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We demonstrate the advantages of using Bayesian neu-

ral networks for image analysis. The Bayesian approah

provides onsistent way to do inferene by ombining the

evidene from data to prior knowledge from the prob-

lem. A pratial problem with neural networks is to

selet the orret omplexity for the model, i.e., the

right number of hidden units or orret regularization

parameters. The Bayesian approah o�ers e�ient tools

for avoiding over�tting even with very omplex models,

and failitates estimation of the on�dene intervals of

the results. In this ontribution we review the Bayesian

methods for neural networks and present omparison

results from ase studies in proess tomography and im-

age segmentation. In the �rst ase, neural networks were

used to solve the inverse problem in eletrial impedane

tomography. The Bayesian networks provided onsis-

tently better results than other methods. In the seond

ase, the goal was to loate trunks of trees in forest

senes. With Bayesian network it was possible to use

large number of potentially useful features and prior for

determining the relevane of the features automatially.

1 Introdution

A universal task in many areas of image analysis is to

infer some needed piee of information from measure-

ments that only partly determine the information.

Profound example of suh problems is the pereption

of the three dimensional struture of view from two di-

mensional projetion, i.e., image, with means like shape

from shading, binoular stereopsis, and pereption of

perspetive. Another example is restoration of images

from blurred or noisy reordings. Also, lassi�ation

and segmentation of image regions or objets based on

a set of preomputed features is similar problem, as the

features are often insu�ient for uniquely separating the

lasses.

Reently Bayesian approahes have shown onsider-

able potential in suh problems. In the Bayesian ap-

proah prior information from the problem is ombined

to the evidene from the data, giving the posterior prob-

ability of the solutions. Preditions are made by inte-

grating over this posterior distribution. In ase of in-

su�ient data the prior dominates the solution, and

the e�et of the prior diminishes with inreased evi-

dene from the data. In one of the pioneering works

by Geman et.al. [1℄, Bayesian approah was developed

for image restoration. This work also introdued the

Gibbs sampling tehnique for omputing posterior dis-

tributions. The advantages of Bayesian approahes in

omputational modeling of pereption are disussed in

[2℄.

In lassi�ation and non-linear funtion approxima-

tion neural networks have beome very popular in reent

years. With neural networks the main di�ulty is on-

trolling the omplexity of the model. Another problem

of standard neural network models is the lak of tools

for analyzing the results (on�dene intervals, like 10 %

and 90 % quantiles, et.).

For neural networks, MaKay introdued Bayesian

approah [3℄ based on Gaussian approximation. Re-

ently Neal introdued hybrid Monte Carlo method [4℄

that failitates Bayesian learning for neural networks

with no ompromising approximations. The main ad-

vantages of Bayesian neural networks are:

• Automati omplexity ontrol: Bayesian inferene

tehniques allow the values of regularization oe�-

ients to be seleted using only the training data,

without the need to use separate training and vali-

dation data.

• Possibility to use prior information and hierarhial

models for the hyperparameters.

• Preditive distributions for outputs.

In this ontribution we demonstrate the advantages of

Bayesian neural networks in two ase problems. In se-

tion 3 we give a review of the Bayesian methods for

neural networks. In setion 4 we report results on using

Bayesian networks for image reonstrution in eletrial

impedane tomography. In setion 5 we present results

omparing Bayesian networks and other lassi�ation

methods for lassi�ation of objets in forest senes.



2 Multi Layer Pereptron

In this setion we brie�y review Multi Layer Pereptron

(MLP) neural network. See [5℄ for thorough introdu-

tion to MLPs. We onentrate here to one hidden layer

MLP networks with hyperboli tangent (tanh) ativa-

tion funtion, but Bayesian methods desribed an be

used for other types of neural networks, like RBF net-

works, too. Basi MLP network model with k outputs

is

fk(x, w) = wk0 +
m
∑

j=1

wkj tanh

(

wj0 +
d
∑

i=1

wjixi

)

,

(1)

where x is a d-dimensional input vetor, w denotes

weights and indies i and j orrespond to hidden and

output units, respetively.

