orresponding pre-

ision, τ = σ−2
. As for α, our prior information is

usually quite vague, stating that σ is not zero or ex-

tremely large. This prior an be expressed with vague

Gamma-distribution with mean µ and shape parame-

ter a

p(τ) ∼ Gamma(µ, a) ∝ τa/2−1 exp(−τa/2µ). (12)

D. Predition

After de�ning the model and prior information, we

ombine the evidene from the data to get the poste-

1
Note that in the non-linear network the e�et of an input may

be small even if the weights from it are large and vie verse, but

in general the size of the weights roughly re�ets the relevane

of the input.

rior distribution for the parameters

p(w, α, τ |D) ∝ L(w, α, τ |D)p(w, α, τ). (13)

Preditive distribution for new data is then obtained

by integrating over this posterior distribution

p(y(n+1)|x(n+1), D) =
∫

p(y(n+1)|x(n+1),w, α, τ)p(w, α, τ |D) dwατ. (14)

We an also evaluate expetations of various fun-

tions with respet to the posterior distribution for pa-

rameters. For example in regression we may evaluate

the expetation for a omponent of y
(n+1)

ŷ
(n+1)
k =

∫

fk(x(n+1),w)p(w, α, τ |D) dwατ, (15)

whih orresponds to the best guess with squared error

loss.

The posterior distribution for the parameters

p(w, α, τ |D) is typially very omplex, with many

modes. Evaluating the integral of (15) is therefore

a di�ult task.

The integral an be approximated with Gaussian ap-

proximations to modes. Then preditive distribution

is approximated by the orresponding integral with re-

spet to the Gaussian [1, 6℄. Or we an use Monte

Carlo methods, desribed next, to numerially approx-

imate the integral.

E. Markov Chain Monte Carlo method

Neal has introdued implementation of Bayesian

learning for neural networks in whih the di�ult in-

tegration of (15) is performed using Markov Chain

Monte Carlo (MCMC) methods [2℄. In [7℄ there is a

good introdution to basi MCMC methods and many

appliations in statistial data analysis.

MCMC methods make no assumptions about the

form of the posterior distribution. They may in some

irumstanes require a very long time to onverge to

the desired distribution.

The integral of (15) is the expetation of funtion

fk(x(n+1),w) with respet to the posterior distribu-

tion of the parameters. This and other expetations

an be approximated by Monte Carlo method, using a

sample of values w
(t)

drawn from the posterior distri-

bution of parameters

ŷ
(n+1)
k ≈ 1

N

N
∑

t=1

fk(x(n+1),w(t)). (16)

Note that samples from the posterior distribution

are drawn during the learning phase and preditions

for new data an be alulated quikly using the same

samples and (16).

In the MCMC, samples are generated using a

Markov hain that has the desired posterior distribu-

tion as its stationary distribution. Di�ult part is to



reate Markov hain whih onverges rapidly and in

whih states visited after onvergene are not highly

dependent.

Neal used the hybrid Monte Carlo (HMC) algorithm

[8℄ for parameters and Gibbs sampling for hyperpa-

rameters. HMC is an elaborate Monte Carlo method,

whih makes e�ient use of gradient information to

redue random walk behavior. The gradient indiates

in whih diretion one should go to �nd states with

high probability. Use of Gibbs sampling for hyperpa-

rameters helps to minimize the amount of tuning that

is needed to obtain good performane in HMC.

When the amount of data inreases, the evidene

from data auses the probability mass to onentrate

to the smaller area and we need less samples from the

posterior distribution. Also less samples are needed to

evaluate the mean of the preditive distribution than

the tail-quantiles like, 10% and 90% quantiles. So de-

pending on the problem 10�20 samples may be enough

(given that samples are not too highly dependent).

In our examples of Bayesian learning for neural net-

works with MCMC we have used Flexible Bayesian

Modeling (FBM), software

2

, whih implements the

methods desribed in [2℄.

IV. Case I: Regression in Conrete Quality

Estimation

The goal of the projet was to develop a model

for prediting the quality properties of onrete.

The quality variables ontained, e.g., ompression

strengths and densities for 1, 28 and 91 days after ast-

ing, bleeding (water extration) and spread and slump

that measure softness of the fresh onrete. These

quality measurements depend on the properties of the

stone material (natural or rushed, size and shape dis-

tributions of the grains, mineralogial omposition),

additives, and amount of ement and water. In the

study we had 7 target variables and 19 explanatory

variables.

Colleting the samples for statistial modeling is

rather expensive in this appliation, as eah sample re-

quires preparation of the sand mixture, asting the test

piees and waiting for 91 days for the �nal tests. Thus

available samples must be used as e�iently as possi-

ble, whih makes Bayesian tehniques tempting alter-

native, as they allow �ne balane of prior assumptions

and evidene from samples. In the study we had 149

samples designed to over the pratial range of the

variables, olleted by a onrete manufaturer om-

pany.

MLP networks ontaining 6 hidden units were used.

Di�erent MLP models tested were:

MLP ESC : Early stopping ommittee of 20 MLP net-

works, with di�erent division of data to training and

stopping sets for eah member. The networks were

initialized to near zero weights to guarantee that the

mapping is smooth in the beginning.

2
<URL:http://www.s.toronto.edu/~radford/fbm.

software.html>

TABLE I

Ten fold ross-validation error estimates for

prediting the slump of onrete.

Method Root mean square error

MLP ESC 37

Bayes MLP 34

Bayes MLP +ARD 27

Bayes MLP : Bayesian neural network with FBM-

software, using vague priors and MCMC-run spei�-

ations similar as used in [2℄. 20 networks from the

posterior distribution of network parameters were

used.

Bayes MLP +ARD: Similar Bayesian neural network

to the previous, but using also ARD prior.

