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Abstract— We demonstrate the advantages of using
Bayesian neural networks in regression, inverse and
classification problems, which are common in indus-
trial applications. The Bayesian approach provides
consistent way to do inference by combining the evi-
dence from data to prior knowledge from the problem.
A practical problem with neural networks is to select
the correct complexity for the model, i.e., the right
number of hidden units or correct regularization pa-
rameters. The Bayesian approach offers efficient tools
for avoiding overfitting even with very complex mod-
els, and facilitates estimation of the confidence inter-
vals of the results. In this contribution we review the
Bayesian methods for neural networks and present com-
parison results from case studies in prediction of the
quality properties of concrete (regression), electrical
impedance tomography (inverse problem) and forest
scene analysis (classification). The Bayesian networks
provided comnsistently better results than other meth-
ods.

I. INTRODUCTION

In classification and non-linear function approxima-
tion neural networks have become very popular in re-
cent years. With neural networks the main difficulty
is in controlling the complexity of the model. Another
problem of standard neural network models is the lack
of tools for analyzing the results (confidence intervals,
like 10 % and 90 % quantiles, etc.).

The Bayesian approach provides consistent way to
do inference by combining the evidence from data to
prior knowledge from the problem. Bayesian methods
use probability to quantify uncertainty in inferences
and the result of Bayesian learning is a probability
distribution expressing our beliefs regarding how likely
the different predictions are. Predictions are made by
integrating over the posterior distribution. In case of
insufficient data the prior dominates the solution, and
the effect of the prior diminishes with increased evi-
dence from the data.

For neural networks, MacKay introduced Bayesian
approach [1] based on Gaussian approximation. Neal
has introduced hybrid Monte Carlo method [2] that fa-
cilitates Bayesian learning for neural networks with no
compromising approximations. The main advantages
of Bayesian neural networks are:

o Automatic complexity control: Bayesian inference
techniques allow the values of regularization coeffi-
cients to be selected using only the training data,
without the need to use separate training and vali-
dation data.

« Possibility to use prior information and hierarchical
models for the hyperparameters.

« Predictive distributions for outputs.

In this contribution we demonstrate the advantages
of Bayesian neural networks in three case problems.

First we briefly review Multi Layer Perceptron network
in section IT and in section III we give a review of the
Bayesian methods for neural networks. In section IV
we present results using Bayesian neural networks in
a regression problem for predicting the quality prop-
erties of concrete. In section V we present results us-
ing Bayesian neural networks to solve inverse problem
in image reconstruction and void fraction estimation
in electrical impedance tomography. Results compar-
ing Bayesian neural networks and other classification
methods for classification of objects in forest scenes
are presented in section VI.

II. MuLri LAYER PERCEPTRON

In this section we briefly review Multi Layer Per-
ceptron (MLP) neural network. See [3] for thorough
introduction to MLPs. We concentrate here to one
hidden layer MLP networks with hyperbolic tangent
(tanh) activation function, but Bayesian methods de-
scribed can be used for other types of neural networks
too. Basic MLP network model with k& outputs is
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where x is a d-dimensional input vector, w denotes
weights and indices ¢ and j correspond to hidden and
output units, respectively.

MLP is often considered as a generic semiparametric
model which means that the effective number of pa-
rameters may be less than the number of available pa-
rameters. Effective number of parameters determines
the complexity of the model. For small weights the
network mapping is almost linear and has low effective
complexity, since the central region of sigmoidal acti-
vation function can be approximated by linear trans-
formation. Traditionally complexity of MLP has been
controlled with early stopping or weight decay [3].

In early stopping weights are initialized to very small
values. Part of the training data is used to train the
MLP and the other part is used to monitor the val-
idation error. Iterative optimization algorithms used
for minimizing the training error gradually take pa-
rameters in use. Training is stopped when the valida-
tion error begins to increase. Since training is stopped
before a minimum of the training error, the effective
number of parameters remains less than the number
of available parameters.

The basic early stopping is rather inefficient, as it is
very sensitive to the initial conditions of the network



and only part of the available data is used to train the
model. These limitations can easily be alleviated by
using a committee of early stopping networks, with dif-
ferent partitioning of the data to training and stopping
sets for each network. When used with caution MLP
early stopping committee is good baseline method for
neural networks.

