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Abstract

In this work, we discuss practical methods for the Bayesian model assessment
and selection based on expected utilities, and propose several new methods and
techniques for the analysis of the models.

The Bayesian approach offers a consistent way to use probabilities to quan-
tify uncertainty in inference resulting in a probability distribution expressing our
beliefs regarding how likely the different predictions are. The use of Bayesian
models in increasingly complex problems is facilitated by advances in Markov
chain Monte Carlo methods and computing power.

A natural way to assess the goodness of the model is to estimate its future pre-
dictive capability by estimating expected utilities. With application specific utili-
ties, the expected benefit or the cost of using the model can be readily computed.
We propose an approach using cross-validation predictive densities to compute
the expected utilities and Bayesian bootstrap to obtain samples from their distri-
butions. Instead of just making a point estimate, it is important to estimate the
distribution of the expected utility, as it describes the uncertainty in the estimate.
The distributions of the expected utilities can also be used to compare models,
for example, by computing the probability of one model having a better expected
utility than some other model. The expected utilities take into account how the
model predictions are going to be used and thus may reveal that even the best
model selected may be inadequate or not practically better than the previously
used models.

To make the model easier to analyse, or to reduce the cost of making measure-
ments or computation, it may be useful to select a smaller set of input variables.
Computing the cross-validation predictive densities for all possible input combi-
nations easily becomes computationally prohibitive. We propose to use a variable
dimension Markov chain Monte Carlo method to find out potentially useful input
combinations, for which the final model choice and assessment is done using the
cross-validation predictive densities.

We demonstrate the usefulness of the presented approaches with MLP neu-
ral networks and Gaussian process models in three challenging real-world case
problems.
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Chapter 1

Introduction

In this work, we discuss practical methods for Bayesian model assessment, com-
parison, and selection based on expected utilities, and propose several new meth-
ods and techniques for the analysis of the models.

The generalization capability of a statistical model, classical or Bayesian, is
ultimately based on the prior assumptions. The Bayesian approach offers a con-
sistent way to use probabilities to quantify uncertainty in inferences and the result
of Bayesian inference is a probability distribution expressing our beliefs regarding
how likely the different predictions are. In complex problems, one of the major
advantages of the Bayesian approach is that we are not forced to guess unknown
attributes, such as the number of degrees of freedom in the model, degree of non-
linearity of the model with respect to each input variable, or the exact form of the
distribution of the model residuals. The Bayesian approach permits propagation
of uncertainty in quantities that are unknown to other assumptions in the model,
which may be more generally valid or easier to guess in the problem. Although
no guesses are required for the exact values of the parameters or any smoothness
coefficients or other hyperparameters, guesses are made for the exact forms of
their distributions. The goodness of the model depends on these guesses, which
in practical applications makes it necessary to carefully validate the models and
assess their performance.

In Chapter 2, we give a short review of the Bayesian approach and the mod-
els and the priors we have used. We emphasise that it is impossible logically to
distinguish between model assumptions and the prior distribution of parameters.
The model is the prior in the wide sense that it is a probability statement of all
the assumptions currently to be tentatively entertained a priori. All generalization
is based on prior knowledge, that is, training samples provide information only
at those points and the prior knowledge provides the necessary link between the
training samples and the not yet measured future samples.

We also describe briefly the Markov chain Monte Carlo (MCMC) methods
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we have used to numerically approximate the required integrals in the Bayesian
approach. We describe the MLP network and Gaussian process models, which are
flexible nonlinear models used in our illustrative examples, and useful priors for
them. We illustrate some specific issues of residual model selection and the elab-
orate input variable prior (“automatic relevance determination”) in MLP networks
and Gaussian processes.

We demonstrate the benefits of the Bayesian approach and the models and
priors reviewed in three challenging real world cases:

Case I: a regression problem of predicting the quality properties of concrete
Case II: a classification problem of recognizing tree trunks in forest scenes
Case III: an inverse-problem in electrical impedance tomography.

A common factor in the problems is that they have many potentially useful mea-
surements with unknown relevance, noise components, correlations, nonlinear de-
pendencies, and cross-effects. The first two cases are used also in later chapters
to illustrate the discussion.

In Chapter 3, we discuss Bayesian model assessment, comparison, and selec-
tion using expected utilities. Whatever way the model building and the selection
have been done, the goodness of the final model should be assessed in order to
find out whether it is useful in a given problem. Even the best model selected
from some collection of models may be inadequate or not considerably better
than the previously used models. In practical problems, it is important to be able
to describe the quality of the model in terms of the application field instead of
statistical jargon. It is also important to be able to describe the uncertainty in our
estimates.

In prediction problems, it is natural to assess the predictive ability of the model
by estimating the expected utilities, that is, the relative values of consequences.
Expected utilities describe how good predictions the model makes for future ob-
servations from the same process that generated the given set of training data. By
using application specific utility functions, the expected benefit or cost of using
the model for predictions (e.g., by financial criteria) can be readily computed.
In lack of application specific utilities, many general discrepancy and likelihood
utilities can be used. Expected utilities are also useful in non-prediction problems
where the goal is just to get scientific insights in modeled phenomena. Max-
imizing the predictive likelihood utility for such model is same as minimizing
information theoretic Kullback-Leibler divergence between the model and the un-
known distribution of the data. The reliability of the estimated expected utility
can be assessed by estimating its distribution.

We give a unified and formal presentation of how to estimate the distributions
of the expected utilities from the Bayesian viewpoint. As the future observations
are not yet available, we have to approximate the expected utilities by reusing
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samples we already have. We discuss the cross-validation predictive density ap-
proach, which can be used to compute (nearly unbiased) estimates of the expected
utilities. We clearly state the assumptions made in the approach. For simple
models, the cross-validation densities may be computed quickly using analytical
solutions, but for more complex models we need to use approximations. We dis-
cuss the properties of two practical methods, importance sampling leave-one-out
(IS-LOO-CV) and k-fold cross-validation (k-fold-CV). We discuss how the reli-
ability of importance sampling can be estimated and if there is reason to suspect
the reliability of the importance sampling, we suggest to use predictive densities
from the k-fold-CV. We also note that the k-fold-CV has to be used if data points
have certain dependencies. Since the k-fold-CV predictive densities are based on
smaller data sets than the full data set, the expected utility estimate is biased. This
bias has been usually ignored, but in the case of different steepness of the learning
curves and in the model assessment, this bias should not be ignored. To get more
accurate results we use a less well-known first order bias correction.

To assess the reliability of the estimated expected utility it is important to es-
timate its distribution. We discuss simple Gaussian approximations and propose
a quick and generic approach based on the Bayesian bootstrap method, which
makes a simple non-parametric approximation, for obtaining samples from the
distributions of the expected utilities. The proposed approach can handle the vari-
ability due to Monte Carlo integration, bias correction estimation, and approxi-
mation of the future data distribution. Moreover, it works better than Gaussian
approximation in the case of arbitrary summary quantities and non-Gaussian dis-
tributions.

If there is a collection of models under consideration, the distributions of the
expected utilities can also be used for model comparison. With the proposed
method, it is for example easy to compute the probability of one model having
a better expected utility than some other model. Following simplicity postulate
(aka parsimony principle), it is useful to start from simpler models and then test
if more complex model would give significantly better predictions. An extra ad-
vantage of comparing the expected utilities is that even if there is high probability
that one model is better, it might be found out that the difference between the ex-
pected utilities still is practically negligible. For example, it is possible that using
statistically better model would save negligible amount of money.

We discuss the assumptions and restrictions in the approach and relations to
approaches for comparison of methods. We note the relation of the expected pre-
dictive densities to Bayes factors and discuss relations to other predictive densi-
ties, of which most interesting ones are the prior and posterior predictive densities.
We discuss relations to information criteria (e.g., AIC, NIC, DIC), which can also
be used to estimate the expected utility of the model. We also discuss the concept
of the effective number of parameters and describe how it can be estimated using
the cross-validation approach.
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In Chapter 4, we discuss problems specific in input selection. With suitable
priors, it is possible to have a large number of input variables in Bayesian mod-
els, as less relevant inputs can have a smaller effect in the model. To make the
model easier to analyse (easier to gain scientific insights), or to reduce the cost
of making measurements or computation, it may be useful to select a smaller set
of input variables. In addition, if the assumptions of the model and prior do not
match well the properties of the data, reducing the number of input variables may
even improve the performance of the model. Our goal is to find a model with
the smallest number of input variables with statistically or practically at least the
same expected utility as the full model with all the available inputs. In the case of
input selection and K inputs, there are 2K input combinations and computing the
cross-validation predictive densities for each model easily becomes computation-
ally prohibitive.

We propose to use the variable dimension Markov chain Monte Carlo methods
to find out potentially useful input combinations, for which the final model choice
and assessment is done using the cross-validation predictive densities. We discuss
reversible jump Markov chain Monte Carlo (RJMCMC) method, which is one
of the simplest and fastest variable dimension MCMC methods. The approach
is based on the fact that the posterior probabilities of the model, given by the
RJMCMC, are proportional to the product of the prior probabilities of the models
and the prior predictive likelihoods of the models that can be used to estimate
the lower limit of the expected cross-validation predictive likelihood. We also
discuss different ways of including information about prior probabilities of the
number of input variables. Additionally, in the case of very many inputs, we
propose that instead of using the probabilities of input combinations, the marginal
probabilities of inputs can be used to select potentially useful models. In addition
to input selection, the marginal probabilities of inputs, given by the RJMCMC,
can be used to estimate the relevance of the inputs, which has great importance in
analyzing the final model.

Finally, in the last chapter a brief conclusion is drawn.



Chapter 2

The Bayesian approach

2.1 Introduction

In Bayesian data analysis, all uncertain quantities are modeled as probability dis-
tributions, and inference is performed by constructing the posterior conditional
probabilities for the unobserved variables of interest, given the observed data and
prior assumptions. Excellent references for Bayesian data analysis are, for exam-
ple, (in increasing order of deepness) (Sivia, 1996; Gelman et al., 1995; Bernardo
and Smith, 1994). For additional discussion about the concept of probability,
see (Bayes, 1763; Laplace, 1825; Cox, 1946; Jeffreys, 1961; Jaynes, 1996).

We first give a short overview of the Bayesian approach and the Markov chain
Monte Carlo methods used for the integrations. We then describe the residual
models, the MLP networks, and Gaussian processes used in our examples, dis-
cussing some important issues specific to prior distributions.

We have tried to follow the notation of Gelman et al. (1995). For example, we
use the terms distribution and density interchangeably, the same notation is used
for continuous density functions and discrete probability mass functions, and we
use the notation r ∼ F(a) as shorthand for p(r) = F(r |a) where a denotes the
parameters of the distribution F , and the random variable argument r is not shown
explicitly.

2.1.1 Bayes’ rule

The key principle of Bayesian approach is to construct the posterior probability
distributions for all the unknown entities in a model, given the data. To use the
model, marginal distributions are constructed for all those entities that we are in-
terested in, that is, the end variables of the study. These can be the parameters in
parametric models, or the predictions in (non-parametric) regression or classifica-
tion tasks.
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The use of the posterior distributions requires an explicit definition of the prior
distributions for the parameters. The posterior probability distribution for the pa-
rameters θ in a model M given the data D is, according to the Bayes’ rule,

p(θ |D, M) = p(D|θ, M)p(θ |M)

p(D|M)
, (2.1)

where p(D|θ, M) is the likelihood of the parameters θ , p(θ |M) is the prior prob-
ability distribution of θ , and p(D|M) is a normalizing constant, or the evidence
of the model M . The term M denotes all the hypotheses and assumptions that
are made in defining the model, such as a choice of MLP network, specific noise
model etc. All the results are conditioned on these assumptions, and to make this
clear we prefer to have the term M explicitly in the equations. In this notation the
normalization term p(D|M) is directly understandable as the marginal probability
of the data, conditional on M ,

p(D|M) =
∫

p(D|θ, M)p(θ |M)dθ. (2.2)

When having several models, p(D|Mi ) is the likelihood of the model Mi , which
can be used to compare the probabilities of the models, hence the term evidence
of the model. A widely used Bayesian model choice method between two mod-
els is based on Bayes Factors, p(D|M1)/p(D|M2) (see section 3.3.1). The more
common notation of the Bayes formula, with M dropped, causes more easily mis-
interpreting the denominator p(D) as some kind of probability of obtaining the
data D in the studied problem (or prior probability of the data before the model-
ing).

2.1.2 Prediction

The posterior predictive distribution of output y for the new input x (n+1) given the
training data, D = {(x (i), y(i)); i = 1, 2, . . . , n}, is obtained by integrating the
predictions of the model with respect to the posterior distribution of the model,

p(y|x (n+1), D, M) =
∫

p(y|x (n+1), θ, D, M)p(θ |D, M)dθ, (2.3)

where θ denotes all the model parameters and hyperparameters of the prior struc-
tures and M is all prior knowledge in the model specification (including all im-
plicit and explicit prior specifications). If the predictions are independent of the
training data given the parameters of the model (e.g., in parametric models) then
p(y|x (n+1), θ, D, M) = p(y|x (n+1), θ, M).

The predictive distributions can be used to make guesses. For example, with
squared error loss the best guess for model prediction (with an additive zero-mean
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noise model) corresponds to the expectation of the posterior predictive distribution

ŷ = Ey[y|x (n+1), D, M]. (2.4)

The predictive distribution also contains information about the uncertainty in the
prediction, which is usually summarized by the variance or the quantiles of the
predictive distribution of the output or the guess.

If the integral in Equation 2.3 is analytically intractable (e.g., in the examples
in section 3.4), it can be approximated with the methods discussed in section 2.1.4.

2.1.3 The role of prior knowledge in statistical models

Describing the prior information explicitly distinguishes the Bayesian approach
from other methods. It is important to notice, however, that the role of prior
knowledge is equally important in any other approach, including the maximum
likelihood method. It is impossible logically to distinguish between model as-
sumptions and the prior distribution of parameters. The model is the prior in the
wide sense that it is a probability statement of all the assumptions currently to be
tentatively entertained a priori (Box, 1980). All generalization is based on prior
knowledge, that is, training samples provide information only at those points and
the prior knowledge provides the necessary link between the training samples and
the not yet measured future samples (Lemm, 1996, 1999).

Recently, some important no-free-lunch (NFL) theorems have been proven,
that help to understand this issue. Wolpert (1996a,b) showed that if the class of
approximating functions is not limited, any learning algorithm (that is, a proce-
dure for choosing the approximating function) can as readily perform worse or
better than a random one, measured by off-training set (OTS) error, and averaged
over loss functions. This theorem implies that it is not possible to find a learning
algorithm that is universally better than a random one. In other words, if we do
not assume anything a priori, the learning algorithm cannot learn anything from
the training data that would generalize to the off-training set samples.