MLP is often onsidered as a generi semiparamet-

ri model, whih means that the e�etive number of

parameters may be less than the number of available

parameters. E�etive number of parameters determines

the omplexity of the model. For small weights the net-

work mapping is almost linear and has low e�etive om-

plexity, sine the entral region of sigmoidal ativation

funtion an be approximated by linear transformation.

Traditionally omplexity of MLP has been ontrolled

with early stopping or weight deay [5℄.

In early stopping weights are initialized to very small

values. Part of the training data is used to train the

MLP and the other part is used to monitor the vali-

dation error. Iterative optimization algorithms used for

minimizing the training error gradually take parameters

in use. Training is stopped when the validation error

begins to inrease. Sine training is stopped before a

minimum of the training error, the e�etive number of

parameters remains less than the number of available

parameters.

Intuitively, the optimization algorithm �rst �ts the

model more to the underlying proess and when the op-

timization is ontinued it �ts more to the noise in the

training set. With early stopping, optimization is tried

to be stopped before too muh �tting to the noise has

ourred.

The basi early stopping is rather ine�ient, as it is

very sensitive to the initial onditions of the network

and only part of the available data is used to train the

model. These limitations an easily be alleviated by

using a ommittee of early stopping networks, with dif-

ferent partitioning of the data to training and stopping

sets for eah network. When used with aution MLP

early stopping ommittee is good baseline method for

neural networks.

In weight deay penalizing term is added to the error

funtion. Using sum of squares of weights the weights

are enouraged to be small. In pratie eah layer in an

MLP should have di�erent regularization parameter [5℄,

giving the penalty term

α1

∑

j,i

w2
ji + α2

∑

j,k

w2
kj . (2)

Problem is how to selet good values for αi. Tradition-

ally this has been done with ross validation (CV). Sine

CV gives noisy estimate for error, it does not guarantee

that good values for αi an be found. Also it beomes

easily omputationally prohibitive as omputational ex-

penses grow exponentially with number of parameters

to be seleted.

3 Bayesian Learning for MLP

Bayesian methods use probability to quantify uner-

tainty in inferenes and the result of Bayesian learning is

a probability distribution expressing our beliefs regard-

ing how likely the di�erent preditions are. Bayesian

paradigm o�ers onsistent way to do inferene using

models with even very large number of parameters. See

e.g. [6℄ for good introdution to Bayesian methods.

3.1 Bayesian Learning

Consider a regression or lassi�ation problem involving

the predition of a noisy vetor y of target variables

given the value of a vetor x of input variables.

The proess of Bayesian learning is started by de�ning

a modelM, and prior distribution p(θ) for the model pa-

rameters. Prior distribution expresses our initial beliefs

about parameter values, before any data has observed.

After observing new data D =
{(x(1), y(1)), . . . , (x(n), y(n))}, prior distribution is

updated to the posterior distribution using Bayes' rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ L(θ|D)p(θ) , (3)

where the likelihood funtion L(θ|D) gives the proba-

bility of the observed data as funtion of the unknown

model parameters.

To predit the new output y(n+1)
for new input

x(n+1)
, preditive distribution is obtained by integrating

the preditions of the model with respet to the poste-

rior distribution of the model parameters

p(y(n+1)|D) =

∫

p(y(n+1)|x(n+1), θ)p(θ|D)dθ . (4)

This is same as taking the average predition of all the

models weighted by their goodness.

Note that preditive distribution for y(n+1)
is impli-

itly onditioned on hypotheses that hold throughout �

no probability judgments an be made in vauum [6℄ �



and to be more expliit notation as the following might

be used

p(y(n+1)|D, H) =

∫

p(y(n+1)|x(n+1), θ, H)p(θ|D, H)dθ ,

(5)

where H refers to the set of hypotheses or assumptions

used to de�ne the model.

3.2 Models

As noted above we start from de�ning a model for our

problem. Statistial model is de�ned with the likelihood

funtion, whih in ase of independent and exhangeable

data points is given by

L(θ|D) =

n
∏

i=1

p(y(i)|x(i), θ) , (6)

where n is the number of data points.

