
Bayesian Neural Networks for Industrial Appli
ations

Aki Vehtari and Jouko Lampinen

Laboratory of Computational Engineering, Helsinki University of Te
hnology

P.O.Box 9400, FIN-02015 HUT, FINLAND

SMCia/99

1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Appli
ations

Kuusamo, Finland, June 16�18, 1999

Abstra
t� We demonstrate the advantages of using

Bayesian neural networks in regression, inverse and


lassi�
ation problems, whi
h are 
ommon in indus-

trial appli
ations. The Bayesian approa
h provides


onsistent way to do inferen
e by 
ombining the evi-

den
e from data to prior knowledge from the problem.

A pra
ti
al problem with neural networks is to sele
t

the 
orre
t 
omplexity for the model, i.e., the right

number of hidden units or 
orre
t regularization pa-

rameters. The Bayesian approa
h o�ers e�
ient tools

for avoiding over�tting even with very 
omplex mod-

els, and fa
ilitates estimation of the 
on�den
e inter-

vals of the results. In this 
ontribution we review the

Bayesian methods for neural networks and present 
om-

parison results from 
ase studies in predi
tion of the

quality properties of 
on
rete (regression), ele
tri
al

impedan
e tomography (inverse problem) and forest

s
ene analysis (
lassi�
ation). The Bayesian networks

provided 
onsistently better results than other meth-

ods.

I. Introdu
tion

In 
lassi�
ation and non-linear fun
tion approxima-

tion neural networks have be
ome very popular in re-


ent years. With neural networks the main di�
ulty

is in 
ontrolling the 
omplexity of the model. Another

problem of standard neural network models is the la
k

of tools for analyzing the results (
on�den
e intervals,

like 10 % and 90 % quantiles, et
.).

The Bayesian approa
h provides 
onsistent way to

do inferen
e by 
ombining the eviden
e from data to

prior knowledge from the problem. Bayesian methods

use probability to quantify un
ertainty in inferen
es

and the result of Bayesian learning is a probability

distribution expressing our beliefs regarding how likely

the di�erent predi
tions are. Predi
tions are made by

integrating over the posterior distribution. In 
ase of

insu�
ient data the prior dominates the solution, and

the e�e
t of the prior diminishes with in
reased evi-

den
e from the data.

For neural networks, Ma
Kay introdu
ed Bayesian

approa
h [1℄ based on Gaussian approximation. Neal

has introdu
ed hybrid Monte Carlo method [2℄ that fa-


ilitates Bayesian learning for neural networks with no


ompromising approximations. The main advantages

of Bayesian neural networks are:

• Automati
 
omplexity 
ontrol: Bayesian inferen
e

te
hniques allow the values of regularization 
oe�-


ients to be sele
ted using only the training data,

without the need to use separate training and vali-

dation data.

• Possibility to use prior information and hierar
hi
al

models for the hyperparameters.

• Predi
tive distributions for outputs.

In this 
ontribution we demonstrate the advantages

of Bayesian neural networks in three 
ase problems.

First we brie�y reviewMulti Layer Per
eptron network

in se
tion II and in se
tion III we give a review of the

Bayesian methods for neural networks. In se
tion IV

we present results using Bayesian neural networks in

a regression problem for predi
ting the quality prop-

erties of 
on
rete. In se
tion V we present results us-

ing Bayesian neural networks to solve inverse problem

in image re
onstru
tion and void fra
tion estimation

in ele
tri
al impedan
e tomography. Results 
ompar-

ing Bayesian neural networks and other 
lassi�
ation

methods for 
lassi�
ation of obje
ts in forest s
enes

are presented in se
tion VI.

II. Multi Layer Per
eptron

In this se
tion we brie�y review Multi Layer Per-


eptron (MLP) neural network. See [3℄ for thorough

introdu
tion to MLPs. We 
on
entrate here to one

hidden layer MLP networks with hyperboli
 tangent

(tanh) a
tivation fun
tion, but Bayesian methods de-

s
ribed 
an be used for other types of neural networks

too. Basi
 MLP network model with k outputs is

fk(x,w) = wk0 +

m
∑

j=1

wkj tanh

(

wj0 +

d
∑

i=1

wjixi

)

,

(1)

where x is a d-dimensional input ve
tor, w denotes

weights and indi
es i and j 
orrespond to hidden and

output units, respe
tively.