Wolpert and Macready (1995) and Wolpert (1996b) analysed the cross-valida-
tion method for model selection in more depth and showed that the NFL theorem
also applies to cross-validation. The basic result in the papers is that without pri-
ors on functions, choosing the function by cross-validation performs on average
as well as a random algorithm, or anti-cross-validation, where the function with
the largest cross-validation error is selected. In practice this means that if cross-
validation is used to choose from a very large (actually infinite) set of models,
there is no guarantee of any generalization at all. This is easy to understand in-
tuitively, as in such a situation the chosen algorithm is the one that happens to
minimize the error on the whole training set, and if the set of algorithms is large
there is a high chance that a well fitting (“over-fitted”) solution exists in the set. It
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should be noted, however, that due to computational limitations, cross-validation
can in practice be used to choose between rather few models (typically less than
thousands), so that the choice of the models imposes a very strict prior on the
functions. Thus, the NFL theorems do not invalidate the use of cross-validation
in practical model selection. The implications are more in principal, emphasizing
that the a priori selection of plausible solutions is necessary when using cross-
validation for model selection, and in this respect, cross-validation does not pro-
vide an alternative that would not require using prior knowledge in the modeling.

In practice, statistical models like parametric models or MLP networks prob-
ably contain more likely too strict priors rather than too little prior knowledge.
For example, every discrete choice in the model, such as the Gaussian noise
model, represents an infinite amount of prior information (Lemm, 1996). Any
finite amount of information would not correspond to a probability of one for,
for example, the Gaussian noise model and probability zero for all the other al-
ternatives. In addition, the functional form of the model may be predetermined
(as in polynomial fitting), or the number of degrees of freedom may be fixed (as
in MLP networks trained with error minimization without regularization). Thus,
there is also a large amount of prior information in maximum likelihood models,
even though the model parameters are determined solely by the data, to maximize
the likelihood p(D|θ, M), or to minimize the negative log-likelihood error func-
tion. Actually, the goodness of this prior knowledge is what separates “good” and
“bad” maximum likelihood models.

In the Bayesian approach, a certain part of the prior knowledge is specified
more explicitly, in the form of prior distributions for the model parameters, and
hyperpriors for the parameters of the prior distributions. In complex models like
MLP networks, the relation between the actual domain knowledge of the experts
and the priors for the model parameters is not simple, and thus it may be in practice
difficult to incorporate very sophisticated background information into the models
via the priors of the parameters.

However, a considerable advantage of the Bayesian approach is that it gives
a principled way to do inference when some of the prior knowledge is lacking
or vague, and thus one is not forced to guess values for the attributes that are
unknown. This is done by marginalization, or integrating over the posterior dis-
tribution of the unknown variables, as explained in the next section.

A lot of work has been done to find “non-informative” priors that could be
used to specify a complete lack of knowledge of a parameter value. Some ap-
proaches are uniform priors, Jeffreys’ prior (Jeffreys, 1961), and reference pri-
ors (Berger and Bernardo, 1992). See (Kass and Wasserman, 1996) for a review
and (Yang and Berger, 1997) for a large catalog of different “non-informative”
priors for various statistical models.

Among Bayesians, the use of “non-informative” priors is often referred as the
“objective Bayesian approach”, in contrast to the informative (subjective) priors,
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which reflect the subjective opinions of the model builder. However, in the light of
the NFL theorems, this requires that the hypothesis space is already so constrained
that it contains the sufficient amount of prior information that is needed to be able
to learn a generalizing model (Lemm, 1999, ch. 2.7).

By using “non-informative” priors, the fixed, or guessed, choices can be moved
to higher levels of hierarchical models. Goel and Degroot (1981) showed that in
hierarchical models the training data contains less information of hyperparameters
that are higher in the hierarchy, so that the prior and posterior for the hyperparam-
eters tend to be more similar. Thus, the models are less sensitive to the choices
made in higher levels, implying that higher level priors are in general less infor-
mative, and thus less subjective.

In this way, the hierarchical prior structure can be used to specify a partial
lack of knowledge in a controllable way. For example, if it is difficult to choose
between a Gaussian and a longer tailed (leptokurtic) noise model, one can include
them both in the prediction model by using non-zero prior probabilities for the
two noise models. The posterior probabilities of the noise models will be de-
termined “objectively” from the match of the noise distribution and the realized
model residuals. In section 2.2.1 we present an example of using Student’s t-
distribution with an unknown number of degrees of freedom ν as the noise model
(thus comprising near Gaussian and longer tailed distributions), and integrating
over the posterior distribution of ν in predictions. Some advice on the design of
the hierarchical prior structures and robust noise models can be found, for exam-
ple, in (Gelman et al., 1995).

A typical attribute that is difficult to guess in advance in complex statistical
models is the correct number of degrees of freedom, as it depends on the number
of the training samples and their mutual correlation, distribution of the noise in
the samples and the complexity of the underlying phenomenon to be modeled. In
general, the complexity of the model cannot be defined by only one number, the
total number of degrees of freedom, but instead the models have multiple dimen-
sion of complexity. In the Bayesian approach, one can use a vague prior for the
total complexity (called the effective number of parameters), and use a hierarchi-
cal prior structure to allow different complexity in different parts of the model.
For example, the parameters may be assigned to different groups, so that in each
group the parameters are assumed to have the same hyperparameter, while differ-
ent groups can have different hyperparameters. Then a hyperprior is defined to ex-
plain the distribution of all the hyperparameters. An example of this type of prior,
called the Automatic Relevance Determination prior, is discussed in section 2.2.4.

Although in full hierarchical Bayesian models no guesses are made for exact
values of the parameters or any smoothness coefficients or other hyperparameters,
guesses have to be made for the exact forms of their distributions. The goodness of
the model depends on the guesses that are usually based on uncertain assumptions,
which in practical applications make it necessary to carefully validate the models,
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using, for example, Bayesian posterior analysis (Gelman et al., 1995, ch. 6), or
the cross-validation approach discussed in Chapter 3. This also implies that in
practice the Bayesian approach may be more sensitive to prior assumptions than
the more classical methods. This is discussed in more detail in section 2.2.5.

2.1.4 Approximations of marginal distributions

The marginalization in Equation 2.3 often leads to complex integrals that cannot
be solved in closed form, and thus there is a multitude of approaches that differ in
how the integrals are approximated.

Closest to the conventional maximum likelihood approach is the maximum a
posteriori (MAP) approach, where the posterior distribution of the parameters is
not considered, but the parameters are sought to maximize the posterior probabil-
ity p(w|D, M) ∝ p(D|w, M)p(w|M), or to minimize the negative log-posterior
cost function

E = − log p(D|w, M) − log p(w|M). (2.5)

The weight decay regularization in MLP networks is an example of this technique:
for a Gaussian prior on the weights w the negative log-prior is γ

∑
i w2

i . The main
drawback of this approach is that it gives no tools for setting the hyperparameters
due to lack of marginalization over these “nuisance parameters”. In the weight
decay example, the variance term 1/γ must be guessed, or set with some external
procedure, such as cross-validation.

In the empirical Bayesian approach, specific values are estimated for the hy-
perparameters. For MLP networks, this approach was introduced by MacKay
(1992) in the evidence framework (also called type II maximum likelihood ap-
proach (Berger, 1985)). In this framework, the hyperparameters α are set to val-
ues that maximize the evidence of the model p(D|α, M), that is, the marginal
probability of the data given the hyperparameters, integrated over the parameters,
p(D|α, M) =∫ p(D|w, M)p(w|α, M)dw. A Gaussian approximation is used for
the posterior of the parameters p(w|D, M), to facilitate closed form integration,
and thus the resulting posterior of w is specified by the mean and variance of the
Gaussian approximation.

In the full Bayesian approach, no fixed values are estimated for any parameters
or hyperparameters. Approximations are then needed for the integrations over the
hyperparameters to obtain the posterior of the parameters and over the parameters
to obtain the predictions of the model, as shown in Equation 2.3. The correctness
of the inference depends on the accuracy of the integration method, hence it de-
pends on the problem which approximation method is appropriate. Methods for
approximating the integrations in complex models include, for example, ensemble
learning (Barber and Bishop, 1998), which aims to approximate the posterior dis-
tribution by minimizing the Kullback-Leibler divergence between the true poste-
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rior and a parametric approximating distribution, variational approximations (Jor-
dan et al., 1998) for approximating the integration by a tractable problem, mean
field approach (Winther, 1998), in which the problem is simplified by neglect-
ing certain dependencies between the random variables, and the Markov Chain
Monte Carlo techniques for numerical integration, discussed in more detail in the
next section.

2.1.5 Markov chain Monte Carlo

If the marginalization in Equation 2.3 is analytically intractable (e.g., in examples
in section 2.3), the expectation (or other summary quantity) of any function g can
be estimated by using the Monte Carlo approximation

Ey[g(y)|x (n+1), D, M] ≈ Ej [g(ẏj )] = 1

m

m∑
j=1

g(ẏj ), (2.6)

where the samples {ẏj ; j = 1, . . . , m} are drawn from p(y|x (n+1), D, M). If θ̇j is
a sample from p(θ |D, M) and ẏj is sample from p(y|x (n+1), θ̇j , D, M), then ẏj is
a sample from p(y|x (n+1), D, M).

In the Markov chain Monte Carlo (MCMC) approach, samples are generated
using a Markov chain that has the desired posterior distribution as its stationary
distribution. The difficult part is to create a Markov chain that converges rapidly
and in which the states visited after convergence are not highly dependent. Good
introduction to basic MCMC methods and many applications in statistical data
analysis can be found in (Gilks et al., 1996) and a more theoretical treatment
in (Robert and Casella, 1999). Other excellent references discussing also vari-
ous advanced methods are (Neal, 1993; Gamerman, 1997; Chen et al., 2000; Liu,
2001). Next, we mention the MCMC methods used in this work.

In the Metropolis-Hastings method (Metropolis et al., 1953; Hastings, 1970),
the chain is constructed as follows:

1. Generate θ ′ from a proposal distribution q(θ |θ(t)).

2. Compute

α = min

(
1,

p(θ ′, D, M)q(θ(t)|θ ′)
p(θ(t), D, M)q(θ ′|θ(t))

)
. (2.7)

3. Set θ(t+1) = θ ′ with probability α, otherwise θ(t+1) = θ(t) .

Its simplicity has made the basic Metropolis-Hastings algorithm one of the most
used MCMC methods.

In the Gibbs sampling (Geman and Geman, 1984), each parameter is sampled
in turn from the full conditional distribution of the parameter given all the other
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parameters and the data

p(θk |θ\i , D, M), (2.8)

where θ\i denotes all the other parameters except θk . Gibbs sampling is useful if
samples can easily be drawn from full conditional distribution, which is the case
in many hierarchical models if the prior is chosen to be a conjugate distribution.
Gibbs sampling is the main sampling method in the BUGS system (Gilks et al.,
1992), which is a very convenient Bayesian modeling tool for experimenting with
hierarchical Bayesian models.

The hybrid Monte Carlo (HMC) algorithm by Duane et al. (1987) is an elab-
orate Monte Carlo method, which makes efficient use of gradient information to
reduce random walk behavior. The gradient indicates in which direction the al-
gorithm should proceed to find high-probability states. The detailed description
of the algorithm is not repeated here, see (Duane et al., 1987; Neal, 1993, 1996)
instead. We have also used the windowed variation of HMC by Neal (1994, 1996).

Although the samples from the MCMC are dependent, approximation of Eq-
uation 2.6 is valid, but the variance estimates are trickier. To simplify compu-
tations (and save storage space), we have used thinning to get more independent
MCMC samples (estimated by the autocorrelations (Neal, 1993, ch. 6; Chen et al.,
2000, ch. 3)).

When the amount of data increases, the evidence from the data causes the
probability mass to concentrate in a smaller area and thus we need fewer samples
from the posterior distribution. In addition, fewer samples are needed to evaluate
the mean of the predictive distribution than the tail-quantiles, such as the 10% and
90% quantiles. So depending on the problem, some hundreds of samples may be
enough for practical purposes. Note that due to autocorrelations in the Markov
chain, getting some 100 near-independent samples from a converged chain may
require tens of thousands of samples from the chain, which may require several
hours of CPU-time on a standard workstation.

For convergence diagnostics we have used visual inspection of trends, the
potential scale reduction method (Gelman, 1996) and Kolmogorov-Smirnov test
(Robert and Casella, 1999, ch. 8). Alternative convergence diagnostics have been
reviewed, for example, in (Brooks and Roberts, 1999; Robert and Casella, 1999,
ch. 8).

The MCMC sampling in our examples were done with the FBM software1,
and with Matlab code partially derived from the FBM and Netlab toolbox2 .

1http://www.cs.toronto.edu/∼radford/fbm.software.html
2http://www.ncrg.aston.ac.uk/netlab/

http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.ncrg.aston.ac.uk/netlab/
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2.2 Models and priors

The probability model for the measurements, p(y|x, θ, D, M), contains the cho-
sen approximation functions and noise models. It also defines the likelihood part
in the posterior probability term, p(θ |D, M) ∝ p(D|θ, M)p(θ |M). In a regres-
sion problem with additive error, the probability model is

y = f (x, θw, D) + e, (2.9)

where f () is, for example, the MLP function, θw denotes the parameters of that
function, and the random variable e is the model residual.

In two-class classification problems, the probability that a binary-valued tar-
get, y, has the value 1 may be computed by the logistic transformation (see, e.g.,
Bishop, 1995) as

p(y = 1|x, θw) = [1 + exp(− f (x, θw))]−1, (2.10)

and in many-class classification problems the probability that a class target, y, has
value j may be computed by the softmax transformation (or cross-entropy) (see,
e.g., Bishop, 1995) as

p(y = j |x, θw) = exp( f j (x, θw))∑
k exp( fk(x, θw))

. (2.11)

Next we discuss some useful residual models. A description of the MLP net-
work (section 2.2.2) and Gaussian process (section 2.2.3) models, both of which
are practical flexible nonlinear models, then follows. Finally, we discuss some
important issues specific to input variable priors (section 2.2.4) and general prior
sensitivity (section 2.2.5).

2.2.1 Residual models

The commonly used Gaussian noise model is

e ∼ N (0, σ 2), (2.12)

where N (µ, σ 2) denotes a normal distribution with mean µ and variance σ 2. In
choosing the hyperprior for σ 2, there may be some prior knowledge allowing the
use of a somewhat informative prior. For example, the minimum reasonable value
for the noise variance can be estimated from measurement accuracy or from re-
peated experiments. Whether the hyperprior is informative or non-informative, it
is convenient to choose the form of the distribution in accordance with the method
used to sample from the posterior distribution. Note that the results in general are
not very sensitive to the choices made at the hyperprior level, as discussed in
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section 2.1.3 and confirmed in many studies (see, e.g., Rasmussen, 1996). How-
ever, this should be checked in a serious analysis, especially if the form of the
prior needs to be compromised for reasons of computational convenience. In the
framework used in this study, the hyperparameters are sampled by Gibbs sam-
pling. Convenient priors are thus conjugate distributions, which produce full con-
ditional posteriors of the same form. For the variance of the Gaussian, a conjugate
distribution is the inverse Gamma, producing the prior

σ 2 ∼ Inv-gamma(σ 2
0 , νσ ), (2.13)

with the parametrization

Inv-gamma(σ 2|σ 2
0 , ν) ∝ (σ 2)−(ν/2+1) exp

(
−1

2
νσ 2

0 σ−2

)
,

which is equal to a scaled inverse chi-square distribution (Gelman et al., 1995,
Appendix A). The parameter ν is the number of degrees of freedom and σ 2

0 is a
scale parameter. In this parametrization, the prior is equivalent to having ν uncor-
related prior measurements with averaged squared deviation σ0. The fixed values
for σ0 and νσ can be chosen to produce a vague prior for σ 2 that is reasonably
flat over the range of parameter values that could plausibly arise. We have used
σ0 = 0.05 and νσ = 0.5, similar to those used by Neal (1996, 1998).