In weight decay penalizing term is added to the error
function. Using sum of squares of weights the weights
are encouraged to be small. In practice each layer in
an MLP should have different regularization parame-
ter [3], giving the penalty term

alzwf-i —|—o<22w,%j. (2)
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Problem is how to select good values for «;. Tradition-
ally this has been done with cross validation (CV).
Since CV gives noisy estimate for error, it does not
guarantee that good values for «; can be found. Also
it becomes easily computationally prohibitive as com-
putational expenses grow exponentially with number
of parameters to be selected.

III. BAYESIAN LEARNING FOR MLP

Bayesian methods use probability to quantify uncer-
tainty in inferences and the result of Bayesian learn-
ing is a probability distribution expressing our be-
liefs regarding how likely the different predictions are.
Bayesian paradigm offers consistent way to do infer-
ence using models with even very large number of
parameters. See, e.g., [4] for good introduction to
Bayesian methods.

A. Bayesian Learning

Consider a regression or classification problem in-
volving the prediction of a noisy vector y of target
variables given the value of a vector x of input vari-
ables.

The process of Bayesian learning is started by defin-
ing a model, M, and prior distribution p(6) for
the model parameters. Prior distribution expresses
our initial beliefs about parameter values, before any
data has observed. After observing new data D =
{(x®,yMWy), o (x™ y(™)1 prior distribution is up-
dated to the posterior distribution using Bayes’ rule

p(D[0)p(6)

p(0|D) = (D)

o< L(6]D)p(0), (3)
where the likelihood function L(6]|D) gives the proba-
bility of the observed data as function of the unknown
model parameters.

To predict the new output y™*! for new input
x(™*t1)  predictive distribution is obtained by integrat-
ing the predictions of the model with respect to the
posterior distribution of the model parameters

p(y"*V|D) = /P(y("“)lx(”“),9)p(9ID)d9- (4)

This is same as taking the average prediction of all the
models weighted by their goodness.

Note that predictive distribution for y™*! is im-
plicitly conditioned on hypotheses that hold through-
out and to be more explicit notation as the following
might be used

ply™ ™V |D, H) = /P(y(”“)Ix("“),9,H)p(9ID,H)d97
(5)

where H refers to the set of hypotheses or assumptions
used to define the model.

B. Models

Statistical model is defined with the likelihood func-
tion, which in case of independent and exchangeable
data points is given by

n

L©|D) = [[p(y@1x™,0), (6)
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where n is the number of data points.

In the likelihood equation the term p(y®[x(® @)
depends on our problem. In regression problems, it
is generally assumed that the distribution of target
data can be described by a deterministic function of
inputs, corrupted by additive Gaussian noise of a con-
stant variance. Probability density for a target y; is
then

ply;x, w, o) = \/2—%% exp <—%‘?[yj —fix, W)]2> ;
(7)

where o7 is the noise variance for the target. See [2] for
per-case normal noise variance model. For a two class
classification (logistic regression) model, the probabil-

ity that a binary-valued target, y;, has the value 1 is

ply; = 1x,w) = [1 +exp(=fi(x, w)] ™" (8)

and for many class classification (softmax) model, the
probability that a class target, y, has value j is

— ilw) = exp(f;(x,w))
M=) = ooy

In (7), (8) and (9) function f;(x,w) is in this case
an MLP network. Traditionally in many methods one
of the problems has been to find a good topology for
the MLP. In Bayesian approach we could use infinite
number of hidden units [2]. We do not need to restrict
the size of the MLP based on the size of the training
set, but in practice, we will have to use finite number
of hidden units due to computational limits. MCMC
methods (section III-E) produce the correct answer
eventually, but it may sometimes take unreasonable
amount of time[2].



C. Priors

Next, we have to define the prior information about
our model parameters, before any data has been seen.
Usual prior is that the model has some unknown com-
plexity but the model is not constant or extremely
flexible. To express this prior belief we set hierarchi-
cal model specification.