MLP is often 
onsidered as a generi
 semiparametri


model whi
h means that the e�e
tive number of pa-

rameters may be less than the number of available pa-

rameters. E�e
tive number of parameters determines

the 
omplexity of the model. For small weights the

network mapping is almost linear and has low e�e
tive


omplexity, sin
e the 
entral region of sigmoidal a
ti-

vation fun
tion 
an be approximated by linear trans-

formation. Traditionally 
omplexity of MLP has been


ontrolled with early stopping or weight de
ay [3℄.

In early stopping weights are initialized to very small

values. Part of the training data is used to train the

MLP and the other part is used to monitor the val-

idation error. Iterative optimization algorithms used

for minimizing the training error gradually take pa-

rameters in use. Training is stopped when the valida-

tion error begins to in
rease. Sin
e training is stopped

before a minimum of the training error, the e�e
tive

number of parameters remains less than the number

of available parameters.

The basi
 early stopping is rather ine�
ient, as it is

very sensitive to the initial 
onditions of the network



and only part of the available data is used to train the

model. These limitations 
an easily be alleviated by

using a 
ommittee of early stopping networks, with dif-

ferent partitioning of the data to training and stopping

sets for ea
h network. When used with 
aution MLP

early stopping 
ommittee is good baseline method for

neural networks.

In weight de
ay penalizing term is added to the error

fun
tion. Using sum of squares of weights the weights

are en
ouraged to be small. In pra
ti
e ea
h layer in

an MLP should have di�erent regularization parame-

ter [3℄, giving the penalty term

α1

∑

j,i

w2
ji + α2

∑

j,k

w2
kj . (2)

Problem is how to sele
t good values for αi. Tradition-

ally this has been done with 
ross validation (CV).

Sin
e CV gives noisy estimate for error, it does not

guarantee that good values for αi 
an be found. Also

it be
omes easily 
omputationally prohibitive as 
om-

putational expenses grow exponentially with number

of parameters to be sele
ted.

III. Bayesian Learning for MLP

Bayesian methods use probability to quantify un
er-

tainty in inferen
es and the result of Bayesian learn-

ing is a probability distribution expressing our be-

liefs regarding how likely the di�erent predi
tions are.

Bayesian paradigm o�ers 
onsistent way to do infer-

en
e using models with even very large number of

parameters. See, e.g., [4℄ for good introdu
tion to

Bayesian methods.

A. Bayesian Learning

Consider a regression or 
lassi�
ation problem in-

volving the predi
tion of a noisy ve
tor y of target

variables given the value of a ve
tor x of input vari-

ables.

The pro
ess of Bayesian learning is started by de�n-

ing a model, M, and prior distribution p(θ) for

the model parameters. Prior distribution expresses

our initial beliefs about parameter values, before any

data has observed. After observing new data D =
{(x(1),y(1)), . . . , (x(n),y(n))}, prior distribution is up-
dated to the posterior distribution using Bayes' rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ L(θ|D)p(θ), (3)

where the likelihood fun
tion L(θ|D) gives the proba-
bility of the observed data as fun
tion of the unknown

model parameters.

To predi
t the new output y
(n+1)

for new input

x
(n+1)

, predi
tive distribution is obtained by integrat-

ing the predi
tions of the model with respe
t to the

posterior distribution of the model parameters

p(y(n+1)|D) =

∫

p(y(n+1)|x(n+1), θ)p(θ|D)dθ. (4)

This is same as taking the average predi
tion of all the

models weighted by their goodness.

Note that predi
tive distribution for y
(n+1)

is im-

pli
itly 
onditioned on hypotheses that hold through-

out and to be more expli
it notation as the following

might be used

p(y(n+1)|D, H) =

∫

p(y(n+1)|x(n+1), θ, H)p(θ|D, H)dθ,

(5)

where H refers to the set of hypotheses or assumptions

used to de�ne the model.