Multivariate problems (with several outputs) can be handled by changing the
output in Equation 2.9 to be a vector (thus having common residual model for all
outputs), or by completely separate models, or as a hierarchical model with some
common parts (that is, common hidden layer, separate output weights, and com-
mon or hierarchical noise model). In (Vehtari and Lampinen, 1999b) we analysed
a multivariate regression problem where the residuals of the outputs may have
been correlated. For a multivariate normal residual model with full covariance
matrix, a conjugate hyperprior is the inverse Wishart distribution, allowing Gibbs
sampling for the covariance matrix. See (Barnard et al., 2000) and references
therein for alternative parametrizations for the covariance matrix.

In the noise model in Equation 2.12, the same noise variance σ 2 is assumed
for each sample. In heteroscedastic regression problems, each sample (x (i), y(i))

can have a different noise variance (σ 2)(i), with all the variances governed by a
common prior, corresponding to, for example, a noise model

y(i) = f (x (i); θw) + e(i)

e(i) ∼ N (0, (σ 2)(i))

(σ 2)(i) ∼ Inv-gamma(σave2, νσ )

σ 2
ave ∼ Inv-gamma(σ 2

0 , νσ,ave),

(2.14)

where the fixed hyperparameters are νσ , σ 2
0 and νσ,ave. Here the prior spread of

the variances (σ 2)(i) around the average variance σ 2
ave, determined by νσ , is fixed.
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In this parametrization, the residual model is asymptotically equal to Student’s
t-distribution with fixed degrees of freedom. To allow for a higher probability for
models with similar noise variances, the hyperparameter νσ can also be given a hy-
perprior, so that models with similar variances can have a large νσ , corresponding
to a tight prior for the spread of variances (σ 2)(i). This is asymptotically the same
as the t-distribution noise model with unknown degrees of freedom (Geweke,
1993). Thus, a similar treatment results, whether we assume normal residuals
with different variances, or a common longer tailed t-distribution residual model,
which is discussed in more detail below.

In heteroscedastic problems, the noise variance can be functionally dependent
on some explanatory variables, typically on some subset of the model inputs, so
that the model for the noise variance might be

(σ 2)(i) = F(x (i); θnoise) + ε

ε ∼ Inv-gamma(σ 2
0 , νσ )

(2.15)

with fixed σ 2
0 and νσ . See (Bishop and Qazaz, 1997; Goldberg et al., 1998) for

examples of input dependent noise models, where a separate MLP or GP model
is used to estimate the dependence of the noise variance on the inputs.

Often the Gaussian residual model is not applicable in practical problems.
There may be error sources that have non-Gaussian density, or the target func-
tion may contain peaks, but the training data is not sufficient to estimate them, or
the data is heteroscedastic, with different noise variances in each sample. With
a Gaussian residual model, samples with exceptionally large residuals must be
handled as outliers, using pre- and postfiltering, and manual manipulation of data.
Better option is to use a longer-tailed residual model that allows a small portion of
samples to have large errors. An often-used model is the Laplace (or double expo-
nential) distribution (Laplace, 1774). When the appropriate form for the residual
distribution is not known in advance, the correct Bayesian treatment is to integrate
over all a priori plausible forms.

In this study, we have used Student’s t-distribution, where the tails can be
controlled by choosing the number of degrees of freedom ν in the distribution.
As this number is difficult to guess in advance, we set a hierarchical prior for it,
and in the prediction we integrate over the posterior distribution given the data.
Thus the tails are determined by the fit of the model to the data. The integration
over the degrees of freedom can be done, for example, by Gibbs sampling (see
section 2.1.5) for discretized values of ν (Spiegelhalter et al., 1996), so that the
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residual model is

e ∼ tν(0, σ 2)

σ 2 ∼ Inv-gamma(σ0, νσ )

ν = V [i]
i ∼ Ud(1, K )

V [1 : K ] = [2, 2.3, 2.6, 3, 3.5, 4, 4.5, 5 :1 :10, 12 :2 :20, 25 :5 :50],

(2.16)

where [a :s :b] denotes the set of values from a to b with step s, and Ud(a, b) is a
uniform distribution of integer values between a and b. The discretization is cho-
sen so that an equal prior for each value results in a roughly log-uniform prior on ν.
Another simple way to sample ν, without discretization, is with the Metropolis-
Hastings algorithm, which in our experiments with MLP gave equal results but
slightly slower convergence. In the case of Gaussian process implementation, it
is simpler to use a per-case variances model, that is, the heteroscedastic model of
Equation 2.14 (see implementation details in Neal, 1997, 1999).

2.2.2 MLP neural networks

For MLP neural networks, the Bayesian approach was pioneered by Buntine and
Weigend (1991), MacKay (1992), and Neal (1992) and reviewed, for example, by
MacKay (1995), Neal (1996), Bishop (1995), and Lampinen and Vehtari (2001).

We used an MLP with a single hidden layer and tanh (hyperbolic tangent)
hidden units, which in matrix format can be written as

f (x, θw) = b2 + w2 tanh (b1 + w1x) , (2.17)

where θw denotes all the parameters w1, b1, w2, b2, which are the hidden layer
weights and biases, and the output layer weights and biases, respectively.

Typical prior assumptions in regularization theory are related to the smooth-
ness of the approximation. In Tikhonov regularization (Bishop, 1995), which is
a widely used regularization method in, for example, inverse problems, functions
with large derivatives of chosen order are penalized. With an MLP model, mini-
mizing the curvature (second derivative) (Bishop, 1993) or training the derivatives
to given target values (Lampinen and Selonen, 1997) leads to a rather complex
treatise as the partial derivatives of the nonlinear models depend on all the other
inputs and weights.

A convenient commonly used prior distribution is the Gaussian, which in lin-
ear models is directly related to model derivatives, but has a more complex inter-
pretation in the nonlinear MLP case, as discussed in section 2.2.4. The Gaussian
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priors for the weights are

w1 ∼ N (0, αw1) (2.18)

b1 ∼ N (0, αb1) (2.19)

w2 ∼ N (0, αw2) (2.20)

b2 ∼ N (0, αb2), (2.21)

where the α’s are the variance hyperparameters. The conjugate inverse Gamma
hyperprior is

αj ∼ Inv-gamma(α0, j , να, j ) (2.22)

similarly as for the hyperpriors in the Gaussian noise model. The fixed values for
the highest-level hyperparameters in the case studies were similar to those used by
Neal (1996, 1998). The appropriate hyperpriors depend somewhat on the network
topology. As discussed by Neal (1996) the average weights can be assumed to be
smaller when there are more feeding units, thus for example, the hyperprior for
w1 is scaled according to the number of inputs K . Typical values used were

να,w1 = 0.5

α0,w1 = (0.05/K 1/να,w1 )2.
(2.23)

We have also used a simple hierarchical prior for the MLP weights, called
Automatic Relevance Determination (ARD) (MacKay, 1994; Neal, 1996, 1998).
In ARD each group of weights connected to the same input k ∈ {1, . . . , K } has
common variance hyperparameters, while the weight groups can have different
hyperparameters. An example of the ARD prior used in this study is

wk j ∼ N (0, αk), (2.24)

αk ∼ Inv-gamma(αave, να) (2.25)

αave ∼ Inv-gamma(α0, να,ave), (2.26)

where the average scale of the αk is determined by the next level hyperparameters,
in similar fashion as in the heteroscedastic noise model example above. The fixed
values used in the case studies were να = 0.5, α0 = (0.05/K 1/να )2 and να,ave = 1,
corresponding to vague hyperpriors that let αave and αk be determined by the data.
The hyperparameter να could also be given a hyperprior in similar fashion as in
the heteroscedastic noise model example. In section 2.2.4 we discuss ARD in
more detail.

In the framework introduced by Neal (1996), the hybrid Monte Carlo algo-
rithm is used for sampling the parameters and Gibbs sampling for the hyperpa-
rameters. The detailed description of the algorithm is not repeated here, see in-
stead (Neal, 1996). For other possible sampling schemes see, for example, (Müller
and Rios Insua, 1998; de Freitas et al., 2000).
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In (Vehtari et al., 2000) we discussed the choice of the starting values and the
number of chains. Choosing the initial values with early-stopping (Morgan and
Bourland, 1990; Prechelt, 1998) can be used to reduce the burn-in time when the
chain has not yet reached the equilibrium distribution. In general, the author’s ex-
perience suggests that the convergence of the MCMC methods for MLP is slower
than usually assumed, so that in many of the published studies, the MCMC chains
may have still been in burn-in stage, producing a sort of early-stopping effect to
the selection of the model complexity.

The MLP architecture causes some MCMC sampling problems, due to many
correlated parameters and possible posterior multimodality (Neal, 1996; Müller
and Rios Insua, 1998; Vehtari et al., 2000). Additionally, it is not entirely clear
what are the properties of the realized prior on functions when having a finite
number of hidden units and a Gaussian prior on weights. Nevertheless, the MLP
is useful model as it is reasonable efficient even with large data sets.

2.2.3 Gaussian processes

The Gaussian process is a non-parametric regression method, with priors im-
posed directly on the covariance function of the resulting approximation (see,
e.g., Rasmussen, 1996; Williams and Rasmussen, 1996; Gibbs, 1997; Barber and
Williams, 1997; Neal, 1997; MacKay, 1998a; Neal, 1999).

Given the training inputs x (1), . . . , x (n) and the new input x (n+1), a covariance
function can be used to compute the n + 1 by n + 1 covariance matrix of the
associated targets y(1), . . . , y(n), y(n+1). The predictive distribution for y(n+1) is
obtained by conditioning on the known targets, giving a Gaussian distribution
with the mean and the variance given by

Ey[y|x (n+1), θ, D] = kTC−1 y(1,...,n) (2.27)

Vary[y|x (n+1), θ, D] = V − kTC−1k, (2.28)

where C is the n by n covariance matrix of the observed targets, y(1,...,n) is the vec-
tor of known values for these targets, k is the vector of covariances between y(n+1)

and the known n targets, and V is the prior variance of y(n+1). For regression, we
used a simple covariance function producing smooth functions

Ci j = η2 exp

(
−

p∑
u=1

ρ2
u(x (i)

u − x ( j)
u )2

)
+ δi j J 2 + δi jσ

2
e . (2.29)

The first term of this covariance function expresses that the cases with nearby
inputs should have highly correlated outputs. The η parameter gives the overall
scale of the local correlations. The ρu parameters are multiplied by the coordinate-
wise distances in input space and thus allow for different distance measures for
each input dimension. The second term is the jitter term, where δi j = 1 when
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i = j . It is used to improve matrix computations by adding a constant term to
residual model. The third term is the residual model.

We used an Inverse-gamma prior on η2 and a hierarchical Inverse-gamma prior
(producing an ARD like prior) on ρu .

η2 ∼ Inv-gamma(η2
0, νeta2)

ρu ∼ Inv-gamma(ρave, νρ)

ρave ∼ Inv-gamma(ρ0, ν0)

νρ ∼ Inv-gamma(νρ,0, ννρ,0).

(2.30)

In the framework introduced by Neal (1997, 1999), the parameters of the co-
variance function are sampled using the HMC, and the per-case variances are
sampled with Gibbs sampling. The detailed description of the algorithm is not
repeated here, see instead (Neal, 1997, 1999).

The GP may have much less parameters than the MLP and a part of the inte-
gration is done analytically, and thus the MCMC sampling may be much easier
than for the MLP. On the other hand, there may be memory and performance
problems when the sample size is large and sampling of many latent values may
be slow. Memory and performance problems arise because the approach used
requires inversion of n times n matrix, which is an O(n3) operation. There are
alternative approaches, which can approximate the matrix inversion by sacrificing
flexibility and/or accuracy (Gibbs, 1997; Zhu et al., 1998; Trecate et al., 1999;
Csató et al., 2000; Williams and Seeger, 2001; Smola and Bartlett, 2001). How-
ever, GP is very viable alternative for MLP, at least in problems in which the
training sample size is not very large.

2.2.4 The automatic relevance determination prior

The ARD prior was proposed by MacKay (1994) and Neal (1996) as an automatic
method for determining the relevance of the inputs in MLP, as irrelevant inputs
should have smaller weights in the connections to the hidden units than more
important weights. With separate hyperparameters, the weights from irrelevant
inputs can have tighter priors, which reduce such weights more effectively towards
zero than having a common larger variance for all the input weights.

Determining the relevance of inputs has a great importance in practical mod-
eling problems, in both choosing the inputs in the models as well as in analyzing
the final model. See (Sarle, 1997) for a general discussion on ways to assess the
importance of inputs in nonlinear models. The most common notions of impor-
tance are predictive importance (the increase in generalization error if the variable
is omitted from the model) and causal importance (the change of model outputs
caused by the change of input variable). Note that causal importance is directly
measurable only if the inputs are uncorrelated (so that inputs can be manipulated
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independently), and that it is not related to the causality relations in the actual
system to be modeled.

In ARD for the MLP, the relevance measure of an input is related to the size
of the weights connected to that input. In linear models, these weights define the
partial derivatives of the output with respect to the inputs, which is equal to the
predictive importance of the input, and in the case of non-correlated inputs, also
to the causal importance. In nonlinear MLP networks the situation is, however,
more complex, since small weights in the first layer can be compensated by large
weights in other layers, and the nonlinearity in the hidden units changes the effect
of the input in a way that depends on all the other inputs.

To illustrate the effect of an ARD prior, consider a K -J -1 MLP with a linear
output layer,

y =
J∑

j=1

vj S

(
K∑

k=1

wk j xk

)
. (2.31)

The d’th order partial derivative of the mapping is

∂d y

∂(xk)d
=
∑

j

vj (wk j )
d S(d)

(∑
k

wk j xk

)
, (2.32)

where S(d) is the d’th derivative of S. Thus, constraining the first layer weights
has the largest effect on the higher order derivatives, in the d’th order polynomial
term (wk j )

d . This may partly explain the success of weight decay regularization,
as this type of prior is an effective smoothing prior. On the other hand, to produce
a linear mapping with small high order derivatives, the first layer weights would
need to be small, so that the sigmoids operate on the linear part, and the second
layer weights correspondingly larger. Thus the first layer weights do not mea-
sure the first derivative, or the linear relation, no matter how important it is. The
network may also contain direct input-to-output weights to account for any linear
relation (see, e.g., Neal, 1996), but the ARD coefficients of these weights are not
comparable to the ARD coefficients of the hidden layer weights. Note that adding
input-to-output weights makes the model less identifiable and may slow down the
convergence of MCMC considerably (Neal, 1998).

Similar to MLP, in GP the “ARD” parameters ρu measure the nonlinearity
of the inputs. The parameter ρu defines the characteristic length of the function
for given input direction. The characteristic length describes the length where
substantial changes in the function may happen. Both irrelevant inputs and in-
puts with near linear effect have long characteristic length, except in the case of
important inputs, in which characteristic length is limited by the range of the data.