In the likelihood equation the term p(y(i)|x(i), θ) de-
pends on our problem. In regression problems, it is gen-

erally assumed that the distribution of target data an

be desribed by a deterministi funtion of inputs, or-

rupted by additive Gaussian noise of a onstant vari-

ane. Probability density for a target yj is then

p(yj |x, w, σ) =
1√

2πσj

exp(−(y − fj(x, w))2/2σ2
j ) ,

(7)

where σ2
j is the noise variane for the target. See [4,

7℄ for input dependent noise models. For a two lass

lassi�ation (logisti regression) model, the probability

that a binary-valued target, yj , has the value 1 is

p(yj = 1|x, w) = [1 + exp(−fj(x, w))]−1
(8)

and for many lass lassi�ation (softmax) model, the

probability that a lass target, y, has value j is

p(y = j|x, w) = exp(fj(x, w))/
∑

k

exp(fk(x, w)) . (9)

In equations (7), (8) and (9) funtion fj(x, w) is in this
ase an MLP network. Traditionally in many methods

one of the problems has been to �nd a good topology

for the MLP. In Bayesian approah we ould use in�nite

number of hidden units [4℄. We do not need to restrit

the size of the MLP based on the size of the training set,

but in pratie, we will have to use �nite number of hid-

den units due to omputational limits. MCMC methods

(setion 3.5) produe the orret answer eventually, but

it may sometimes take unreasonable amount of time[4℄.

3.3 Priors

Next, we have to de�ne the prior information about our

model parameters, before any data has been seen. Usual

prior is that the model has some unknown omplexity

but the model is not onstant or extremely �exible. To

express this prior belief we set hierarhial model spe-

i�ation.

Parameters w de�ne the model f(x, w). As disussed
in setion 2, omplexity of the MLP network an be

ontrolled by ontrolling the size of the weights w. Cor-
responding prior to weight deay is to use Gaussian prior

distribution for weights w given hyperparameter α

p(w|α) = (2π)−m/2αm/2 exp(−α

m
∑

i=1

w2
i /2) . (10)

This prior states that smaller weights are more proba-

ble, but how muh more is determined by the value of

hyperparameter α. Sine we do not know the orret

value for hyperparameter α, we set a vague hyperprior

p(α) expressing our belief that omplexity ontrolled by

α is unknown but the model is not onstant or extremely

�exible. A onvenient form for this hyperprior is vague

Gamma distribution with mean µ and shape parameter

a

p(α) ∼ Gamma(µ, a) ∝ αa/2−1 exp(−αa/2µ) . (11)

In order to have prior for weights whih is invariant un-

der the linear transformations of data, separate priors

(eah having its own hyperparameters αi) for di�erent

weight groups in eah layer of a MLP are used.

In MLP networks, the weights from less important

inputs are typially smaller than weights from more im-

portant inputs

1

. Prior belief that some inputs are likely

to be more relevant than others an be implemented by

using di�erent priors for weight groups from eah in-

put, and hierarhial hyperpriors for these priors. The

posteriors for hyperparameters should then adjust a-

ording to relevane of the inputs. This prior is alled

Automati Relevane Determination (ARD) [8, 4℄.

For regression models we need prior for σ in equa-

tion (7), whih is onveniently spei�ed in terms of or-

responding preision, τ = σ−2
. As for α, our prior infor-

mation is usually quite vague, stating that σ is not zero

or extremely large. This prior an be expressed with

vague Gamma-distribution with mean µ and shape pa-

rameter a

p(τ) ∼ Gamma(µ, a) ∝ τa/2−1 exp(−τa/2µ) . (12)

1

Note that in the non-linear network the e�et of an input may

be small even if the weights from it are large and vie verse, but

in general the size of the weights roughly re�ets the relevane of

the input.



3.4 Predition

After de�ning the model and prior information, we om-

bine the evidene from the data to get the posterior dis-

tribution for the parameters

p(w, α, τ |D) ∝ L(w, α, τ |D)p(w, α, τ) . (13)

Preditive distribution for new data is then obtained

by integrating over this posterior distribution

p(y(n+1)|x(n+1), D) =
∫

p(y(n+1)|x(n+1), w, α, τ)p(w, α, τ |D) dwατ (14)

We an also evaluate expetations of various funtions

with respet to the posterior distribution for parame-

ters. For example in regression we may evaluate the

expetation for a omponent of y(n+1)

ŷ
(n+1)
k =

∫

fk(x(n+1), w)p(w, α, τ |D) dwατ , (15)

whih orresponds to the best guess with squared error

loss.

