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Outline

• Example: Alcohol related deaths in Finland

• Spatial priors and benefits of GP prior

• Computation and approximations

• Spatio-temporal

• Explanatory variables

• Integration over the latent space

• Hyperparameters
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Example: deaths in Finland
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Example: alcohol related diseases in Finland

• Collaboration: The National Institute for Health and Welfare

• Data: Statistics Finland

• Population of Finland: ≈ 5.3 million

• About 10 500 inhabited 5km × 5km cells in Finland

- many cells with no inhabited neighbors

• In 2001–2005 about 7 900 died due to alcohol diseases
(more than five times compared to deaths due to traffic)

- expected death count less than one per cell
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Example: alcohol related diseases in Finland

• Sex-age-education standardized expected death counts
used to compute the raw risk

• Risk smoothed using GP with long and short length scale
and negative-binomial observation model

Is the relative risk
higher in the population
centers?
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Example: alcohol related diseases in Finland

• The smoothed relative risks vs. the population density

• Add population density as explanatory variable
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Example: alcohol related diseases in Finland

• Population density and spatial variation explain the
variation in the risk

Population density effect Spatial effect
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Example: alcohol related diseases in Finland

• Adding explanatory covariate can change the picture

1) Spatial 2) Spatial+covariate
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Example: alcohol related diseases in Finland

• Jarno Vanhatalo, Ville Pietiläinen and Aki Vehtari (2010).
Approximate inference for disease mapping with sparse
Gaussian processes. Statistics in Medicine,
29(15):1580-1607.
http://dx.doi.org/10.1002/sim.3895

• Jarno Vanhatalo, Pia Mäkelä and Aki Vehtari (2010).
Regional differences in alcohol mortality in Finland in the
early 2000s. http://becs.aalto.fi/en/research/
bayes/publications/Vanhatalo_etal_Alcohol_
mortality_in_Finland.pdf
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GP vs. Markov random field

• In spatial epidemiology CAR is most used model

• Correlation defined conditionally based on a neighborhood
structure→ discrete definition

+ major computational speed-up if a precision matrix is
sparse due to small neighborhoods

- describes only local correlation
- neighborhood definition may be difficult for irregularly

spaced data and high dimensional data
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Example: alcohol related diseases in Finland
Comparison to CAR

• Compared to CAR computed with INLA software
- CAR model lacks long range correlation part
- CAR model has much higher variance, especially for

cells having no or few inhabited neighbors
- GP has a better predictive performance
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GP vs. Markov random field

• Markov random field prior can be good

- e.g. INLA-software can approximate Matérn
covariance function with MRF

- but precision matrix is not going to be sparse in high
dimensional cases (d ≥ 3), e.g. INLA-software doesn’t
support d > 3 and limited support for d = 3
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Computation and approximations

• Full O(n3)

• short range dependencies

- Markov→ sparse precision matrix
- compact support→ sparse covariance matrix
- O(p3n3), where 0 < p < 1 is the proportion of

non-zeros

• long range dependencies

- reduced rank (e.g. FIC) O(nm2)

- SVI-GP O(m3) (Hensman et al, 2013)
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Reduced rank approximations and inducing points

• The correlation structure of FIC with different choices of
inducing inputs
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Figure: The correlation for 3 locations x. Inducing inputs are marked
with ∗.
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Computation and approximations

• No single approximation which works efficiently for both
short and long range dependencies

• Short and long range dependencies

- e.g. compact support + FIC (used in alcohol study)
Vanhatalo, Pietiläinen, Vehtari, Stat in med, 2010,
http://dx.doi.org/10.1002/sim.3895
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Spatio-temporal

• Full O(n3T 3)

• Markov / compact support / reduced rank

• INLA-software: unstructured interaction
(ie. no model for spatio-temporal jointly)

• Cseke et al - discrete spato-temporal model, sparse
precision, restricted sparse messages

• infinite-dimensional filtering O(n3T ) (O(nm2T ))
Simo Särkkä talks about this tomorrow
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Example: lung cancer women

County incidences and background population for years
1953–2003.
51 years, 431 counties→ 21 981 observations
Data: Finnish Cancer Registry
Model: GP with temporal + spatial + spatiotemporal
component
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Example: lung cancer women
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Example: lung cancer women
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Spatio-temporal

• Spatio-temporal GPs can be written as linear stochastic
partial differential equations (SPDE)

• Reduces computational complexity from O(n3T 3) to
O(n3T ), i.e. method scales linearily in T

• SPDEs make it easier to specify non-stationary temporal
dynamics, which are necessary, for example, when
performing future predictions

• n limited as for spatial GP

- few thousand with no sparse aproximations
- more than ten thousand with sparse approximations

• Has been tested with over million spatio-temporal points

• Simo Särkkä talks more about this tomorrow
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Spatio-temporal malaria models?

• Spatio-temporal GPs can be written as linear stochastic
partial differential equations (SPDE).