In the following simple example, we demonstrate how the nonlinearity of the
input has the largest effect on the relevance score of the ARD in MLP, instead of
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Figure 2.1: An example of ARD and the importance of inputs. The target function is
an additive function of eight inputs. The plots show the univariate transformations of the
inputs. The predictive importance of every input is equal, in RMSE terms, as the latent
functions are scaled to equal variance over the uniform input distribution U (−3, 3).

the predictive or causal importance. The target function is an additive function
of eight inputs (see Figure 2.1), with equal predictive importance for every input.
The network weights (using the evidence approximation) are shown in Figure 2.2,
from where it is easy to see how the weights connected to the inputs with lin-
ear transformation are smallest. Figure 2.3 shows the predictive importance and
the mean absolute values of the first and second order derivatives of the output
with respect to each input, and the relevance estimates from the ARD (posterior
standard deviation of the Gaussian prior distributions for each weight group).
The example illustrates how the inputs with a large but linear effect are given low
relevance measures by the ARD. For this reason one should be cautious of using
the ARD to choose or remove inputs in the models, or to rank the variables ac-
cording to importance in the analysis of the model. In section 4.3.1 we illustrate
the difference between the ARD values of MLP and GP, and the marginal pos-
terior probabilities of the inputs, and demonstrate how ARD under-estimates the
predictive relevance of near linear input.

Note however that ARD is often a very favorable prior, as demonstrated in the
case studies in this work, since it loosens the more strict assumption that all the
input weight groups should have the same variance (or nonlinearity). So, unless
the variance is actually assumed to be the same, ARD should be used as a less
informative but probably more correct prior.
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Figure 2.2: Network weights for the test function in Figure 2.1, estimated using the
evidence framework.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Input variable

R
el

at
iv

e 
va

lu
e

True leave−input−out error          
MLP/ARD − mean abs 1st derivative
MLP/ARD − mean abs 2nd derivative
MLP/ARD − input weight prior STD    

Figure 2.3: Different measures of importance of inputs for the test function in Figure 2.1.
Note, that the ARD coefficients are closer to the second derivatives than to the first deriva-
tives (local causal importance) or to the error due to leaving input out (predictive impor-
tance).
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2.2.5 On sensitivity to the prior distributions

As explained above, the Bayesian approach is based on averaging probable mod-
els, where the probability is computed from the chosen distributions for the noise
models, parameters etc. Thus, the approach may be more sensitive to bad guesses
for these distributions than more classical methods, in which model selection
is carried out as an external procedure, such as cross-validation that is based
on fewer assumptions (mainly on the assumption that the training and valida-
tion sets are not correlated). In this respect, Bayesian models can also be over-
fitted in terms of classical model fitting, to produce too complex models and too
small posterior estimates for the noise variance. To check the assumptions of the
Bayesian models, we always carry out the modeling with simple classical methods
(such as linear models, early-stopped committees of MLPs, etc.). If the Bayesian
model gives inferior results (measured with an independent test set or with cross-
validation), some of the assumptions are questionable. The prior sensitivity also
appears in prior-predictive densities and Bayes factors discussed in section 3.3.1.

The following computer simulation illustrates the sensitivity of the Bayesian
approach to the correctness of the noise model, compared to the early-stopped
committee (ESC), which is a robust reference method used in all our case stud-
ies. In early stopping (Morgan and Bourland, 1990; Prechelt, 1998) weights are
initialized to very small values. Part of the training data is used to train the MLP
and the other part is used to monitor the validation error. Iterative optimization
algorithms used for minimizing the training error gradually take parameters in
use. Training is stopped when the validation error begins to increase. The basic
early stopping is statistically rather inefficient, as it is very sensitive to the initial
conditions of the weights and only a part of the available data is used to train the
model. These limitations can easily be alleviated by using a committee of early
stopping MLPs, with a different partitioning of the data to training and stopping
sets for each MLP (Krogh and Vedelsby, 1995). When used with caution, the
early stopping committee is a good baseline method for MLPs.

The target function and data are shown in Figure 2.4. The modeling test was
repeated 100 times with different realizations of Gaussian or Laplacian (double
exponential) noise. The model was a 1-10-1 MLP with a Gaussian noise model.
The figure shows one realization of the data and the resulting predictions. The
90% error intervals, or credible intervals (CI), are for the predicted conditional
mean of the output given the input, thus the measurement noise is not included
in the limits. For the ESC, the intervals are simply computed separately for each
x-value from 100 networks. Computing the confidence limits for early-stopped
committees is not straightforward, but this very simple ad hoc method often gives
results similar to the Bayesian MLP treatment. The summary of the experiment
is shown in Table 2.1. Using the paired t-test, the ESC is significantly better than
the Bayesian model when the noise model is wrong. In this simple problem, both
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Figure 2.4: The test function in demonstrating the sensitivity of a Bayesian MLP and an
early-stopped committee (MLP ESC) to the wrong noise model. The figure shows one
realization of the data and the resulting predictions, with Bayesian MLP in the left and
MLP ESC in the right figure. See text for explanation for the credible intervals (CI).

Table 2.1: Demonstration of the sensitivity of Bayesian MLP and MLP ESC to wrong
noise model. For both models, the noise model was Gaussian, and the actual noise Gaus-
sian or Laplacian (double exponential). The statistical significance of the difference is
tested with the paired t-test. The errors are RMS errors of the prediction with respect to
the true target function.

Bayesian MLP MLP ESC Probability of the
Noise RMSE RMSE difference
Gaussian 0.2779 0.2784 0.15
Laplacian 0.2828 0.2766 0.99

methods are equal for the correct noise model. The correct Bayesian approach
of integrating over the noise models, as explained in section 2.1.3 and shown in
practice in a case problem in section 2.2.1, would of course have no trouble in this
example.

The implication of this issue in practical applications is that the Bayesian ap-
proach usually requires more expert work than other approaches, either to devise
reasonable assumptions for the distributions, or to include different options in the
models and integrate over them, but that done, in our experience the results are
systematically better than with other approaches.
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2.3 Illustrative examples

As illustrative examples we use MLP networks and Gaussian processes with Mar-
kov Chain Monte Carlo sampling in three real world problems: concrete quality
estimation (section 2.3.1), forest scene classification (section 2.3.2) and electrical
impedance tomography (section 2.3.3).

2.3.1 Case I: Regression task in concrete quality estimation

In this section we present results from the real world problem of predicting the
quality properties of concrete (first analysed in Vehtari and Lampinen, 1999a).

The goal of the project was to develop a model for predicting the quality prop-
erties of concrete, as a part of a large quality control program of the industrial
partner of the project. The quality variables included for example compressive
strengths and densities for 1, 28 and 91 days after casting, and bleeding (water
extraction), flow value, slump and air-%, which measure the properties of fresh
concrete. These quality measurements depend on the properties of the stone ma-
terial (natural or crushed, size and shape distributions of the grains, mineralogical
composition), additives, and the amount of cement and water. In the study we
had 27 explanatory variables selected by the concrete expert, (listed for exam-
ple in Figure 4.3) and 215 samples designed to cover the practical range of the
variables, collected by the concrete manufacturing company. The details of the
problem, the descriptions of the variables and the conclusions made by the con-
crete expert are given in (Järvenpää, 2001).

Collecting the samples for statistical modeling is rather expensive in this ap-
plication, as each sample requires preparation of the sand mixture, casting the
test pieces and waiting 91 days for the final tests. In small sample problems, the
selection of correct model complexity is more important and needs to be done
with finer resolution than in problems with large amounts of data. This makes
hierarchical Bayesian models a tempting alternative.

In the study we used 10-hidden-unit MLP networks and a Gaussian process.
To illustrate the effect of priors, four different MLPs with different priors were
tested. As a reference method, we used an early stopping committee of 10 MLP
networks, with different division of data into training and stopping sets for each
member. The networks were initialized to near zero weights to guarantee that the
mapping was smooth in the beginning.

In the following we report the results for one variable, air-%, which measures
the volume percentage of air in the concrete. As the air-% is positive and has a
very skewed distribution (with mean 2.4% and median 1.7%), we use logarithmic
transformation for the variable. This ensures the positiveness and allows the use
of much simpler additive noise models than in the case of a nearly exponentially
distributed variable.
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Table 2.2: Performance comparison of various MLP models and a Gaussian process
model in predicting the air-% variable in concrete manufacturing. The presented RMSE
values show the standardized model residuals relative to the standard deviation of the data.

Method Noise model ARD RMSE std
1. MLP ESC N 0.30 0.04
2. Bayesian MLP N 0.26 0.04
3. Bayesian MLP tν 0.24 0.03
4. Bayesian MLP N yes 0.21 0.02
5. Bayesian MLP tν yes 0.19 0.02
6. Gaussian process tν yes 0.19 0.02

The performance of the models was estimated by 10-fold cross-validation and
the model comparison was made using a paired t-test. Although this approach is
not as accurate as approach described in Chapter 3, this is a valid approximation
of the expected utility approach, and adequate for these comparisons.

The estimated prediction errors are presented in the Table 2.2. In the col-
umn Noise model the letter N indicates normal noise model and tν Student’s t-
distribution with an unknown number of degrees of freedom ν, respectively.

The posterior values for ν were, for example, for a Bayesian MLP with ARD
prior, between 2 and 3.5 (10% and 90% quantiles), corresponding to rather long
tailed distribution for the model residuals.

Some conclusions from the results are listed in the following. The best mod-
els, the Gaussian process model and the Bayesian MLP, with ARD and Student’s
tν-distribution with an unknown number of degrees of freedom as noise model,
performed equally well. The best models were those with the most flexible (less
informative) priors. Within the MLP models, the tν noise model outperformed
all the Gaussian noise models with a 98% probability, and the MLP with tν but
without ARD with a 93% probability. The early-stopped committee MLP ESC
and the basic Bayesian MLP with the Gaussian noise model did not differ sig-
nificantly. Just adding the Bayesian treatment for the basic model does not help
in this application, if the possibility for using hierarchical priors is not utilized.
Adding the ARD made the Bayesian MLP significantly better (99% probability)
than the MLP ESC. Using just the longer tail noise model tν without ARD, made
the Bayesian model better than the ESC MLP with 95% probability.

In the review above, we have presented the results for only one variable in the
study. Rather similar results were obtained for the other variables. The Bayesian
MLP and the Gaussian process model had very similar performance for all the
target variables, so that the choice between them in this application is a matter of
convenience. In Chapter 3 we take a more accurate look into comparing different
residual models using the expected utilities approach.
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2.3.2 Case II: Classification task in forest scene analysis

In this section, we present results from the real world problem of classification of
forest scenes with MLP (first analysed in Vehtari et al., 1998).

The final objective of the project was to assess the accuracy of estimating the
volumes of growing trees from digital images. To locate the tree trunks and to
initialize the fitting of the trunk contour model a classification of the image pixels
to tree and non-tree classes was necessary. The main problem in the task was the
large variance in the classes. The appearance of the tree trunks varies in color and
texture due to varying lighting conditions, epiphytes (such as gray or black lichen
on white birch), and species dependent variations (such as the Scotch pine, with
bark color ranging from dark brown to orange). In the non-tree class the diversity
is much larger, containing, for example, terrain, tree branches, and sky. This
diversity makes it difficult to choose the optimal features for the classification.

We extracted 84 potentially useful features: 48 Gabor filters (with different
orientations and frequencies), which are generic features related to shape and
texture, and 36 common statistical features (mean, variance and skewness with
different window sizes), see details in (Vehtari et al., 1998).

Due to the large number of features, many classifier methods suffer from the
curse of dimensionality. The results of this case demonstrate that the Bayesian
MLP is very competitive in this high dimensional problem.

A total of 48 images were collected using an ordinary digital camera in vary-
ing weather conditions. The labeling of the image data was done by hand via
identifying many types of tree and background image blocks with different tex-
tures and lighting conditions. In this study only pines were considered.

To estimate the classification errors of different models we used the eight-fold
cross-validation error estimate, that is, 42 of 48 pictures were used for training
and the six left out for error evaluation, and this scheme was repeated eight times.

The Gaussian process implementation discussed in section 2.2.3 requires the
inversion of a n times n matrices many times, which in the case of 4800 data
points was computationally infeasible. However, MLP networks work well in this
problem, as their computation time scales linearly to n. We used a 20-hidden-unit
MLP with the logistic likelihood model. The other tested models were:

• KNN LOO-CV, K -nearest-neighbor classification, where K is chosen by
leave-one-out cross-validation3, and

• CART, Classification And Regression Tree (Breiman et al., 1984).
The CV error estimates are collected in Table 2.3. The differences are not very

significant because the different images had very different error rates. This causes
extra variance to the classification results during the CV, which reduces the signif-
icance of the differences, even though the variance comes from the variations in
the task, not variations of the models. See the more detailed analysis in Chapter 3.

3http://www.cs.utoronto.ca/˜delve/methods/knn-class-1/home.html
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Table 2.3: CV error estimates for forest scene classification. See text for explanation of
the different models.

Classification std
Reference model error %
1. CART 30 2
2. KNN LOO-CV 20 2
3. MLP ESC 13 1
4. Bayesian MLP 12 1
5. Bayesian MLP + ARD 11 1

KNN CART MLP ESC Bayes−MLP Bayes−MLP +ARDForest scene

Figure 2.5: Examples of a classified forest scene. See text for explanation of the different
models.

All the MLP models clearly outperform the other models, while the best model,
the Bayesian MLP with ARD, is just slightly better than the other MLP models.

Figure 2.5 shows an example of a new unseen image classified with different
models. Visually, the Bayesian MLP with ARD gives less spurious detections
than the other models. The ARD reduces the effect of features correlating weakly
with the classification, and thus larger windows and robust features dominate. On
the other hand, this causes the classifier to miss some thin trunks and parts of
trunks that are not clearly visible.
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2.3.3 Case III: Inverse problem in electrical impedance tomography

In this section we report results on using Bayesian MLPs for solving an ill-posed
inverse problem in electrical impedance tomography (EIT). The full report of the
proposed approach is presented in (Lampinen et al., 1999; Vehtari and Lampinen,
2000).

The aim of EIT is to recover the internal structure of an object from surface
measurements. A number of electrodes are attached to the surface of the object,
current patterns are injected through the electrodes, and the resulting potentials
are measured. The inverse problem in EIT, estimating the conductivity distribu-
tion from the surface potentials, is known to be severely ill-posed, and thus some
regularization methods must be used to obtain feasible results (see, e.g., Kaipio
et al., 2000).

Figure 2.6 shows a simulated example of the EIT problem. The volume
bounded by the circles in the image represents a gas bubble floating in liquid.
The conductance of the gas is much lower than that of the liquid, producing the
equipotential curves shown in the figure. Figure 2.7 shows the resulting potential
signals, from which the image is to be recovered.

In (Lampinen et al., 1999) we proposed a novel feedforward solution for the
reconstruction problem. The approach is based on computing the principal com-
ponent decomposition for the potential signals and the eigenimages of the bubble
distribution from the autocorrelation model of the bubbles. The input to the MLP
is the projection of the potential signals to the first principal components, and the
MLP gives the coefficients for reconstructing the image as a weighted sum of the
eigenimages. The projection of the potentials and the images to the eigenspace
reduces correlations from the input and the output data of the network and de-
taches the actual inverse problem from the representation of the potential signals
and image data.