The posterior distribution for the parameters

p(w, α, τ |D) is typially very omplex, with many

modes. Evaluating the integral of equation (15) is there-

fore a di�ult task.

The integral an be approximated with Gaussian ap-

proximations to modes. Then preditive distribution

is approximated by the orresponding integral with re-

spet to the Gaussian [3, 9℄. Or we an use Monte

Carlo methods, desribed next, to numerially approxi-

mate the integral.

3.5 Markov Chain Monte Carlo method

Reently, Neal has introdued implementation of

Bayesian learning for neural networks in whih the

di�ult integration of equation (15) is performed us-

ing Markov Chain Monte Carlo (MCMC) methods [4℄.

In [10℄ there is a good introdution to basi MCMC

methods and many appliations in statistial data anal-

ysis.

MCMCmethods make no assumptions about the form

of the posterior distribution. They may in some ir-

umstanes require a very long time to onverge to the

desired distribution.

The integral of equation (15) is the expetation of

funtion fk(x(n+1), w) with respet to the posterior dis-

tribution of the parameters. This and other expeta-

tions an be approximated by Monte Carlo method, us-

ing a sample of values w(t)
drawn from the posterior

distribution of parameters

ŷ
(n+1)
k ≈ 1

N

N
∑

t=1

fk(x(n+1), w(t)) . (16)

Note that samples from the posterior distribution are

drawn during the learning phase and preditions for new

data an be alulated quikly using the same samples

and equation (16).

In the MCMC, samples are generated using a Markov

hain that has the desired posterior distribution as

its stationary distribution. Di�ult part is to reate

Markov hain whih onverges rapidly and in whih

states visited after onvergene are not highly depen-

dent.

Neal has used the hybrid Monte Carlo (HMC) algo-

rithm [11℄ for parameters and Gibbs sampling for hyper-

parameters. HMC is an elaborate Monte Carlo method

whih makes e�ient use of gradient information to re-

due random walk behavior. The gradient indiates in

whih diretion one should go to �nd states with high

probability. Use of Gibbs sampling for hyperparameters

helps to minimize the amount of tuning that is needed

to obtain good performane in HMC.

When the amount of data inreases, the evidene from

data auses the probability mass to onentrate to the

smaller area and we need less samples from the posterior

distribution. Also less samples are needed to evaluate

the mean of the preditive distribution than the tail-

quantiles like, 10% and 90% quantiles. So depending on

the problem 10�20 samples may be enough (given that

samples are not too highly dependent).

In our examples (setions 4, 5) of Bayesian learning

for neural networks with MCMC we have used Flexi-

ble Bayesian Modeling (FBM) software

2

. The methods

implemented in software are desribed in [4℄.

4 Case I: Inverse Problem in Ele-

trial Impedane Tomography

In this setion we report results on using Bayesian neu-

ral networks for solving the ill-posed inverse problem in

eletrial impedane tomography, EIT. The full report

of the proposed approah is presented in [12℄. Here we

review the approah shortly and report omparison re-

sults that show that the Bayesian neural networks per-

form onsistently better than other types of networks.

The aim in EIT is to reover the internal struture of

an objet from surfae measurements. Number of ele-

trodes are attahed to the surfae of the objet and ur-

rent patterns are injeted from through the eletrodes

and the resulting potentials are measured. The inverse

problem in EIT, estimating the ondutivity distribu-

tion from the surfae potentials, is known to be severely

ill-posed, thus some regularization methods must be

used to obtain feasible results [13℄.

2

<URL:http://www.s.toronto.edu/~radford/fbm.software.

html>



Figure 1 shows a simulated example of the EIT prob-

lem. The volume bounded by the irles in the image

represent gas bubble �oating in liquid. The ondutane

of the gas is muh lower than that of the liquid, produ-

ing the equipotential urves shown in the �gure. The

simulation was omputed with FEM (Finite Element

Method) using Matlab PDE-toolbox. Figure 2 shows

Figure 1: Example of the EIT measurement. The sim-

ulated bubble formation is bounded by the irles. The

urrent is injeted from the eletrode with the lightest

olor and the opposite eletrode is grounded. The gray

level and the ontour urves show the resulting potential

�eld.

the resulting potential signals, from whih the image is

to be reovered.
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Figure 2: Relative hanges in potentials ompared to

homogenous bakground. The eight urves orrespond

to injetions from eight di�erent eletrodes.