Parameters w define the model f(x,w). As dis-
cussed in section II, complexity of the MLP network
can be controlled by controlling the size of the weights
w. Corresponding prior to weight decay is to use
Gaussian prior distribution for weights w given hy-
perparameter «

= (27)"™/2a™/? exp(—a Z w?/2).

=1

p(wla) (10)

This prior states that smaller weights are more proba-
ble, but how much more is determined by the value of
hyperparameter «. Since we do not know the correct
value for hyperparameter o, we set a vague hyperprior
p(a) expressing our belief that complexity controlled
by « is unknown but the model is not constant or ex-
tremely flexible. A convenient form for this hyperprior
is vague Gamma distribution with mean p and shape
parameter a

pla) ~

In order to have prior for weights which is invariant un-
der the linear transformations of data, separate priors
(each having its own hyperparameters «;) for different
weight groups in each layer of a MLP are used.

In MLP networks, the weights from less important
inputs are typically smaller than weights from more
important inputs!. Prior belief that some inputs are
likely to be more relevant than others can be imple-
mented by using different priors for weight groups from
each input, and hierarchical hyperpriors for these pri-
ors. The posteriors for hyperparameters should then
adjust according to relevance of the inputs. This prior
is called Automatic Relevance Determination (ARD)
[5, 2].

For regression models we need prior for o in (7),
which is often specified in terms of corresponding pre-
cision, 7 = o72. As for «, our prior information is
usually quite vague, stating that ¢ is not zero or ex-
tremely large. This prior can be expressed with vague
Gamma-distribution with mean p and shape parame-
ter a

p(T) ~
D. Prediction

After defining the model and prior information, we
combine the evidence from the data to get the poste-

a/2—1 (11)

Gamma(y,a) x « exp(—aa/2p).

a/271 (12)

Gamma(p, a) < T exp(—7a/2p).

INote that in the non-linear network the effect of an input may
be small even if the weights from it are large and vice verse, but
in general the size of the weights roughly reflects the relevance
of the input.

rior distribution for the parameters

p(w,a,7|D) < L(w,a, 7|D)p(w, a, 7). (13)
Predictive distribution for new data is then obtained
by integrating over this posterior distribution

ply "V, D) =

/p(y("+1)|x(”+1),w,a,T)p(w,a,T|D)dwaT. (14)

We can also evaluate expectations of various func-
tions with respect to the posterior distribution for pa-
rameters. For example in regression we may evaluate
the expectation for a component of y(+1)

y](cn-i_l):/fk(x(n+1)7w)p(w’a’T|D) dwar, (15)

which corresponds to the best guess with squared error
loss.

The posterior distribution for the parameters
p(w,a,7|D) is typically very complex, with many
modes. Evaluating the integral of (15) is therefore
a difficult task.

The integral can be approximated with Gaussian ap-
proximations to modes. Then predictive distribution
is approximated by the corresponding integral with re-
spect to the Gaussian [1, 6]. Or we can use Monte
Carlo methods, described next, to numerically approx-
imate the integral.

E. Markov Chain Monte Carlo method

Neal has introduced implementation of Bayesian
learning for neural networks in which the difficult in-
tegration of (15) is performed using Markov Chain
Monte Carlo (MCMC) methods [2]. In [7] there is a
good introduction to basic MCMC methods and many
applications in statistical data analysis.

MCMC methods make no assumptions about the
form of the posterior distribution. They may in some
circumstances require a very long time to converge to
the desired distribution.

The integral of (15) is the expectation of function
fe(x(™*t1) w) with respect to the posterior distribu-
tion of the parameters. This and other expectations
can be approximated by Monte Carlo method, using a
sample of values w(*) drawn from the posterior distri-
bution of parameters

2

A(nJrl (n+1)7w(t)). (16)

Z

Note that samples from the posterior distribution
are drawn during the learning phase and predictions
for new data can be calculated quickly using the same
samples and (16).

In the MCMC, samples are generated using a
Markov chain that has the desired posterior distribu-
tion as its stationary distribution. Difficult part is to



create Markov chain which converges rapidly and in
which states visited after convergence are not highly
dependent.