The reconstruction was based on 20 principal components of the 128 dimen-
sional potential signal and 30 eigenimages with a resolution of 41×41 pixels. The
training data consisted of 500 simulated bubble formations with one to ten over-
lapping circular bubbles in each image. To compute the reconstructions, MLPs
with 30 hidden units were used. Models tested were MLP ESC and Bayesian
MLP (see section 2.3.1). Because of the input projection, ARD prior should not
make much difference in results (this was verified in preliminary tests), and so a
model with ARD prior was not used in full tests.

The reference method in the study was iterative inversion of the EIT forward
model using total variation regularization (for further information see, e.g., (Kai-
pio et al., 2000)). In this approach, the conductivity distribution is sought to min-
imize a cost function, which is defined as the squared difference of the measured
potentials and the potentials computed from the conductivity distribution by the
forward model. The minimization was carried out by Newton’s method, requiring
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Figure 2.6: Example of the EIT measurement. The simulated bubble formation is
bounded by the circles. The current is injected from the electrode with the lightest color
and the opposite electrode is grounded. The gray level and the contour curves show the
resulting potential field.
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Figure 2.7: Relative changes in potentials compared to homogeneous background. The
eight curves correspond to injections from eight different electrodes.
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Figure 2.8: Example of image reconstructions with MLP ESC (upper row), Bayesian
MLP (middle row), and TV inverse (lower row). In the MLP plots the actual bubble is
shown by the gray blob and contour of the detected bubble as the black line. For the TV
inverse, the estimated bubble is shown as the gray blob, with the same actual bubbles as
in the upper images.

about 20 iteration steps. As it was known that the bubbles and the background
had constant conductivities, total variation regularization was used. The regu-
larizer penalty function was the total sum of absolute differences between adja-
cent area elements, forcing the solution to be smoother, but not penalizing abrupt
changes (total change in a monotonic curve is equal independent of the steepness,
in contrast to, say, squared differences that pull the solution towards low-gradient
solutions).

Figure 2.8 shows examples of the image reconstruction results. Table 2.4
shows the quality of the image reconstructions, measured by the error in the void
fraction and the percentage of erroneous pixels in the segmentation, over the test
set. An important goal in this process tomography application was to estimate
the void fraction, which is the proportion of gas in the image. With the proposed
approach, such goal variables can be estimated directly without explicit recon-
struction of the image. The last column in Table 2.4 shows the relative absolute
error in estimating the void fraction directly from the projections of the potential
signals.

In solving real problems, the ability to assess the confidence of the output
is necessary. Figure 2.9 shows the scatter plot of the void fraction versus the
estimate, together with credible intervals. The 10% and 90% quantiles are com-
puted directly from the posterior predictive distribution of the model output (Eq-
uation 2.3). When the void fraction is large, the forward model becomes more
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Table 2.4: Errors in reconstructing the bubble shape and estimating the void fraction from
the reconstructed images. See text for explanation of the models.

Method Classification error
%

Relative error in
VF %

Relative error in
direct VF, %

TV-inverse 9.7 22.8 -
MLP ESC 6.7 8.7 3.8
Bayesian MLP 5.9 8.1 3.4

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

Void fraction, target

V
oi

d 
fr

ac
tio

n,
 g

ue
ss

Figure 2.9: Scatterplot of the void fraction estimate with 10% and 90% quantiles.

nonlinear and the inverse problem becomes more ill-posed, especially for distur-
bances far from the electrodes. This ambiguity is clearly visible in the credible
intervals, so that they are wider when the model may make large errors.

Although the model was based on simulated data, it has given very promising
results in the preliminary experiments with real data.



Chapter 3

Model assessment and selection
using expected utilities

3.1 Introduction

In this chapter we describe how to estimate the distributions of the expected util-
ities using cross-validation predictive densities. First we review expected utilities
(section 3.1.1) and cross-validation predictive densities (section 3.1.2) and briefly
discuss assumptions made on future data distribution in the approach described in
this chapter and in related approaches where the goal is to compare (not assess)
the performance of methods instead of the models (section 3.1.3).

We discuss the properties of two practical methods, the importance sampling
leave-one-out (section 3.2.1) and the k-fold cross-validation (section 3.2.3). We
propose a quick and generic approach based on the Bayesian bootstrap for obtain-
ing samples from the distributions of the expected utilities (section 3.2.4). If there
is a collection of models under consideration, the distributions of the expected
utilities can also be used for comparison (section 3.2.5).

We also discuss the relation of the proposed method to prior predictive den-
sities and Bayes factors (section 3.3.1), other predictive densities and respective
Bayes factors (sections 3.3.2 and 3.3.3), and information criteria and the effective
number of parameters (section 3.3.4).

As the estimation of the expected utilities requires a full model fitting (or k
model fittings) for each model candidate, the proposed approach is useful only
when selecting between a few models. If we have many model candidates, for
example if doing variable selection, we can use some other methods like the vari-
able dimension MCMC methods (Green, 1995; Carlin and Chib, 1995; Stephens,
2000) for model selection and still use the expected utilities for final model as-
sessment. This approach is discussed in more detail in Chapter 4.

To illustrate the discussion we use MLP networks and Gaussian processes in
one toy problem and two real world problems (section 3.4).
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3.1.1 Expected utilities

In prediction and decision problems, it is natural to assess the predictive ability of
the model by estimating the expected utilities (Good, 1952; Bernardo and Smith,
1994). Utility measures the relative values of consequences. By using application
specific utilities, the expected benefit or cost of using the model for predictions
or decisions (e.g., by financial criteria) can be readily computed. In lack of appli-
cation specific utilities, many general discrepancy and likelihood utilities can be
used.

The posterior predictive distribution of output y for the new input x (n+1) given
the training data D = {(x (i), y(i)); i = 1, 2, . . . , n} is obtained by integrating the
predictions of the model with respect to the posterior distribution of the model
(see section 2.1.2)

p(y|x (n+1), D, M) =
∫

p(y|x (n+1), θ, D, M)p(θ |D, M)dθ. (3.1)

We would like to estimate how good our model is by estimating how good
predictions (i.e., the predictive distributions) the model makes for future obser-
vations from the same process that generated the given set of training data D.
The goodness of the predictive distribution p(y|x (n+h), D, M) can be measured
by comparing it to the actual observation y(n+h) with the utility u

uh = u
(
y(n+h), x (n+h), D, M

)
. (3.2)

The goodness of the whole model can then be summarized by computing some
summary quantity of distribution of uh’s over all future samples (h = 1, 2, . . .),
for example, the mean

ū = Eh[uh] (3.3)

or an α-quantile
ūα = Qα,h[uh]. (3.4)

We call all such summary quantities the expected utilities of the model. Note
that, considering the expected utility just for the next sample (or single one time
decision) and taking the expectation over the distribution of x (n+1) is equivalent to
taking the expectation over all future samples.

Preferably, the utility u would be application specific, measuring the expected
benefit or cost of using the model. For simplicity, we mention here some general
utilities. Both the square error

uh = (
Ey[y|x (n+h), D, M] − y(n+h)

)2
(3.5)

and the absolute error

uh = abs
(
Ey[y|x (n+h), D, M] − y(n+h)

)
(3.6)
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measure the accuracy of the expectation of the predictive distribution, but the
absolute error is more easily understandable especially when summarized using
α-quantile (e.g., α = 90%) as most of the predictions will have error less than the
given value. The predictive likelihood measures how well the model models the
predictive distribution

uh = p(y(n+h)|x (n+h), D, M) (3.7)

and it is especially useful in model comparison (see section 3.2.5) and in non-
prediction problems. Maximization of the expected predictive likelihood cor-
responds to minimization of information-theoretic Kullback-Leibler divergence
(Kullback and Leibler, 1951) between the model and the unknown distribution of
the data (see, e.g., Akaike, 1973). Equivalently, it corresponds to maximization of
the expected Kullback-Leibler information (or Shannon information or entropy)
and thus maximization of the expected information gained (Bernardo, 1979).

An application specific utility may measure the expected benefit or cost, but
instead of negating cost (as is usually done), we represent the utilities in a form
that is most appealing for the application expert. It should be obvious in each case
if a smaller or larger value for the utility is better.

3.1.2 Cross-validation predictive densities

The cross-validation methods for model assessment and comparison have been
proposed by several authors: for early accounts see (Stone, 1974; Geisser, 1975)
and for more recent review see (Gelfand et al., 1992; Shao, 1993). The cross-
validation predictive density dates at least to (Geisser and Eddy, 1979) and nice
review of cross-validation and other predictive densities appears in (Gelfand and
Dey, 1994; Gelfand, 1996). See also discussion in (Bernardo and Smith, 1994, ch.
6) how cross-validation approximates the formal Bayes procedure of computing
the expected utilities.

As the future observations (x (n+h), y(n+h)) are not yet available, we have to
approximate the expected utilities by reusing samples we already have. We as-
sume that the future distribution of the data (x, y) is stationary and it can be rea-
sonably well approximated using the (weighted) training data {(x (i), y(i)); i =
1, 2, . . . , n}. In the case of conditionally independent observations, to simulate
the fact that the future observations are not in the training data, the i th observation
(x (i), y(i)) in the training data is left out and then the predictive distribution for y(i)

is computed with a model that is fitted to all of the observations except (x (i), y(i)).
By repeating this for every point in the training data, we get a collection of leave-
one-out cross-validation (LOO-CV) predictive densities

{p(y|x (i), D(\i), M); i = 1, 2, . . . , n}, (3.8)
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where D(\i) denotes all the elements of D except (x (i), y(i)). To get the LOO-
CV-predictive density estimated expected utilities, these predictive densities are
compared to the actual y(i)’s using utility u, and summarized, for example, with
the mean

ūLOO = Ei [u(y(i), x (i), D(\i), M)]. (3.9)

If the future distribution of x is expected to be different from the distribution
of the training data, observations could be weighted appropriately (demonstrated
in section 3.4.2). By appropriate modifications into the algorithm, the cross-
validation predictive densities can also be computed for a data with finite range
dependencies (see sections 3.2.3 and 3.4.3).

The LOO-CV-predictive densities are computed with the equation (compare
to Equation 3.1)

p(y|x (i), D(\i), M) =
∫

p(y|x (i), θ, D(\i), M)p(θ |D(\i), M)dθ. (3.10)

For simple models, the LOO-CV-predictive densities may be computed quickly
using analytical solutions (see, e.g., Shao, 1993; Orr, 1996; Peruggia, 1997), but
models that are more complex usually require a full model fitting for each n pre-
dictive densities. When using the Monte Carlo methods it means that we have to
sample from p(θ |D(\i), M) for each i , and this would normally take n times the
time of sampling from the full posterior. If sampling is slow (e.g., when using
MCMC methods), the importance sampling LOO-CV (IS-LOO-CV) discussed in
section 3.2.1 or the k-fold-CV discussed in section 3.2.3 can be used to reduce the
computational burden.

3.1.3 On assumptions made on future data distribution

In this section we briefly discuss assumptions made on future data distribution
in the approach described in this work and in related approaches (see, e.g., Ras-
mussen et al., 1996; Neal, 1998; Dietterich, 1998; Nadeau and Bengio, 2000, and
references therein), where the goal is to compare (not assess) the performance of
methods instead of the models.

Assume that the training data D has been produced from the distribution �.
In model assessment and comparison, we condition the results on given realiza-
tion of the training data D and assume that the future data for which we want to
make predictions comes from the same distribution as the training data, that is, �

(section 3.1.1).
The method comparison approaches try to answer the question: “Given two

methods A and B and training data D, which method will produce more accurate
model when trained on new training data of the same size as D?” (Dietterich,
1998). In probabilistic terms, the predictive distribution of output for every new
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input in the future is (compare to Equation 3.1)

p(y|x (n+h), D∗
h, M) =

∫
p(y|x (n+h), θ, D∗

h, M)p(θ |D∗
h, M)dθ, (3.11)

where D∗
h is the new training data of the same size as D. Although not explicitly

stated in the question, all the approaches have assumed that D∗
h can be approxi-

mated using the training data D, that is, D∗
h comes from the distribution �. The

method comparison approaches use various resampling, cross-validation and data
splitting methods to produce proxies for D∗

h . The reuse of training samples is
more difficult than in the model comparison as the proxies should be as indepen-
dent as possible in order to be able to estimate well the variability due to a random
choice of training data. As the goal of the method comparison is methodological
research and not solving a real problem, it is useful to choose problems with large
data sets, from which it is possible to select several independent training and test
data sets of various sizes (Rasmussen et al., 1996; Neal, 1998). Note that after the
method has been chosen and a model has been produced for a real problem, there
still is the need to assess the performance of the model.

When solving a real problem, is there a need to retrain the model on new
training data of the same size and from the same distribution as D? This kind of
situation would rarely appear in practical applications, as it would mean that for
every prediction we would use new training data and previously used training data
would be discarded. If the new training data comes from the same distribution as
the old training data, we could just combine the data and re-estimate the expected
utilities. The performance of the model with additional training data could be
estimated roughly before getting that data, but it may be difficult because of the
difficulties in estimating the shape of the learning curve.

We might want to discard the old training data, if we assume that the future
data comes from some other distribution �+ and the new training data D+ would
come from that distribution too. Uncertainty due to using new training data could
be estimated in the same way as in method comparison approaches, but in order
to estimate how well the results will hold in the new domain we should be able to
quantify the difference between the distributions � and �+. If we do not assume
anything about the distribution �+ we cannot predict the behavior of the model
in a new domain as stated by no-free-lunch theorems (see section 2.1.3). Even if
the distributions � and �+ have just few dimensions, it is very hard to quantify
differences and estimate their effect to expected utilities. If the applications are
similar (e.g., paper mill and cardboard mill), it may be possible for an expert to
give a rough estimate of the model performance in the new domain (it is probably
easier to estimate the relative performance of two models than the performance of
a single model). In this case, it would be also possible to use information from
the old domain as the basis for a prior in the new domain (see, e.g, Spiegelhalter
et al., 2000, pp. 18-19 and references therein).
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3.2 Methods

In this section, we discuss the importance sampling leave-one-out (section 3.2.1)
and k-fold cross-validation (section 3.2.3). We also propose an approach for ob-
taining samples from the distributions of the expected utilities (section 3.2.4) and
discuss model comparison based on expected utilities (section 3.2.5).

3.2.1 Importance sampling leave-one-out cross-validation

In IS-LOO-CV, instead of sampling directly from p(θ |D(\i), M), samples θ̇j from
the full posterior p(θ |D, M) are reused. Additional computation time in IS-LOO-
CV compared to sampling from the full posterior distribution is negligible.