Error estimates for prediting the slump are olleted

in Table I. Note that use of ARD prior gives muh

better results.

V. Case II: Inverse Problem in Eletrial

Impedane Tomography

In this setion we report results on using Bayesian

neural networks for solving the ill-posed inverse prob-

lem in eletrial impedane tomography, EIT. The full

report of the proposed approah is presented in [9℄.

The aim in EIT is to reover the internal struture

of an objet from surfae measurements. Number of

eletrodes are attahed to the surfae of the objet and

urrent patterns are injeted from through the ele-

trodes and the resulting potentials are measured. The

inverse problem in EIT, estimating the ondutivity

distribution from the surfae potentials, is known to

be severely ill-posed, thus some regularization meth-

ods must be used to obtain feasible results [10℄.

Fig. 1 shows a sample bubble and resulting equipo-

tential urves. The potential signals from whih the

image is to be reovered are shown in Fig. 2.

In [9℄ we proposed a novel feedforward solution for

the reonstrution problem.The approah is based on

transformation of both input and output data by prin-

ipal omponent projetion and appliation of the neu-

ral network in this lower dimensional eigenspae.

The reonstrution was based on 20 prinipal om-

ponents of the 128 dimensional potential signal and 60

eigenimages with resolution 41× 41 pixels. The train-

ing data onsisted of 500 simulated bubble formations

with one to ten overlapping irular bubbles in eah

image. To ompute the reonstrutions MLP networks

ontaining 30 hidden units were used. Models tested

were MLP ESC and Bayes MLP (see setion IV).

Fig. 3 shows examples of the image reonstrution

results. Table II shows the quality of the image re-

onstrutions with models, measured by error in the

void fration and perentage of erroneous pixels in the

segmentation, over the test set.

An important goal in the studied proess tomog-

raphy appliation was to estimate the void fration,

whih is the proportion of gas and liquid in the image.

With the proposed approah suh goal variables an

be estimated diretly without expliit reonstrution



Fig. 3. Example of image reonstrutions with MLP ESC (upper row) and the Bayesian MLP (lower row)

Fig. 1. Example of the EIT measurement. The simulated bub-

ble formation is bounded by the irles. The urrent is

injeted from the eletrode with the lightest olor and the

opposite eletrode is grounded. The gray level and the on-

tour urves show the resulting potential �eld.
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Fig. 2. Relative hanges in potentials ompared to homogenous

bakground. The eight urves orrespond to injetions from

eight di�erent eletrodes.

of the image. The bottom row in Table II shows the

relative absolute error in estimating the void fration

diretly from the projetions of the potential signals.

With Bayesian methods we an easily alulate on-

�dene intervals for outputs. Fig. 4 shows the satter

plot of the void fration versus the estimate by the

Bayesian neural network. The 10% and 90% quantiles

are omputed diretly from the posterior distribution

of the model output.

See [9℄ for results for e�et of additive Gaussian

noise to the performane of the method.

VI. Case III: Forest Sene Analysis

In this setion we report results of using Bayesian

neural networks for lassi�ation of forest senes, to a-

TABLE II

Errors in reonstruting the bubble shape and

estimating the void fration from the reonstruted

images. See text for explanation of the models.

Method Classi�a-

tion error

%

Relative

error in VF

%

MLP ESC 6.7 8.7

Bayes MLP 5.9 8.1

Bayes MLP, diret VF 3.4
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Fig. 4. Satterplot of the void fration estimate with 10% and

90% quantiles.

urately reognize and loate the trees from any bak-

ground.

Forest sene lassi�ation task is demanding due to

the texture rihness of the trees, olusions of the for-

est sene objets and diverse lighting onditions under

operation. This makes it di�ult to determine whih

are optimal image features for the lassi�ation. A

natural way to proeed is to extrat many di�erent

types of potentially suitable features.

In [11℄ we extrated total of 84 statistial and Gabor

features over di�erent sized windows at eah spetral

hannel. Due to great number of features used, many

lassi�er methods would su�er from the urse of di-

mensionality, but Bayesian neural networks manage

well in high dimensional problems.

The image data for teahing and testing of the lassi-

�ers was olleted by using an ordinary digital amera



KNN CART MLP ESC Bayes−MLP Bayes−MLP +ARDForest scene

Fig. 5. Examples of lassi�ed forest sene. See text for explanation of the di�erent models.

TABLE III

CV error estimates for forest sene lassifiation.

See text for explanation of the different models.

Error%

KNN LOOCV 20

CART 30

MLP ESC 13

Bayes MLP 12

Bayes MLP +ARD 11

in varying weather onditions. Ideal weather ondi-

tions were not searhed, as the aim was to test the

viability and the robustness of the methods. Total of

48 images were taken. The labeling of the image data

was done by hand via identifying many types of tree

and bakground image bloks with di�erent textures

and lighting onditions. In this study only pines were

onsidered.

Addition to 20 hidden unit MLP models MLP ESC,

Bayes MLP and Bayes MLP +ARD (see setion IV )

the models tested were:

KNN LOOCV : K-nearest-neighbor. K is hosen by

leave-one-out ross-validation on the training set.

CART : Classi�ation And Regression Tree [12℄.

Eight folded ross-validation (CV) error estimates

are olleted in Table III. Fig. 5 shows example image

lassi�ed with di�erent methods.

VII. Summary disussion

Above ase problems in industrial appliations il-

lustrate the advantages of using Bayesian neural net-

works. The approah ontains automati omplexity

ontrol, without the need to use separate training and

validation data. We an use large number of inputs.

It is possible to use prior information, like ARD. The

Bayesian approah gives the preditive distributions

for outputs, whih an be used to estimate reliability

of the preditions.
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