Neal used the hybrid Monte Carlo (HMC) algorithm
[8] for parameters and Gibbs sampling for hyperpa-
rameters. HMC is an elaborate Monte Carlo method,
which makes efficient use of gradient information to
reduce random walk behavior. The gradient indicates
in which direction one should go to find states with
high probability. Use of Gibbs sampling for hyperpa-
rameters helps to minimize the amount of tuning that
is needed to obtain good performance in HMC.

When the amount of data increases, the evidence
from data causes the probability mass to concentrate
to the smaller area and we need less samples from the
posterior distribution. Also less samples are needed to
evaluate the mean of the predictive distribution than
the tail-quantiles like, 10% and 90% quantiles. So de-
pending on the problem 10-20 samples may be enough
(given that samples are not too highly dependent).

In our examples of Bayesian learning for neural net-
works with MCMC we have used Flexible Bayesian
Modeling (FBM), software?, which implements the
methods described in [2].

IV. CASE I: REGRESSION IN CONCRETE QUALITY
ESTIMATION

The goal of the project was to develop a model
for predicting the quality properties of concrete.
The quality variables contained, e.g., compression
strengths and densities for 1, 28 and 91 days after cast-
ing, bleeding (water extraction) and spread and slump
that measure softness of the fresh concrete. These
quality measurements depend on the properties of the
stone material (natural or crushed, size and shape dis-
tributions of the grains, mineralogical composition),
additives, and amount of cement and water. In the
study we had 7 target variables and 19 explanatory
variables.

Collecting the samples for statistical modeling is
rather expensive in this application, as each sample re-
quires preparation of the sand mixture, casting the test
pieces and waiting for 91 days for the final tests. Thus
available samples must be used as efficiently as possi-
ble, which makes Bayesian techniques tempting alter-
native, as they allow fine balance of prior assumptions
and evidence from samples. In the study we had 149
samples designed to cover the practical range of the
variables, collected by a concrete manufacturer com-
pany.

MLP networks containing 6 hidden units were used.
Different MLP models tested were:

MLP ESC : Early stopping committee of 20 MLP net-
works, with different division of data to training and
stopping sets for each member. The networks were
initialized to near zero weights to guarantee that the
mapping is smooth in the beginning.

2<URL: http://www.cs.toronto.edu/ "radford/fbm.
software.html>

TABLE 1

TEN FOLD CROSS-VALIDATION ERROR ESTIMATES FOR
PREDICTING THE SLUMP OF CONCRETE.

Method Root mean square error
MLP ESC 37
Bayes MLP 34
Bayes MLP +ARD 27
Bayes MLP : Bayesian neural network with FBM-

software, using vague priors and MCMC-run specifi-
cations similar as used in [2]. 20 networks from the
posterior distribution of network parameters were
used.
Bayes MLP +ARD: Similar Bayesian neural network
to the previous, but using also ARD prior.
Error estimates for predicting the slump are collected
in Table I. Note that use of ARD prior gives much
better results.

V. Cask II: INVERSE PROBLEM IN ELECTRICAL
IMPEDANCE TOMOGRAPHY

In this section we report results on using Bayesian
neural networks for solving the ill-posed inverse prob-
lem in electrical impedance tomography, EIT. The full
report of the proposed approach is presented in [9].

The aim in EIT is to recover the internal structure
of an object from surface measurements. Number of
electrodes are attached to the surface of the object and
current patterns are injected from through the elec-
trodes and the resulting potentials are measured. The
inverse problem in EIT, estimating the conductivity
distribution from the surface potentials, is known to
be severely ill-posed, thus some regularization meth-
ods must be used to obtain feasible results [10].

Fig. 1 shows a sample bubble and resulting equipo-
tential curves. The potential signals from which the
image is to be recovered are shown in Fig. 2.

In [9] we proposed a novel feedforward solution for
the reconstruction problem.The approach is based on
transformation of both input and output data by prin-
cipal component projection and application of the neu-
ral network in this lower dimensional eigenspace.

The reconstruction was based on 20 principal com-
ponents of the 128 dimensional potential signal and 60
eigenimages with resolution 41 x 41 pixels. The train-
ing data consisted of 500 simulated bubble formations
with one to ten overlapping circular bubbles in each
image. To compute the reconstructions MLP networks
containing 30 hidden units were used. Models tested
were MLP ESC and Bayes MLP (see section IV).