If we want to estimate the expectation of a function h(θ)

E(h(θ)) =
∫

h(θ) f (θ)dθ, (3.12)

and we have samples θ̇j from distribution g(θ), we can write the expectation as

E(h(θ)) =
∫

h(θ) f (θ)

g(θ)
g(θ)dθ, (3.13)

and approximate it with the Monte Carlo method

E(h(θ)) ≈
∑L

l=1 h(θ̇j )w(θ̇j )∑L
l=1 w(θ̇j )

, (3.14)

where the factors w(θ̇j ) = f (θ̇j )/g(θ̇j ) are called importance ratios or importance
weights. See (Geweke, 1989) for the conditions of the convergence of the im-
portance sampling estimates. The quality of the importance sampling estimates
depends heavily on the variability of the importance sampling weights, which de-
pends on how similar f (θ) and g(θ) are.

A new idea in (Gelfand et al., 1992; Gelfand, 1996) was to use full posterior
as the importance sampling density for the leave-one-out posterior densities. By
drawing samples {ÿj ; j = 1, . . . , m} from p(y|x (i), D(\i), M), we can calculate
the Monte Carlo approximation of the expectation

Ey[g(y)|x (i), D(\i), M] ≈ 1

m

m∑
j=1

g(ÿj ). (3.15)

If θ̈i j is a sample from p(θ |D(\i), M) and we draw ÿj from p(y|x (i), θ̈i j , M), then
ÿj is a sample from p(y|x (i), D(\i), M). If θ̇j is a sample from p(θ |D, M) then
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samples θ̈i j can be obtained by resampling θ̇j using importance resampling with
weights

w
(i)
j = p(θ̇j |D(\i), M)

p(θ̇j |D, M)
∝ 1

p(y(i)|x (i), θ̇j , D(\i), M)
. (3.16)

In this case, the quality of importance sampling estimates depends on how much
the posterior changes when one case is left out.

The reliability of the importance sampling can be estimated by examining the
variability of the importance weights. For simple models, the variance of the im-
portance weights may be computed analytically. For example, the necessary and
sufficient conditions for the variance of the case-deletion importance sampling
weights to be finite for a Bayesian linear model are given by Peruggia (1997). In
many cases, analytical solutions are inapplicable, and we have to estimate the ef-
ficiency of the importance sampling from the weights obtained. It is customary to
examine the distribution of weights with various plots (see Newton and Raftery,
1994; Gelman et al., 1995, ch. 10; Peruggia, 1997). We prefer plotting the cu-
mulative normalized weights (see examples in section 3.4.1). As we get n such
plots for IS-LOO-CV, it would be useful to be able to summarize the quality of
importance sampling for each i with just one value. For this, we use a heuristic
measure of effective sample sizes. Generally, the efficiency of importance sam-
pling depends on the function of interest h (Geweke, 1989). If many different
functions h are of potential interest, it is useful to use approximation that does not
involve h. The effective sample size estimate based on an approximation of the
variance of importance weights can be computed as

m(i)
eff = 1/

m∑
j=1

(w
(i)
j )2, (3.17)

where w
(i)
j are normalized weights (Kong et al., 1994; Liu and Chen, 1995). We

propose to examine the distribution of the effective sample sizes by checking the
minimum and some quantiles and by plotting m(i)

eff in increasing order (see exam-
ples in section 3.4). Note that this method cannot find out whether the variance
of the weights is infinite. However, as the importance sampling is unreliable also
with a finite but large variance of weights, the method can be used in practice
to estimate the reliability of the importance sampling. In addition, note that a
small variance estimate of the obtained sample weights does not guarantee that
importance sampling is giving the correct answer, but on the other hand, similar
problem applies to any variance or convergence diagnostics method based on fi-
nite samples of any indirect Monte Carlo method (see, e.g., Neal, 1993; Robert
and Casella, 1999).

Even in simple models like the Bayesian linear model, leaving one very in-
fluential data point out may change the posterior so much that the variance of
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the weights is very large or infinite (Peruggia, 1997). Moreover, even if leave-
one-out posteriors are similar to the full posterior, importance sampling in high
dimensions suffers from large variation in importance weights (see nice example
in (MacKay, 1998b)). Flexible nonlinear models like MLP have usually a high
number of parameters and a large number of degrees of freedom (all data points
may be influential). We demonstrate in section 3.4.1 a simple case where IS-LOO-
CV works well for flexible nonlinear models and in section 3.4.2 a case, which is
more difficult and where IS-LOO-CV fails. In section 3.4.3 we illustrate that the
importance sampling does not work if data have such dependencies that several
samples have to be left out at a time.

In some cases the use of importance link functions (ILF) (MacEachern and
Peruggia, 2000) might improve the importance weights substantially. The idea is
to use transformations that bring the importance sampling distribution closer to
the desired distribution. See (MacEachern and Peruggia, 2000) for an example
of computing case-deleted posteriors for Bayesian linear model. For complex
models, it may be difficult to find good transformations, but the approach seems
to be quite promising.

If there is reason to suspect the reliability of the importance sampling, we
suggest using predictive densities from the k-fold-CV, discussed in section 3.2.3.

3.2.2 Importance weights for MLP and GP models

For MLP the predictions are independent of the training data given the parameters
of the MLP, so the computing of the importance weights is very straightforward
since the term p(y(i)|x (i), θ̇j , D(\i), M) in Equation 3.16 simplifies to

p(y(i)|x (i), θ̇j , D(\i), M) = p(y(i)|x (i), θ̇j , M). (3.18)

For the GP model, the predictions depend on both the parameters of the co-
variance function and the training data. Thus, the simplification of Equation 3.18
cannot be used. However, the term p(y(i)|x (i), θ̇j , D(\i), M) in Equation 3.16 can
be computed quickly using LOO results for GP with fixed parameters from (Sun-
dararajan and Keerthi, 2001)

log p(y(i)|x (i), θ̇j , D(\i), M) = 1

2
log(2π) − 1

2
log c̄i i + 1

2

q2
i

c̄i i
, (3.19)

where c̄i denotes the i th diagonal entry of C−1, qi denotes the i th element of
q = C−1 y and C is computed using the parameters θ̇j . Instead of using the
Bayesian approach and integrating over the parameters, Sundararajan and Keerthi
(2001) used this result (and its gradient) to find a point estimate for the parameters
minimizing the

∑n
i=1 log p(y(i)|x (i), θ̇j , D(\i), M). From results in (Sundararajan
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and Keerthi, 2001), we also get the mean and the variance of the leave-one-out
predictions with given covariance-function parameters

Ey[y|x (i), θ̇j , D(\i), M] = y(i) − qi

c̄ii
(3.20)

Vary[y|x (i), θ̇j , D(\i), M] = 1

c̄i i
. (3.21)

3.2.3 k-fold cross-validation

In k-fold-CV, instead of sampling from n leave-one-out distributions p(θ |D(\i), M),
we sample only from k (e.g., k = 10) k-fold-CV distributions p(θ |D(\s(i)), M) and
then the k-fold-CV predictive densities are computed by the equation (compare to
Equations 3.1 and 3.10)

p(y|x (i), D(\s(i)), M) =
∫

p(y|x (i), θ, D(\s(i)), M)p(θ |D(\s(i)), M)dθ, (3.22)

where s(i) is a set of data points as follows: the data is divided into k groups so
that their sizes are as nearly equal as possible and s(i) is the set of data points in
group where the i th data point belongs. So approximately n/k data points are left
out at a time and thus, if k � n, computational savings are considerable.

Since the k-fold-CV predictive densities are based on smaller training data
sets than the full data set, the expected utility estimate

ūCV = Ei [u(y(i), x (i), D(\s(i)), M)] (3.23)

is biased. This bias has been usually ignored, maybe because k-fold-CV has been
used mostly in model (method) comparison, where biases effectively cancel out
if the models (methods) being compared have similar steepness of the learning
curves. However, in the case of different steepness of the learning curves and
in the model assessment, this bias should not be ignored. To get more accurate
results, the bias corrected expected utility estimate ūCCV can be computed by using
a less well-known first order bias correction (Burman, 1989)

ūtr = Ei [u(y(i), x (i), D, M)] (3.24)

ūcvtr = Ej
[
Ei [u(y(i), x (i), D(\sj ), M)]] ; j = 1, . . . , k (3.25)

ūCCV = ūCV + ūtr − ūcvtr, (3.26)

where ūtr is the expected utility evaluated with the full data given full training
data, that is, the training error or the expected utility computed with the posterior
predictive densities (see section 3.3.3), and ūcvtr is the average of the expected
utilities evaluated with the full data given the k-fold-CV training sets. The cor-
rection term can be computed by using samples from the full posterior and the
k-fold-CV posteriors and no additional sampling is required.
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Although the bias can be corrected when k gets smaller, the disadvantage
of small k is increased variance of the expected utility estimate. The variance
increases with smaller k for the following reasons: the k-fold-CV training data
sets are worse proxies for the full training data, there are more ways to divide the
training data randomly, but it is divided in just one way, and the variance of the
bias correction increases. Values of k between 8 and 16 seem to have good balance
between the increased accuracy and increased computational load. In LOO-CV
(k = n) the bias is usually negligible, but if n is very small it may be useful to
compute the bias correction. See discussion in the next section and some related
discussion in (Burman, 1989).

We demonstrate in section 3.4.1 a simple case where the IS-LOO-CV and
(bias corrected) k-fold-CV give equally good results and in section 3.4.2 a case,
which is more difficult where the k-fold-CV works well and the IS-LOO-CV fails.
In section 3.4.3, we demonstrate a case where k-fold-CV works but IS-LOO-CV
fails, since group dependencies in data require leaving groups of data out at a time.

For the time series with unknown finite range dependencies, the k-fold-CV
can be combined with the h-block-CV proposed by Burman et al. (1994). Instead
of just leaving the i th point out, additionally a block of h cases from either side
of the i th point is removed from the training data for the i th point. The value
of h depends on the dependence structure, and it could be estimated for example
from autocorrelations. Burman and Nolan (1992) show that h = 0 could be used
in the case of stationary Markov process and a quadratic form utility (see also
Akaike, 1973). However, in real world problems exact properties of the process
are not usually known. The approach could also be applied in other models with
finite range dependencies (e.g., some spatial models), by removing a block of h
cases from around the i th point. When more than one data point is left out at a
time, importance sampling probably does not work, and either full h-block-CV or
k-fold-h-block-CV should be used.

Instead of running full MCMC sampling for each fold in k-fold-CV, it might
be possible to reduce the computation time by using coupling of the Markov
chains (Pinto and Neal, 2001). In this case, one longer chain would be normally
sampled for the full posterior. By coupling the k chains of k-fold-CV to the full
posterior chain, shorter chains could be used for the same accuracy.

3.2.4 Estimating the distribution of the expected utility

To assess the reliability of the estimated expected utility, we estimate its distri-
bution. Let us first ignore the variability due to Monte Carlo integration, and
consider the variability due to approximation of the future data distribution with
a finite number of training data points. We are trying to estimate the expected
utilities given the training data D, but the cross-validation predictive densities
p(y|x (i), D(\sj ), M) are based on training data sets D(\sj ), which are each slightly
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different. This makes the ui ’s slightly dependent in a way that will increase the
estimate of the variability of the ū. In the case of LOO-CV, this increase is negligi-
ble (unless n is very small) and in the case of k-fold-CV it is practically negligible
with reasonable values of k (illustrated in section 3.4.1). If in doubt, this increase
could be estimated as mentioned in section 3.4.1. See also comments in the next
section.

If utilities ui are summarized with the mean

ū = Ei [ui ], (3.27)

a simple approximation would be to assume ui ’s to have an approximately Gaus-
sian distribution (described with the mean and the variance) and to compute the
variance of the expected utility of the model as (see, e.g., Breiman et al., 1984, ch.
11)

Var[ū] = Vari [ui ]/n. (3.28)

Of course, the distribution of ui ’s is not necessarily Gaussian, but still this (or
more robust variance estimate based on quantiles) is an adequate approximation
in many cases. Variation of this, applicable in the k-fold-CV case, is that first the
mean expected utility ū j for each k folds is computed and then the variance of the
expected utility is computed as (see, e.g., Dietterich, 1998)

Var[ū] ≈ Varj [ū j ]/k. (3.29)

Here the distribution of ū j ’s tends to be closer to Gaussian (due to central limit
theorem), but the drawback is that this estimator has larger variance than the esti-
mator of Equation 3.28.

If the summary quantity is other than mean (e.g., α-quantile) or the distribu-
tion of ui ’s is considerably far from Gaussian, above approximations may fail.
In addition, the above approximation ignores the uncertainty in the estimates of
ui ’s due to Monte Carlo error. We propose a quick and generic approach based
on Bayesian bootstrap (BB) (Rubin, 1981), which can handle variability due to
Monte Carlo integration, bias correction estimation, and the approximation of the
future data distribution, as well as arbitrary summary quantities and gives good
approximation also in the case of non-Gaussian distributions.

The BB makes a simple non-parametric approximation to the distribution of
random variable. Having samples of z1, . . . , zn of a random variable Z , it is as-
sumed that posterior probabilities for the zi have Dirichlet distribution Di(1,. . . ,1)
(see, e.g., Gelman et al., 1995, Appendix A) and values of Z that are not observed
have zero posterior probability. Sampling from the Dirichlet distribution gives
BB samples from the distribution of the distribution of Z and thus samples of any
parameter of this distribution can be obtained. For example, with φ = E[Z ], for
each BB sample b we calculate the mean of Z as if gi,b were the probability that
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Z = zi ; that is, we calculate φ̇b = ∑n
i=1 gi,bzi . The distribution of the values of

φ̇b; b = 1, . . . , B is the BB distribution of the mean E[Z ]. See (Lo, 1987; Weng,
1989; Mason and Newton, 1992) for some important properties of the BB.

Assumption that the all possible distinct values of Z have been observed is
usually wrong, but with moderate n and not very thick tailed distributions, in-
ferences should not be very sensitive to this unless extreme tail areas are exam-
ined. If in doubt, we could use more complex model (e.g., mixture model) that
would smooth the probabilities (discarding also the assumption about a priori
independent probabilities). Of course, fitting parameters of the more complex
model would require extra work and it still may be hard to model the tail of the
distribution well.

To get samples from the distribution of the expected utility ū, we first sample
from the distributions of each ui (variability due to Monte Carlo integration) and
then from the distribution of the ū (variability due to the approximation of the
future data distribution). From obtained samples, it is easy to compute for example
credible intervals (CI), highest probability density intervals (HDPI, see Chen et al.,
2000), histograms, and kernel density estimates.

Note that the variability due to Monte Carlo integration can be reduced by
sampling more Monte Carlo samples, but this can be sometimes computationally
too expensive. If the variability due to Monte Carlo integration is negligible,
samples from the distributions of each ui could be replaced by the expectations of
ui .

To simplify computations (and save storage space), we have used thinning to
get near independent MCMC samples (estimated by autocorrelations (Neal, 1993,
ch. 6; Chen et al., 2000, ch. 3)). However, if MCMC samples were considerably
dependent, we could use dependent weights in BB (Künsch, 1989, 1994).

3.2.5 Model comparison with expected utilities

The distributions of the expected utilities can be used for comparing different
models. Difference of the expected utilities of two models M1 and M2 is

ūM1−M2 = Ei [uM1,i − uM2,i ]. (3.30)

If the variability due to Monte Carlo integration is assumed negligible and a Gaus-
sian approximation is used for the distributions of the expected utilities (Equa-
tion 3.28 or Equation 3.29), the p-value for the comparison can be computed by
using the paired t-test. This approximation was used in case problems in Chapter 2.