In [12℄ we proposed a novel feedforward solution for

the reonstrution problem. The approah is based on

omputing the prinipal omponent deomposition for

the potential signals and the eigenimages of the bubble

distribution from the autoorrelation model of the bub-

bles. The input to the neural network is the projetion

of the potential signals to the �rst prinipal omponents,

and the network gives the oe�ients for reonstruting

the image as weighted sum of the eigenimages.

The projetion of the potentials and the images to

the eigenspae redues orrelations from the input and

the output data of the network and detahes the atual

inverse problem from the representation of the poten-

tial signals and image data. For example, the resolution

of the reonstruted images an be hanged afterwards,

independently of the inverse omputation, by reomput-

ing the eigenimages from the autoorrelation model with

desired auray.

The reonstrution was based on 20 prinipal om-

ponents of the 128 dimensional potential signal and 30

eigenimages with resolution 41×41 pixels. The training
data onsisted of 500 simulated bubble formations with

one to ten overlapping irular bubbles in eah image.

To ompute the reonstrutions MLP networks ontain-

ing 30 hidden units (20-30-30 network) with total of

about 1500 parameters were used. MLP models tested

were

MLP-ESC (NNTB3 defaults) : Early stopping

ommittee of 20 MLP networks, with di�erent divi-

sion of data to training and stopping sets for eah

member. The networks were initialized with the

Matlab Neural Network Toolbox 3.0 default proe-

dure (Nguyen-Widrow algorithm).

MLP-ESC (deent defaults) : Similar ommittee

to the previous, but the networks were initialized

to near zero weights to guarantee that the mapping

is smooth in the beginning.

MLP-ESC (mlp-bgd-1) : Early stopping ommittee

used in [14℄ for benhmarks.

Bayesian MLP : Bayesian neural network with FBM-

software, using vague priors and MCMC-run spe-

i�ations similar as used in [14℄. 20 networks from

the posterior distribution of network parameters

were used.

Figure 3 shows examples of the bubble images re-

onstruted with Bayesian MLP. The average number

of pixels that were erroneously lassi�ed to bubble or

bakground was 3.96 % in the test set of 500 bubble

formations. Figure 4 shows the goodness of the image

reonstrutions with di�erent network models for one

example image.

Table 1 shows the quality of the image reonstrutions

with di�erent network models, measured by error in the

void fration and perentage of erroneous pixels in the

segmentation.

An important goal in the studied proess tomography

appliation was to estimate the void fration, whih is

the proportion of gas and liquid in the image. With

the proposed approah suh goal variables an be es-

timated diretly without expliit reonstrution of the



Figure 3: Examples of bubble formations reonstruted with Bayesian MLP. The white blobs show the atual

simulated bubbles and the blak lines show the ontours of the reonstruted bubbles.

   MLP ESC      
(NNTB3 defaults)

   MLP ESC       
(decent defaults) Bayesian MLP

Figure 4: Example of the image reonstrution with

Bayesian MLP and early stopping ommittees. See text

for explanation of the models.

image. Table 2 shows the relative absolute errors in es-

timating the void fration diretly from the projetions

of the potential signals.

Figure 5 shows the satter plot of the void fration

versus the estimate by the Bayesian neural network.

The 10% and 90% quantiles are omputed diretly from

the posterior distribution of the model output.

See [12℄ for results for e�et of additive Gaussian noise

to the performane of the method.

Table 1: Errors in reonstruting the bubble shape and

estimating the void fration from the reonstruted im-

ages. See text for explanation of the di�erent models.

Method Classi�a-

tion errors

%

Relative

error in

void

fration %

MLP ESC (NNTB3 def) 4.7 16.2

MLP ESC (deent def) 4.5 15.7

Bayesian MLP 3.8 6.0

5 Case II: Forest Sene Analysis

In this setion we report results of using Bayesian neural

networks for lassi�ation of forest senes, to aurately

reognize and loate the trees from any bakground. Po-

tential appliations inlude forest inventory (estimation

of the volume and growth rate of the trees) and au-

tonomous forest harvester (navigation and tree manip-

ulation tasks).