B. Models

Statisti
al model is de�ned with the likelihood fun
-

tion, whi
h in 
ase of independent and ex
hangeable

data points is given by

L(θ|D) =

n
∏

i=1

p(y(i)|x(i), θ), (6)

where n is the number of data points.

In the likelihood equation the term p(y(i)|x(i), θ)
depends on our problem. In regression problems, it

is generally assumed that the distribution of target

data 
an be des
ribed by a deterministi
 fun
tion of

inputs, 
orrupted by additive Gaussian noise of a 
on-

stant varian
e. Probability density for a target yj is

then

p(yj |x,w, σ) =
1√

2πσj

exp

(

− 1

2σ2
j

[yj − fj(x,w)]2

)

,

(7)

where σ2
j is the noise varian
e for the target. See [2℄ for

per-
ase normal noise varian
e model. For a two 
lass


lassi�
ation (logisti
 regression) model, the probabil-

ity that a binary-valued target, yj , has the value 1 is

p(yj = 1|x,w) = [1 + exp(−fj(x,w))]−1
(8)

and for many 
lass 
lassi�
ation (softmax) model, the

probability that a 
lass target, y, has value j is

p(y = j|x,w) =
exp(fj(x,w))

∑

k exp(fk(x,w))
. (9)

In (7), (8) and (9) fun
tion fj(x,w) is in this 
ase

an MLP network. Traditionally in many methods one

of the problems has been to �nd a good topology for

the MLP. In Bayesian approa
h we 
ould use in�nite

number of hidden units [2℄. We do not need to restri
t

the size of the MLP based on the size of the training

set, but in pra
ti
e, we will have to use �nite number

of hidden units due to 
omputational limits. MCMC

methods (se
tion III-E) produ
e the 
orre
t answer

eventually, but it may sometimes take unreasonable

amount of time[2℄.



C. Priors

Next, we have to de�ne the prior information about

our model parameters, before any data has been seen.

Usual prior is that the model has some unknown 
om-

plexity but the model is not 
onstant or extremely

�exible. To express this prior belief we set hierar
hi-


al model spe
i�
ation.

Parameters w de�ne the model f(x,w). As dis-


ussed in se
tion II, 
omplexity of the MLP network


an be 
ontrolled by 
ontrolling the size of the weights

w. Corresponding prior to weight de
ay is to use

Gaussian prior distribution for weights w given hy-

perparameter α

p(w|α) = (2π)−m/2αm/2 exp(−α

m
∑

i=1

w2
i /2). (10)

This prior states that smaller weights are more proba-

ble, but how mu
h more is determined by the value of

hyperparameter α. Sin
e we do not know the 
orre
t

value for hyperparameter α, we set a vague hyperprior
p(α) expressing our belief that 
omplexity 
ontrolled

by α is unknown but the model is not 
onstant or ex-

tremely �exible. A 
onvenient form for this hyperprior

is vague Gamma distribution with mean µ and shape

parameter a

p(α) ∼ Gamma(µ, a) ∝ αa/2−1 exp(−αa/2µ). (11)

In order to have prior for weights whi
h is invariant un-

der the linear transformations of data, separate priors

(ea
h having its own hyperparameters αi) for di�erent

weight groups in ea
h layer of a MLP are used.

In MLP networks, the weights from less important

inputs are typi
ally smaller than weights from more

important inputs

1

. Prior belief that some inputs are

likely to be more relevant than others 
an be imple-

mented by using di�erent priors for weight groups from

ea
h input, and hierar
hi
al hyperpriors for these pri-

ors. The posteriors for hyperparameters should then

adjust a

ording to relevan
e of the inputs. This prior

is 
alled Automati
 Relevan
e Determination (ARD)

[5, 2℄.