With the Bayesian bootstrap, we can sample directly from the distribution of
the differences, or if the same random number generator seed has been used for
both models when sampling over i (variabilities due to Monte Carlo integrations
are independent but variabilities due to the approximations of the future data dis-
tribution are dependent through i), we can get samples from the distribution of the
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difference of the expected utilities as

˙̄u(M1−M2),b = ˙̄uM1,b − ˙̄uM2,b. (3.31)

Then we can, for example, plot the distribution of ūM1−M2 or compute the prob-
ability p(ūM1−M2 > 0) (these probabilities can naturally be combined with prior
probabilities of the models). Following simplicity postulate (aka parsimony prin-
ciple), it is useful to start from simpler models and then test if more complex
model would give significantly better predictions. See discussion of simplicity
postulate in (Jeffreys, 1961). Note that comparing just point estimates (i.e., as-
suming that the variance is zero) instead of distributions could easily lead to se-
lection of unnecessarily large models (see, e.g., examples in Chapter 4).

An extra advantage of comparing the expected utilities is that even if there
is high probability that one model is better, it might be found out that the differ-
ence between the expected utilities still is practically negligible. For example, it
is possible that using statistically better model would save negligible amount of
money.

Note that a possible overestimation of the variability due to training sets being
slightly different (see the previous section) makes these comparisons slightly con-
servative (i.e., elevated type II error). This is not very harmful, because the error
is small and in model choice, it is better to be conservative than too optimistic.

The expected predictive densities have an important relation to Bayes fac-
tors, which are commonly used in Bayesian model comparison. If utility u is
the predictive log-likelihood and (mean) expected utilities are computed by using
cross-validation predictive densities then

PsBF(M1, M2) ≡
n∏

i=1

p(y(i)|x (i), D(\i), M1)

p(y(i)|x (i), D(\i), M2)
= exp(nūM1−M2), (3.32)

where PsBF stands for pseudo-Bayes factor (Geisser and Eddy, 1979; Gelfand,
1996). As we are interested in the performance of predictions for an unknown
number of future samples, we like to report scaled PsBF by taking nth root to
get a ratio of “mean” predictive likelihoods (see examples in section 3.4). Note
that previously only point estimates for PsBF have been used (except by Vlachos
and Gelfand (2000), see below), but with the proposed approach, it is possible
to compute also the distribution of the PsBF. The approach can also be used to
get samples from other type of Bayes factors, which are briefly discussed in sec-
tions 3.3.1 and 3.3.3.

Vlachos and Gelfand (2000) have proposed an approach to estimate the dis-
tribution of any model choice criteria T (D)|Ml (sic), but the distribution they
estimate is not the distribution of the expected PsBF. Vlachos and Gelfand (2000)
generate prior predictive replicates ẏ(i)

b ; b = 1, . . . , B from the prior predictive
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distributions p(y|x (i), M) and then compute, for example, PsBF for each B repli-
cate data set to obtain samples ṫb. We discuss some problems in prior predictive
approach in section 3.3.1. See also discussion and example by Gelman et al.
(1996) criticizing the use of prior predictive replicates.

As the method we have proposed is based on numerous approximations and
assumptions, the results in model comparison should be applied with care when
making decisions. However, any selection of a set of models to be compared
probably introduces more bias than the selection of one of those models. It should
also be remembered that: “Selecting a single model is always complex procedure
involving background knowledge and other factors as the robustness of inferences
to alternative models with similar support” (Spiegelhalter et al., 1998).

3.3 Relations to other approaches

In this section, we discuss the relations of the cross-validation predictive densities
to prior predictive densities and Bayes factors (section 3.3.1), other predictive den-
sities (sections 3.3.2 and 3.3.3), and information criteria and the effective number
of parameters (section 3.3.4).

3.3.1 Prior predictive densities and Bayes factors

The prior predictive densities (compare to Equation 3.1)

p(y|x (i), M) =
∫

p(y|x (i), θ, M)p(θ |M)dθ (3.33)

are conditioned only on the prior, not on the data. The expected utilities computed
with the prior predictive densities would measure the goodness of the predictions
with zero training samples used. Note that in order to have proper predictive
densities the prior has to be proper. The expected utilities computed with zero
training samples can be used as an estimate of the lower (or upper, if a smaller
value is better) limit for the expected utility.

The prior predictive likelihoods

n∏
i=1

p(y(i)|x (i), M) = p(D|M) (3.34)

are used to compute the Bayes factors (BF)

BF(M1, M2) = p(D|M1)/p(D|M2), (3.35)

which are commonly used in Bayesian model comparison (Jeffreys, 1961; Kass
and Raftery, 1995). BF specifically compares the goodness of the priors and
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Figure 3.1: The cross-validation predictive vs. the prior predictive (Bayes factor).
The true model is N (1, 1) and the models compared are M1 ∼ N (0, 1) and M2 ∼
N (θ, 1), θ ∼ N (0, τ ). The left plot shows comparison results with different values of
τ and with increasing number of data points n. The right plot shows comparison results
with n = 100 and τ changing. Instead of Bayes factor values, the prior predictive results
are also reported as probabilities of the M2 being better than the M1.

thus is sensitive to changes in the prior (Jeffreys, 1961; Kass and Raftery, 1995).
Therefore, even if the posterior would not be sensitive to changes in the prior,
when using BF in model comparison the parameters for the priors have to be cho-
sen with great care.

We illustrate this sensitivity with a small toy problem, where the true model is
a normal distribution N (1, 1). The first model has no parameters M1 ∼ N (0, 1)

and thus it cannot get any information from the data. The second model has one
parameter M2 ∼ N (θ, 1), θ ∼ N (0, τ ), where θ is the location parameter and
τ is the standard deviation of the Gaussian prior on θ . Results were averaged
over 1000 realizations of data. The left part of Figure 3.1 shows comparison
results with three different values of τ and with increasing number of data points
n. The cross-validation predictive approach gives indistinguishable results for
all different values of τ , indicating that M2 is better than M1, while the prior
predictive favors M1 or M2 depending on the value of τ . The right part shows
comparison results with n = 100 and τ changing. The cross-validation predictive
approach favors always M2, while the prior predictive favors M1 or M2 depending
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on τ . It is not shown in the plot, but the cross-validation predictive approach is
unable to make difference between models only when τ < 10−10.

This type of prior sensitivity of the Bayes factor has been long known (Jef-
freys, 1961) and is called “Lindley’s Paradox” or “Bartlett’s paradox” (see a nice
review and historical comments in (Hill, 1982)).

The prior predictive approach completely ignores how much information is
obtained from the data when the prior is updated to the posterior, and conse-
quently, model comparison using the prior predictive densities may produce strange
results. However, because it may be possible to estimate unnormalized prior pre-
dictive likelihoods for large number of models faster than the expected predictive
likelihoods with cross-validation, the prior predictive approach may be used to aid
model selection as discussed in Chapter 4.

If prior and likelihood are very different, normalized prior predictive densities
may be very difficult to compute (Kass and Raftery, 1995). Relative unnormal-
ized prior predictive likelihoods can be estimated more easily with various meth-
ods (see reviews, e.g., in Ntzoufras, 1999; Han and Carlin, 2001). One of such
methods is the reversible jump Markov chain Monte Carlo (Green, 1995), which
is reviewed in section 4.2.2.

3.3.2 Posterior predictive densities

Posterior predictive densities are naturally used for new data (Equation 3.1). When
used for the training data, the expected utilities computed with the posterior pre-
dictive densities would measure the goodness of the predictions as if the future
data samples would be exact replicates of the training data samples. This is equal
to evaluating the training error, which is well known to underestimate the general-
ization error of flexible models (see also examples in section 3.4). Comparison of
the posterior predictive likelihoods

∏n
i=1 p(y(i)|x (i), D, M) = p(D|D, M) leads

to the posterior Bayes factor (PoBF) (Aitkin, 1991).
The posterior predictive densities should not generally be used neither for as-

sessing model performance, except as an estimate of the upper (or lower if smaller
value is better) limit for the expected utility, nor in model comparison as they favor
overfitted models (see also discussion of paper (Aitkin, 1991)). Only if peff � n
(see section 3.3.4) the posterior predictive densities may be useful approximation
to cross-validation predictive densities, and thus may be used to save computa-
tional resources.

The posterior predictive densities are also useful in Bayesian posterior anal-
ysis advocated, for example, by Rubin (1984), Gelman and Meng (1996), and
Gelman et al. (1995, 1996, 2000). In the Bayesian posterior analysis, the goal is
to compare posterior predictive replications to the data and examine the aspects of
the data that might not accurately be described by the model. Thus, the Bayesian
posterior analysis is complementary to the use of the expected utilities in model
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assessment. Bayesian posterior analysis naturally suffers partly from the same
problems as posterior predictive densities generally, that is, using the data twice.
However, although posterior predictive densities are overfitted to the training data
there still may be many aspects of the data that are not well described and can
be detected (see also discussions in references mentioned above). To avoid us-
ing the data twice, we have also used the cross-validation predictive densities for
such analysis. This approach has also been used by Gelfand et al. (1992); Gelfand
(1996), and Draper (1995b, 1996).

The posterior predictive densities also have a connection to information crite-
ria and estimation of the effective number of parameters discussed in section 3.3.4.

3.3.3 Other predictive densities

The partial predictive densities are based on the old idea of dividing the data to
two parts, that is, the training and the test set. Comparison of the partial pre-
dictive likelihoods

∏
i∈s p(y(i)|x (i), D(\s), M) = p(D(s)|D(\s), M) leads to the

partial Bayes factor (PaBF) (O’Hagan, 1995). The expected utilities computed
with partial predictive densities would correspond to computing only one fold in
k-fold-CV, which obviously leads to inferior accuracy.

The fractional Bayes factor (FBF) (O’Hagan, 1995), derived from the partial
Bayes factor, is based on comparing fractional marginal likelihoods qb(D|M) =∫

p1−b(D|θ, M)πb(θ |M)dθ , where 0 < b < 1, p1−b(D|θ, M) is a fractional
likelihood and πb(θ |M) = pb(D|θ, M)p(θ |M) is a fractional posterior (Gilks,
1995). The use of fractions makes it difficult to interpret the FBF in terms of
normal predictive densities and expected utilities.

The intrinsic Bayes factor (Berger and Pericchi, 1996) is computed by taking
the arithmetic (AIBF) or geometric (GIBF) average or median (MIBF) of all such
partial Bayes factors which are computed by using all permutations of minimal
subsets of training data that will make the density p(D(s)|D(\s), M) proper. With
a proper prior (which is recommended anyway), intrinsic Bayes factor is the same
as (prior) Bayes factor and so the same arguments apply.

3.3.4 Information criteria and the effective number of parameters

Akaike (1969, 1970) proposed to estimate the predictive performance of autore-
gressive model with final prediction error (FPE), which measures the expected
mean square prediction error. Instead of using the full predictive distribution
(Equation 3.1), Akaike used the maximum likelihood estimate. Assuming that
the stochastic process under consideration is an autoregressive process generated
from a strictly stationary and mutually independent innovations, asymptotic sec-
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ond order approximation (Akaike, 1970) gives

FPE = s2

(
1 + p/n

1 − p/n

)
≈ s2

(
1 + 2p

n

)
(3.36)

where s2 is the sample mean square of the residual and p is the number of param-
eters in the model.

When considering non-predictive models (especially factor analysis, Findley
and Parzen, 1995), Akaike (1973) came up with an idea of an information criterion
(AIC aka Akaike’s information criterion), which is a generalization of the FPE us-
ing the log-likelihood (or the deviance which is −2 times the log-likelihood) as the
utility. Akaike showed that maximizing the expected log-likelihood corresponds
to minimizing the information theoretic Kullback-Leibler divergence between the
model and the unknown distribution of the data. Using second order Taylor ap-
proximations Akaike (1973) derived asymptotic approximation for the expected
log-likelihood given by

AIC = L(θ̂) − p, (3.37)

where θ̂ is the maximum likelihood estimate of θ .
It is also possible to get asymptotic approximations for expected prior and

posterior predictive log-likelihoods. Bayesian information criterion (BIC aka
Schwarz criterion (Schwarz, 1978)) can be derived from the prior predictive likeli-
hood by using a Laplace approximation for p(D|Mi ), neglecting the prior (assum-
ing a very diffuse prior), and taking asymptotic expectations (see, e.g., Gelfand
and Dey, 1994) giving

BIC = L(θ̂) − (
1

2
log n)p. (3.38)

Similarly, the “posterior information criterion” can be derived from the posterior
predictive likelihoods as (Gelfand and Dey, 1994)

L(θ̂) − 1

2
log 2. (3.39)

As these criteria are based on prior and posterior predictive densities, the prob-
lems mentioned in sections 3.3.1 and 3.3.2 apply and thus these criteria are not
discussed further.

In both the FPE and the AIC, it is assumed that model is true, θ̂ is a unique
solution, and that p does not go to infinity as n → ∞. If the model is wrong
(e.g., model is too simple) the approximation is not valid, but it is assumed that in
model comparison this error does not favor simpler model over correct model.

Bias correction to the AIC for finite sample has been discussed for example
by Hurvich and Tsai (1989, 1991) and Burnham and Anderson (1998). General-
izations of the AIC for unfaithful models (i.e., there is no true model) have been
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discussed for example by Akaike (1981), Chow (1981), Kitagawa (1987), Konishi
and Kitagawa (1996), and Burnham and Anderson (1998).

The network information criterion (NIC) by Murata et al. (1994) generalizes
the AIC for unfaithful models, arbitrary differentiable utility functions, arbitrary
residual models, and penalized or regularized likelihoods (i.e., maximum a poste-
riori approach in Bayesian terms). Using the second order Taylor approximations,
Murata et al. (1994) derive an asymptotic approximation for the expected utility
(summarized with mean) given by

ūNIC = ū θ̃ + tr(K J−1), (3.40)

where tr denotes trace, θ̃ is the maximum a posteriori estimate of θ , K = Var[ū′
θ̃
],

and J = E[ū′′
θ̃
]. The ū′

θ̃
and ū′′

θ̃
represent the first and second derivatives with

respect to θ . If the model is faithful and the utility is the log-likelihood, then
K = J , tr(K J−1) = p and the NIC is the same as the AIC.

FPE, AIC, NIC, and similar criteria approximate the expected utility asymp-
totically, which will not necessarily give good approximation in a finite case,
where the second order approximation may fail. Murata et al. (1994) argue that in
a finite case due to ignoring some terms in approximation, these criteria are only
effective for model comparison among a sequence of nested models where one is
included in another as a lower-dimensional submodel. However, Kitagawa (1987)
notes that although the variability of the estimates might be larger, there are no
conceptual difficulties in comparing non-nested models.

For linear regression with Gaussian noise assumption, quadratic regularizers,
and availability of unbiased estimator, subspace information criterion (SIC) by
Sugiyama and Ogawa (2001) gives an unbiased estimate of the squared error with
finite samples. SIC has many restrictions but may be useful with small samples
in such special cases. Sugiyama and Ogawa (2000) also showed that NIC can be
used as an approximation of the SIC.