Fig. 3 shows examples of the image reconstruction
results. Table II shows the quality of the image re-
constructions with models, measured by error in the
void fraction and percentage of erroneous pixels in the
segmentation, over the test set.

An important goal in the studied process tomog-
raphy application was to estimate the void fraction,
which is the proportion of gas and liquid in the image.
With the proposed approach such goal variables can
be estimated directly without explicit reconstruction
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Fig. 3. Example of image reconstructions with MLP ESC (upper row) and the Bayesian MLP (lower row)

Fig. 1. Example of the EIT measurement. The simulated bub-
ble formation is bounded by the circles. The current is
injected from the electrode with the lightest color and the
opposite electrode is grounded. The gray level and the con-
tour curves show the resulting potential field.

Relative change in U
a
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Fig. 2. Relative changes in potentials compared to homogenous
background. The eight curves correspond to injections from
eight different electrodes.

of the image. The bottom row in Table II shows the
relative absolute error in estimating the void fraction
directly from the projections of the potential signals.

With Bayesian methods we can easily calculate con-
fidence intervals for outputs. Fig. 4 shows the scatter
plot of the void fraction versus the estimate by the
Bayesian neural network. The 10% and 90% quantiles
are computed directly from the posterior distribution
of the model output.

See [9] for results for effect of additive Gaussian
noise to the performance of the method.

VI. Cask III: FOREST SCENE ANALYSIS

In this section we report results of using Bayesian
neural networks for classification of forest scenes, to ac-

TABLE I1

ERRORS IN RECONSTRUCTING THE BUBBLE SHAPE AND
ESTIMATING THE VOID FRACTION FROM THE RECONSTRUCTED
IMAGES. SEE TEXT FOR EXPLANATION OF THE MODELS.

Method Classifica- Relative
tion error error in VF
% %
MLP ESC 6.7 8.7
Bayes MLP 5.9 8.1
Bayes MLP, direct VF 3.4
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Void fraction, target

Fig. 4. Scatterplot of the void fraction estimate with 10% and
90% quantiles.

curately recognize and locate the trees from any back-
ground.

Forest scene classification task is demanding due to
the texture richness of the trees, occlusions of the for-
est scene objects and diverse lighting conditions under
operation. This makes it difficult to determine which
are optimal image features for the classification. A
natural way to proceed is to extract many different
types of potentially suitable features.

In [11] we extracted total of 84 statistical and Gabor
features over different sized windows at each spectral
channel. Due to great number of features used, many
classifier methods would suffer from the curse of di-
mensionality, but Bayesian neural networks manage
well in high dimensional problems.

The image data for teaching and testing of the classi-
fiers was collected by using an ordinary digital camera
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Fig. 5. Examples of classified forest scene. See text for explanation of the different models.

TABLE III

CV ERROR ESTIMATES FOR FOREST SCENE CLASSIFICATION.
SEE TEXT FOR EXPLANATION OF THE DIFFERENT MODELS.

Error%
KNN LOOCV 20
CART 30
MLP ESC 13
Bayes MLP 12
Bayes MLP +ARD 11

in varying weather conditions. Ideal weather condi-
tions were not searched, as the aim was to test the
viability and the robustness of the methods. Total of
48 images were taken. The labeling of the image data
was done by hand via identifying many types of tree
and background image blocks with different textures
and lighting conditions. In this study only pines were
considered.

Addition to 20 hidden unit MLP models MLP ESC,
Bayes MLP and Bayes MLP +ARD (see section IV )
the models tested were:

KNN LOOCYV : K-nearest-neighbor. K is chosen by
leave-one-out cross-validation on the training set.
CART : Classification And Regression Tree [12].
Eight folded cross-validation (CV) error estimates
are collected in Table III. Fig. 5 shows example image
classified with different methods.

VII. SUMMARY DISCUSSION

Above case problems in industrial applications il-
lustrate the advantages of using Bayesian neural net-
works. The approach contains automatic complexity
control, without the need to use separate training and
validation data. We can use large number of inputs.
It is possible to use prior information, like ARD. The
Bayesian approach gives the predictive distributions
for outputs, which can be used to estimate reliability
of the predictions.
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