Forest sene lassi�ation task is demanding due to



Table 2: Relative errors in estimating the void fration

diretly. See text for explanation of the di�erent models.

Error mean and 90% interval estimated from 4 runs with

di�erent random seeds.

Method Relative test error, %

MLP-ESC (NNTB3 defaults) 8.6 ± 1.2
MLP-ESC (mlp-bgd-1) 6.42 ± 0.04
MLP-ESC (deent defaults) 4.10 ± 0.03
Bayesian MLP 3.16 ± 0.02
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Figure 5: Satterplot of the void fration estimate with

10% and 90% quantiles.

the texture rihness of the trees, olusions of the forest

sene objets and diverse lighting onditions under op-

eration. This makes it di�ult to determine whih are

optimal image features for the lassi�ation. A natu-

ral way to proeed is to extrat many di�erent types of

potentially suitable features.

In [15℄ we extrated total of 84 statistial and Gabor

features over di�erent sized windows at eah spetral

hannel. Due to great number of features used, many

lassi�er methods would su�er from the urse of dimen-

sionality, but Bayesian neural networks manage well in

high dimensional problems.

The image data for teahing and testing of the lassi-

�ers was olleted by using an ordinary digital amera

in varying weather onditions. Ideal weather onditions

were not searhed, as the aim was to test the viability

and the robustness of the methods. Total of 48 images

were taken.

Based on the above image data a suitable dataset was

prepared for the lassi�ation study. The labeling of the

image data was done by hand via identifying many types

of tree and bakground image bloks with di�erent tex-

tures and lighting onditions. In this study only pines

were onsidered.

To estimate lassi�ation errors of di�erent methods

we used eight folded ross-validation (CV) error esti-

mate, i.e., 42 of 48 pitures were used for training and

the six left out for error evaluation, and this sheme was

repeated eight times. The models tested were

KNN LOOCV : K-nearest-neighbor, where K is ho-

sen by leave-one-out ross-validation on the train-

ing set.

CART : Classi�ation And Regression Tree [16℄.

MLP ESC : MLP early stopping ommittee with dif-

ferent division of data to training and stopping sets

for eah member of ommittee.

Bayesian MLP : Bayesian neural network with FBM-

software, using vague priors and MCMC-run spe-

i�ations similar as used in [14℄.

Bayesian MLP +ARD : Bayesian neural network

with FBM-software, using vague priors, Automati

Relevane Determination prior and MCMC-run

spei�ations similar as used in [14℄.

MLP models ontained 20 hidden units (84-20-1 net-

work) with total of about 1700 parameters and e.g.

Bayesian MLP with ARD had in addition total of 88

hyperparameters.

We also tested Prinipal Component Analysis (PCA)

for dimension redution. With PCA we seleted �rst

omponents desribing 99% of variane in training data,

whih were �rst 16 to 20 prinipal omponents depend-

ing on training set. With PCA feature MLP models had

total of about 400 parameters.

CV error estimates are olleted in table 3. Figure 6

shows example image lassi�ed with di�erent methods.

Table 3: CV error estimates for forest sene lassi�a-

tion. See text for explanation of the di�erent models.

Error %, all

84 features

Error %,

16�20 pa

features

KNN LOOCV 20 24
CART 30 30
MLP ESC 13 19
Bayesian MLP 12 19
Bayesian MLP +ARD 11 19

6 Summary disussion

Above ase problems in image analysis illustrate the ad-

vantages of using Bayesian neural networks. The ap-

proah ontains automati omplexity ontrol as the



Forest scene KNN CART MLP ESC Bayes−MLP Bayes−MLP +ARD

Figure 6: Examples of lassi�ed forest sene. See text for explanation of the di�erent models.

Bayesian inferene tehniques allow the values of regu-

larization oe�ients to be seleted using only the train-

ing data, without the need to use separate training and

validation data. As we don't need to fear over�tting,

we an use large number of inputs and there is no need

to searh for minimal set of su�ient inputs. It is pos-

sible to use prior information, like ARD. The Bayesian

approah gives the preditive distributions for outputs,

whih an be used to estimate reliability of the predi-

tions.
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