• SPDEs make it easier to specify non-stationary temporal
dynamics, which are necessary, for example, when
performing future predictions

- seasonal variation
- transmission dynamics withs SPDEs?
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Non-stationarity

• SPDEs make it easier to specify non-stationary temporal
dynamics

• Spatial non-stationarity

- deformations
- additional GP for latent signal magnitude or

length-scale

Aki.Vehtari@aalto.fi Disease mapping with Gaussian processes



Explanatory covariates

• Goal is to explain the spatial variation

• Spatial maps can be used to aid hypothesis generation

• Adding covariates hopefully makes the residual in spatial
domain unstructured

• GP can model non-linearities and interactions implicitly
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Leukemia survival times

• 1043 cases of acute myeloid leukemia in adults

- recorded between 1982 and 1998 in the North West
Leukemia Register in the United Kingdom

- log-logistic model for survival times (16% were
censored)

- predictors are

· age
· sex
· white blood cell count (WBC) at diagnosis
· the Townsend score which is a measure of

deprivation for district of residence
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Leukemia survival times
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Leukemia survival times
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Leukemia survival times
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Leukemia survival times
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Leukemia survival times

Analysis in GP chapter of

Andrew Gelman, John B. Carlin, Hal S. Stern, David B.
Dunson, Aki Vehtari and Donald B. Rubin (2013). Bayesian
Data Analysis, Third Edition. Chapman and Hall/CRC.
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Explanatory covariates

• GP can model non-linearities and interactions implicitly

• INLA-software using MRFs allows additive effects and 2D
interactions

Aki.Vehtari@aalto.fi Disease mapping with Gaussian processes



Multiple diseases

• Multitask / multioutput GPs

- just add the disease type as a covariate
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Integration over the latent space

• Non-Gaussian models, e.g., y ∼ Poisson(α exp(f (s, θ)))

• We are interested in predictions p(yi |si)

• Integration over the latent variables fi and hyperparameters
θ required
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Integration over the latent space

• In our experiments

- EP about as good as MCMC, but much faster
- Laplace almost as good as EP, but somewhat faster
- VB not as good as EP, byt YMMV
- difference is negligible for many likelihoods given

larger datasets
- differences in classification and with non-log-concave

likelihoods

• Mysterious Sheffield-method? (Hensman et al, submitted)

• I think that in most cases distributional approximations ok

- If not, pseudo-marginal likelihood approach (Filippone
& Girolami, 2013) might be the best choice for MCMC
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Hyperparameter inference

• Type II MAP

- works well when the number of hyperparameters is
small and n is big

• Adaptive grid 1–3 hyperparameters

• CCD

- 1–15 hyperparameters→ 3–287 integration points
- usually works well, but sometimes underestimates the

uncertainty

• Linear approximation (Garnett, Osborne, Hennig, 2013)

• EP can be used to integrate over noise and signal
variances (other hyperparameters in theory, but not fast
(yet?))

• MCMC
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Hyperparameters
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Figure: The grid based, Monte Carlo and central composite design
integration. Contours show the posterior density q(log(ϑ)|D) and the
integration points are marked with dots.
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GPstuff

Code available in Matlab/Octave (RccpOctave for R) toolbox
GPstuff

Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi
Jylänki, Ville Tolvanen and Aki Vehtari (2013). GPstuff:
Bayesian Modeling with Gaussian Processes. In Journal of
Machine Learning Research, 14(Apr):1175-1179.
http://www.jmlr.org/papers/volume12/
jylanki11a/jylanki11a.pdf

GPstuff homepage: http:
//becs.aalto.fi/en/research/bayes/gpstuff/
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GPstuff
• Sparse models

- Compactly supported covariance functions

- Fully and partially independent conditional (FIC, PIC)

- Compactly supported plus FIC (CS+FIC)

- Variational sparse (VAR), Deterministic training conditional (DTC),

Subset of regressors (SOR)
• Latent inference

- Laplace, EP, Parallel EP, Robust-EP

- marginal posterior corrections (cm2 and fact)

- Scaled Metropolis, Scaled HMC, Elliptical slice sampling
• Hyperparameter inference

- Type II ML/MAP

- Leave-one-out cross-validation (LOO-CV)

- Metropolis, HMC, No-U-Turn-Sampler (NUTS), Slice Sampling

(SLS), Surrogate SLS, Shrinking-rank and Cov-matching SLS

- Grid, CCD, Importance sampling

Aki.Vehtari@aalto.fi Disease mapping with Gaussian processes



Acknowledgments

• Researchers

- Jaakko Riihimäki
- Ville Tolvanen
- Simo Särkkä
- Jarno Vanhatalo
- Jouni Hartikainen
- Ville Pietiläinen

• Collaborators and data

- Heikki Joensuu, MD
- Helsinki University Central Hospital
- The National Institute for Health and Welfare
- Finnish Cancer Registry
- Statistics Finland

Aki.Vehtari@aalto.fi Disease mapping with Gaussian processes