For regression models we need prior for σ in (7),

whi
h is often spe
i�ed in terms of 
orresponding pre-


ision, τ = σ−2
. As for α, our prior information is

usually quite vague, stating that σ is not zero or ex-

tremely large. This prior 
an be expressed with vague

Gamma-distribution with mean µ and shape parame-

ter a

p(τ) ∼ Gamma(µ, a) ∝ τa/2−1 exp(−τa/2µ). (12)

D. Predi
tion

After de�ning the model and prior information, we


ombine the eviden
e from the data to get the poste-

1
Note that in the non-linear network the e�e
t of an input may

be small even if the weights from it are large and vi
e verse, but

in general the size of the weights roughly re�e
ts the relevan
e

of the input.

rior distribution for the parameters

p(w, α, τ |D) ∝ L(w, α, τ |D)p(w, α, τ). (13)

Predi
tive distribution for new data is then obtained

by integrating over this posterior distribution

p(y(n+1)|x(n+1), D) =
∫

p(y(n+1)|x(n+1),w, α, τ)p(w, α, τ |D) dwατ. (14)

We 
an also evaluate expe
tations of various fun
-

tions with respe
t to the posterior distribution for pa-

rameters. For example in regression we may evaluate

the expe
tation for a 
omponent of y
(n+1)

ŷ
(n+1)
k =

∫

fk(x(n+1),w)p(w, α, τ |D) dwατ, (15)

whi
h 
orresponds to the best guess with squared error

loss.

The posterior distribution for the parameters

p(w, α, τ |D) is typi
ally very 
omplex, with many

modes. Evaluating the integral of (15) is therefore

a di�
ult task.

The integral 
an be approximated with Gaussian ap-

proximations to modes. Then predi
tive distribution

is approximated by the 
orresponding integral with re-

spe
t to the Gaussian [1, 6℄. Or we 
an use Monte

Carlo methods, des
ribed next, to numeri
ally approx-

imate the integral.

E. Markov Chain Monte Carlo method

Neal has introdu
ed implementation of Bayesian

learning for neural networks in whi
h the di�
ult in-

tegration of (15) is performed using Markov Chain

Monte Carlo (MCMC) methods [2℄. In [7℄ there is a

good introdu
tion to basi
 MCMC methods and many

appli
ations in statisti
al data analysis.

MCMC methods make no assumptions about the

form of the posterior distribution. They may in some


ir
umstan
es require a very long time to 
onverge to

the desired distribution.

The integral of (15) is the expe
tation of fun
tion

fk(x(n+1),w) with respe
t to the posterior distribu-

tion of the parameters. This and other expe
tations


an be approximated by Monte Carlo method, using a

sample of values w
(t)

drawn from the posterior distri-

bution of parameters

ŷ
(n+1)
k ≈ 1

N

N
∑

t=1

fk(x(n+1),w(t)). (16)

Note that samples from the posterior distribution

are drawn during the learning phase and predi
tions

for new data 
an be 
al
ulated qui
kly using the same

samples and (16).

In the MCMC, samples are generated using a

Markov 
hain that has the desired posterior distribu-

tion as its stationary distribution. Di�
ult part is to




reate Markov 
hain whi
h 
onverges rapidly and in

whi
h states visited after 
onvergen
e are not highly

dependent.

Neal used the hybrid Monte Carlo (HMC) algorithm

[8℄ for parameters and Gibbs sampling for hyperpa-

rameters. HMC is an elaborate Monte Carlo method,

whi
h makes e�
ient use of gradient information to

redu
e random walk behavior. The gradient indi
ates

in whi
h dire
tion one should go to �nd states with

high probability. Use of Gibbs sampling for hyperpa-

rameters helps to minimize the amount of tuning that

is needed to obtain good performan
e in HMC.

When the amount of data in
reases, the eviden
e

from data 
auses the probability mass to 
on
entrate

to the smaller area and we need less samples from the

posterior distribution. Also less samples are needed to

evaluate the mean of the predi
tive distribution than

the tail-quantiles like, 10% and 90% quantiles. So de-

pending on the problem 10�20 samples may be enough

(given that samples are not too highly dependent).

In our examples of Bayesian learning for neural net-

works with MCMC we have used Flexible Bayesian

Modeling (FBM), software

2

, whi
h implements the

methods des
ribed in [2℄.

IV. Case I: Regression in Con
rete Quality

Estimation

The goal of the proje
t was to develop a model

for predi
ting the quality properties of 
on
rete.

The quality variables 
ontained, e.g., 
ompression

strengths and densities for 1, 28 and 91 days after 
ast-

ing, bleeding (water extra
tion) and spread and slump

that measure softness of the fresh 
on
rete. These

quality measurements depend on the properties of the

stone material (natural or 
rushed, size and shape dis-

tributions of the grains, mineralogi
al 
omposition),

additives, and amount of 
ement and water. In the

study we had 7 target variables and 19 explanatory

variables.

Colle
ting the samples for statisti
al modeling is

rather expensive in this appli
ation, as ea
h sample re-

quires preparation of the sand mixture, 
asting the test

pie
es and waiting for 91 days for the �nal tests. Thus

available samples must be used as e�
iently as possi-

ble, whi
h makes Bayesian te
hniques tempting alter-

native, as they allow �ne balan
e of prior assumptions

and eviden
e from samples. In the study we had 149

samples designed to 
over the pra
ti
al range of the

variables, 
olle
ted by a 
on
rete manufa
turer 
om-

pany.

MLP networks 
ontaining 6 hidden units were used.

Di�erent MLP models tested were:

MLP ESC : Early stopping 
ommittee of 20 MLP net-

works, with di�erent division of data to training and

stopping sets for ea
h member. The networks were

initialized to near zero weights to guarantee that the

mapping is smooth in the beginning.

2
<URL:http://www.
s.toronto.edu/~radford/fbm.

software.html>

TABLE I

Ten fold 
ross-validation error estimates for

predi
ting the slump of 
on
rete.

Method Root mean square error

MLP ESC 37

Bayes MLP 34

Bayes MLP +ARD 27

Bayes MLP : Bayesian neural network with FBM-

software, using vague priors and MCMC-run spe
i�-


ations similar as used in [2℄. 20 networks from the

posterior distribution of network parameters were

used.

Bayes MLP +ARD: Similar Bayesian neural network

to the previous, but using also ARD prior.

Error estimates for predi
ting the slump are 
olle
ted

in Table I. Note that use of ARD prior gives mu
h

better results.

V. Case II: Inverse Problem in Ele
tri
al

Impedan
e Tomography

In this se
tion we report results on using Bayesian

neural networks for solving the ill-posed inverse prob-

lem in ele
tri
al impedan
e tomography, EIT. The full

report of the proposed approa
h is presented in [9℄.

The aim in EIT is to re
over the internal stru
ture

of an obje
t from surfa
e measurements. Number of

ele
trodes are atta
hed to the surfa
e of the obje
t and


urrent patterns are inje
ted from through the ele
-

trodes and the resulting potentials are measured. The

inverse problem in EIT, estimating the 
ondu
tivity

distribution from the surfa
e potentials, is known to

be severely ill-posed, thus some regularization meth-

ods must be used to obtain feasible results [10℄.

Fig. 1 shows a sample bubble and resulting equipo-

tential 
urves. The potential signals from whi
h the

image is to be re
overed are shown in Fig. 2.

In [9℄ we proposed a novel feedforward solution for

the re
onstru
tion problem.The approa
h is based on

transformation of both input and output data by prin-


ipal 
omponent proje
tion and appli
ation of the neu-

ral network in this lower dimensional eigenspa
e.

The re
onstru
tion was based on 20 prin
ipal 
om-

ponents of the 128 dimensional potential signal and 60

eigenimages with resolution 41× 41 pixels. The train-

ing data 
onsisted of 500 simulated bubble formations

with one to ten overlapping 
ir
ular bubbles in ea
h

image. To 
ompute the re
onstru
tions MLP networks


ontaining 30 hidden units were used. Models tested

were MLP ESC and Bayes MLP (see se
tion IV).

Fig. 3 shows examples of the image re
onstru
tion

results. Table II shows the quality of the image re-


onstru
tions with models, measured by error in the

void fra
tion and per
entage of erroneous pixels in the

segmentation, over the test set.

An important goal in the studied pro
ess tomog-

raphy appli
ation was to estimate the void fra
tion,

whi
h is the proportion of gas and liquid in the image.

With the proposed approa
h su
h goal variables 
an

be estimated dire
tly without expli
it re
onstru
tion



Fig. 3. Example of image re
onstru
tions with MLP ESC (upper row) and the Bayesian MLP (lower row)

Fig. 1. Example of the EIT measurement. The simulated bub-

ble formation is bounded by the 
ir
les. The 
urrent is

inje
ted from the ele
trode with the lightest 
olor and the

opposite ele
trode is grounded. The gray level and the 
on-

tour 
urves show the resulting potential �eld.
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Fig. 2. Relative 
hanges in potentials 
ompared to homogenous

ba
kground. The eight 
urves 
orrespond to inje
tions from

eight di�erent ele
trodes.

of the image. The bottom row in Table II shows the

relative absolute error in estimating the void fra
tion

dire
tly from the proje
tions of the potential signals.

With Bayesian methods we 
an easily 
al
ulate 
on-

�den
e intervals for outputs. Fig. 4 shows the s
atter

plot of the void fra
tion versus the estimate by the

Bayesian neural network. The 10% and 90% quantiles

are 
omputed dire
tly from the posterior distribution

of the model output.

See [9℄ for results for e�e
t of additive Gaussian

noise to the performan
e of the method.

VI. Case III: Forest S
ene Analysis

In this se
tion we report results of using Bayesian

neural networks for 
lassi�
ation of forest s
enes, to a
-

TABLE II

Errors in re
onstru
ting the bubble shape and

estimating the void fra
tion from the re
onstru
ted

images. See text for explanation of the models.

Method Classi�
a-

tion error

%

Relative

error in VF

%

MLP ESC 6.7 8.7

Bayes MLP 5.9 8.1

Bayes MLP, dire
t VF 3.4
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0.5

Void fraction, target

V
oi
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fr
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tio
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Fig. 4. S
atterplot of the void fra
tion estimate with 10% and

90% quantiles.


urately re
ognize and lo
ate the trees from any ba
k-

ground.

Forest s
ene 
lassi�
ation task is demanding due to

the texture ri
hness of the trees, o

lusions of the for-

est s
ene obje
ts and diverse lighting 
onditions under

operation. This makes it di�
ult to determine whi
h

are optimal image features for the 
lassi�
ation. A

natural way to pro
eed is to extra
t many di�erent

types of potentially suitable features.

In [11℄ we extra
ted total of 84 statisti
al and Gabor

features over di�erent sized windows at ea
h spe
tral


hannel. Due to great number of features used, many


lassi�er methods would su�er from the 
urse of di-

mensionality, but Bayesian neural networks manage

well in high dimensional problems.

The image data for tea
hing and testing of the 
lassi-

�ers was 
olle
ted by using an ordinary digital 
amera



KNN CART MLP ESC Bayes−MLP Bayes−MLP +ARDForest scene

Fig. 5. Examples of 
lassi�ed forest s
ene. See text for explanation of the di�erent models.

TABLE III

CV error estimates for forest s
ene 
lassifi
ation.

See text for explanation of the different models.

Error%

KNN LOOCV 20

CART 30

MLP ESC 13

Bayes MLP 12

Bayes MLP +ARD 11

in varying weather 
onditions. Ideal weather 
ondi-

tions were not sear
hed, as the aim was to test the

viability and the robustness of the methods. Total of

48 images were taken. The labeling of the image data

was done by hand via identifying many types of tree

and ba
kground image blo
ks with di�erent textures

and lighting 
onditions. In this study only pines were


onsidered.

Addition to 20 hidden unit MLP models MLP ESC,

Bayes MLP and Bayes MLP +ARD (see se
tion IV )

the models tested were:

KNN LOOCV : K-nearest-neighbor. K is 
hosen by

leave-one-out 
ross-validation on the training set.

CART : Classi�
ation And Regression Tree [12℄.

Eight folded 
ross-validation (CV) error estimates

are 
olle
ted in Table III. Fig. 5 shows example image


lassi�ed with di�erent methods.

VII. Summary dis
ussion

Above 
ase problems in industrial appli
ations il-

lustrate the advantages of using Bayesian neural net-

works. The approa
h 
ontains automati
 
omplexity


ontrol, without the need to use separate training and

validation data. We 
an use large number of inputs.

It is possible to use prior information, like ARD. The

Bayesian approa
h gives the predi
tive distributions

for outputs, whi
h 
an be used to estimate reliability

of the predi
tions.
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