Murata et al. (1994) note that in the case of model with additive noise NIC re-
duces to Moody’s criteria (Moody, 1992). If the model is unfaithful, tr(K J −1) <

p and Moody (1992) called then tr(K J−1) = peff the effective number of param-
eters. Using the estimate of peff the expected log-likelihood is given by (compare
to Equation 3.37)

L(θ̂) − peff. (3.41)

In Bayesian models, degrees of freedom in the parameters (and thus peff) are
reduced by the amount of the prior influence and by the amount of dependence
between the parameters. peff depends also on the number of the training sam-
ples (peff ≤ n), distribution of the noise in the samples and the complexity of
the underlying phenomenon to be modeled. The prior influence and the depen-
dence between the parameters are often substantial and for example in MLPs, it
is possible to have p > n but peff � n.
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Spiegelhalter et al. (1998, 2001) proposed deviance information criterion (DIC),
which is Bayesian generalization of AIC and NIC using the Monte Carlo samples
from the posterior for the estimation. Spiegelhalter et al. (2001) justify the DIC
heuristically using decision-theoretic arguments, second order Taylor approxima-
tions, and comparisons to analytic approximations in certain models. Assuming
approximate likelihood normality and using second order Taylor approximation
for the deviance and taking the expectations with respect to the posterior distribu-
tion of θ gives

Eθ [D(θ)] ≈ D(Eθ [θ]) + tr(−L ′′V ), (3.42)

where V = Eθ [(θ − θ̄ )(θ − θ̄ )T ] is the posterior covariance matrix of θ , and
−L ′′ is the observed Fisher’s information evaluated at the posterior mean of θ .
Under asymptotic posterior normality Eθ [θ] = θ̃ , V = J −1 K J−1, −L ′′ = J with
deviance as utility, and thus

tr(−L ′′V ) = tr(K J −1) = peff (3.43)

and
peff ≈ Eθ [D(θ)] − D(Eθ [θ]). (3.44)

Note that the inverse of −L ′′ is the likelihood covariance matrix and thus peff can
be thought of as a measure of the ratio of the information in the likelihood about
the parameters as a fraction of the total information in the likelihood and the prior
(i.e., posterior) (Spiegelhalter et al., 2001).

Spiegelhalter et al. (2001) used Monte Carlo samples from the posterior dis-
tribution of θ to estimate Eθ [D(θ)] and D(E[θ]) and compute

peff,DIC = Eθ [D(θ)] − D(Eθ [θ]) (3.45)

DIC = D(Eθ [θ]) + 2peff,DIC. (3.46)

Spiegelhalter et al. (2001) discussed solely the estimation of the expected de-
viance for model comparison. As discussed in this work, in practical applications
it is also useful to use other utilities both in model comparison and especially in
model assessment. Spiegelhalter et al. (2001) noted the connection to the NIC
incidentally, but did not comment that Monte Carlo samples could be used to es-
timate the expected utilities with any desired utility. A difficult part in the NIC is
the computation of the first and second derivatives in K and J , especially if there
is large number of parameters. Using Monte Carlo samples to estimate Eθ [ū(θ)]
and ū(Eθ [θ]) it is easy to compute an expected utility estimate as

ūDIC = ū(Eθ [θ]) + 2 (Eθ [ū(θ)] − ū(Eθ [θ])) , (3.47)

which is a generalization of the DIC in Equation 3.46.
A problem in the DIC approach is that u(θ̄) is not invariant to parameteri-

zation (e.g., whether to base u(θ̄) on the posterior means of standard deviations,
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variances, precisions, log-precisions, or some other choice) and thus the answer
depends on over which parameters the expectation is taken. This is problematic,
as it is not clear which parameterization should be used and in some cases the ef-
fective number of parameters may even be estimated to be negative (Spiegelhalter
et al., 2001). Spiegelhalter et al. (2001) recommend improving the likelihood nor-
mality in hierarchical models by focusing, that is, by taking the expectations over
particular set of parameters in the model, which can essentially be used to reduce
the model to non-hierarchical structure. In addition, Spiegelhalter et al. (2001)
recommend to test different parameterizations and also median parameters beside
the mean parameters, which, however, makes the approach harder to analyse.

Note that all the information criteria mentioned above use a plug-in predic-
tive distribution (maximum likelihood, maximum a posteriori or posterior mean)
rather than the full predictive distribution obtained by integrating out the unknown
parameters (Equation 3.1). The plug-in predictive distributions ignore the uncer-
tainty about parameter values and model. Spiegelhalter et al. (2001) postulate that
in general the use of a plug-in estimate appears to ‘cost’ an extra penalty of peff.
Asymptotically there is no difference as the uncertainty in parameters vanishes,
but as we try to estimate the goodness of the future predictions having only a finite
training data set, it is natural to use the full predictive densities.

Stone (1977) considered asymptotic behavior of cross-validation with maxi-
mum-likelihood plug-in estimate (which however is asymptotically approximated
by the posterior mean). Using a first order Taylor approximation Stone first heuris-
tically showed that the LOO-CV is asymptotically equivalent with the NIC (Stone,
1977, equation 4.5). Stone did not comment usefulness of this intermediate re-
sult, but continued showing that it is asymptotically equivalent with the AIC if the
model is true and unique solution. As the relation is asymptotic, it does not tell
how these methods compare in more complex problems with a finite data set.

In the cross-validation approach, the estimate of the peff is not needed for
model assessment or comparison, but it may provide additional insights into mod-
els. We estimate the effective number of parameters by the difference of the ex-
pected posterior predictive likelihood

L̄ tr = L̄po =
n∑

i=1

log p(y(i)|x (i), D, M) (3.48)

and the expected predictive likelihood estimated with the leave-one-out cross-
validation (or with the k-fold-CV)

L̄LOO =
n∑

i=1

log p(y(i)|x (i), D(\i), M). (3.49)

The effective number of parameters can then be estimated in certain cases (see
comments below) as

peff,LOO = L̄ tr − L̄LOO. (3.50)
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If L̄LOO is rewritten as

L̄LOO = L̄ tr − peff,LOO, (3.51)

the relation to information criteria is obvious.
The approach discussed in section 3.2.4 can also be used to estimate the distri-

bution of peff,LOO, while the estimation of the distributions of the peff,DIC and DIC
is still under research (Zhu and Carlin, 2000; Spiegelhalter et al., 2001). There
is an asymptotic probability distribution for the NIC (Poncet, 1996), but its accu-
racy in the finite case is not known. Usually information criteria are used to give
only a point estimate of the expected utility. If the point estimate (e.g., mean)
of the expected utility would be used for model selection, it would be probable
that unnecessarily large models would be selected. Selection of unnecessarily
large models is a well-known problem, for example, in the AIC (see, e.g., Shi-
bata, 1976). The difference between the comparison of point estimates and the
distributions can be seen in examples in Chapter 4.

This said, DIC might be a useful approximation in model analysis. It has
been used also by the author for the models in (Vehtari and Lampinen, 1999b;
Järvenpää, 2001). It is faster than the k-fold-CV and might in some cases be more
stable than the IS-LOO-CV, but this requires further investigation.

For illustrative purposes, we have reported the effective number of parameters
peff,CV (with the bias corrected k-fold-CV) and peff,DIC (with mean parameteriza-
tion) for the models used in the illustrative examples in section 3.4.

In MLP networks, there are usually very many correlating parameters, and
thus p may be near or even greater than n and peff � p. For MLP models, the
use of the DIC approach is straightforward, but for GP models, it is more com-
plicated. Many Gaussian processes can be considered to have an infinite number
of parameters, over which the integration is partly done analytically (Neal, 1997,
1999). This makes Gaussian processes very flexible models, and even if the co-
variance function has only a few parameters, it is possible that the total peff is
larger than the total number of parameters in the covariance function (and the
residual model). The cross-validation approach directly produces the total peff of
a Gaussian process, but the direct application of the DIC approach produces the
effective number of parameters in the covariance function. This value might also
be interesting to know, but with this estimate, the DIC approach would overesti-
mate the expected predictive log-likelihood. The total peff of a Gaussian process
can be approximated in the DIC approach by using samples from latent variables.
See (Neal, 1997, 1999) for how to sample latent values of GP. This approach was
used in the examples in section 3.4.

In section 3.4.3, we demonstrate a case with group dependencies in the data,
which have to be taken into account when estimating the future data distribu-
tion. The DIC approach and a cross-validation approach that ignores these de-
pendencies both give a similar, too low estimate for the expected predictive log-
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likelihood. A cross-validation approach that takes into account these dependen-
cies gives the correct answer for the expected predictive log-likelihood, but then
it is possible that ūtr − ūLOO > p.

3.4 Illustrative examples

As illustrative examples, we use MLP networks and Gaussian processes in one
toy problem: MacKay’s robot arm, and two real world problems: concrete quality
estimation and forest scene classification. See (Vehtari and Lampinen, 2001b,
Appendix) for details of the models, priors and MCMC parameters.

3.4.1 Toy problem: MacKay’s robot arm

In this section we illustrate some basic issues of the expected utilities computed
by using the cross-validation predictive densities. A very simple “robot arm” toy-
problem (first used by MacKay, 1992) was selected, so that the complexity of the
problem would not hide the main points that we want to illustrate. Additionally,
we want to demonstrate uncertainties in this problem since this data has been used
in many papers without reporting uncertainty in error estimates. Furthermore, it
seems probable that different sets of test data have been used in some papers,
which has led to overconfident conclusions.

The task is to learn the mapping from joint angles to position for an imaginary
robot arm. Two real input variables, x1 and x2, represent the joint angles and two
real target values, y1 and y2, represent the resulting arm position in rectangular
coordinates. The relationship between inputs and targets is

y1 = 2.0 cos(x1) + 1.3 cos(x1 + x2) + e1 (3.52)

y2 = 2.0 sin(x1) + 1.3 sin(x1 + x2) + e2, (3.53)

where e1 and e2 are independent Gaussian noise variables of standard deviation
0.05. As training data sets, we used the same data sets that were used by MacKay
(1992) 1. There are three data sets each containing 200 input-target pairs which
were randomly generated by picking x1 uniformly from the ranges [-1.932,-0.453]
and [+0.453,+1.932], and x2 uniformly from the range [0.534,3.142]. To get more
accurate estimates of the true future utility, we generated additional 10000 input-
target pairs having the same distribution for x1 and x2 as above, but without noise
added to y1 and y2. The true future utilities were then estimated using this test
data set and integrating analytically over the noise in y1 and y2.

We used 8-hidden-unit MLP with 47 parameters and GP model with 4 param-
eters. In both cases, we used Normal (N ) residual model.

1Available from http://www.inference.phy.cam.ac.uk/mackay/Bayes_FAQ.html

http://www.inference.phy.cam.ac.uk/mackay/Bayes_FAQ.html
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Figure 3.2 shows the expected utilities where the utility is root mean square
error. The IS-LOO-CV and the 10-fold-CV give quite similar error estimates.
Figure 3.3 shows that the importance sampling works probably very well for the
GP but it might produce unreliable results for the MLP. Although importance
sampling weights for the MLP are not very good, the IS-LOO-CV results are not
much different from the 10-fold-CV results in this simple problem. Note that in
this case, small location errors and even a large underestimation of the variance
in the IS-LOO-CV predictive densities are swamped by the uncertainty from not
knowing the noise variance.

In Figure 3.2 also the realized, estimated, and theoretical noise in each data
set is shown. Note that the estimated error is lower if the realized noise is lower
and the uncertainty in estimated errors is about the same size as the uncertainty in
the noise estimates. This demonstrates that most of the uncertainty in the estimate
of the expected utility comes from not knowing the true noise variance. Figure 3.4
verifies this, as it shows the different components that contribute to the uncertainty
in the estimate of the expected utility. The variability due to having slightly dif-
ferent training sets in the 10-fold-CV and the variability due to the Monte Carlo
approximation are negligible compared to the variability due to not knowing the
true noise variance. The estimate of the variability due to having slightly different
training sets in the 10-fold-CV was computed by using the knowledge of the true
function. In real world cases where the true function is unknown, this variabil-
ity could be approximated using the CV terms calculated for the bias correction,
although this estimate might be slightly optimistic. The estimate of the variabil-
ity due to Monte Carlo approximation was computed directly from the Monte
Carlo samples using the Bayesian bootstrap. Figure 3.4 also shows that bias in
the 10-fold-CV is quite small. As the true function was known, we also computed
estimates for the biases using the test data. For all the GPs, the bias corrections
and the “true” biases were the same with about 2% accuracy. For the MLPs, there
was much more variation, but still the “true” biases were inside the 90% credible
interval of the bias correction estimate. Although in this example there would
be no practical difference in reporting the expected utility estimates without the
bias correction, bias may be significant in other problems. For example, in the
examples of sections 3.4.2 and 3.4.3 the bias correction had practically notable
effect.

Figure 3.5 demonstrates the difficulty of estimating the extrapolation capa-
bility of the model. As the distribution of the future data is estimated with the
training data, it is not possible to know how well the model would predict outside
the training data. If it is possible to affect the data collection, it is advisable to
make sure that enough data is collected from the borders of assumed future data
distribution, so that extrapolation for future predictions could be avoided.

Figures 3.6 and 3.7 demonstrate the comparison of models using paired com-
parison of the distributions of the expected utilities. Figure 3.6 shows the ex-
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Figure 3.2: Robot arm example: The expected utilities (root mean square errors) for
MLPs and GPs. Results are shown for three different realizations of the data. The IS-
LOO-CV and the 10-fold-CV give quite similar error estimates. Realized noise and es-
timated noise in each data set is also shown. Dotted vertical line shows the level of the
theoretical noise. Note that the estimated error is lower if the realized noise is lower and
the uncertainty in estimated errors is about the same size as the uncertainty in the noise
estimates.
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Figure 3.3: Robot arm example: Two plot types were used to visualize the reliability
of the importance sampling. Top plots show the total cumulative mass assigned to the
k largest importance weights versus k (one line for each data point i). The MLP has
more mass attached to fewer weights. Bottom plots show the effective sample size of the
importance sampling mi

eff for each data point i (sorted in increasing order). The MLP has
less effective samples. These two plots show that in this problem, the IS-LOO-CV may
be unreliable for the MLP, but probably works well for the GP.



3.4 Illustrative examples 59

0.050 0.052 0.054 0.056 0.058

MLP − Data 1

GP − Data 1

Root mean square error

10−fold CV (90% CI)
Bias due to 10−fold CV using smaller training sets
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Figure 3.4: Robot arm example: The different components that contribute to the uncer-
tainty, and bias correction for the expected utility (root mean square errors) for MLP and
GP. Results are shown for the data set 1. The variability due to having slightly different
training sets in 10-fold-CV and the variability due to the Monte Carlo approximation are
negligible compared to the variability due to not knowing the true noise variance. The
bias correction is quite small, as it is about 0.6% of the mean error and about 6% of the
90% credible interval of error.

pected difference of root mean square errors and Figure 3.7 shows the expected
ratio of mean predictive likelihoods (nth root of the pseudo-Bayes factors). The
IS-LOO-CV and the 10-fold-CV give quite similar estimates, but disagreement
shows slightly more clearly here when comparing models than when estimating
expected utilities (compare to Figure 3.2). The disagreement between the IS-
LOO-CV and the 10-fold-CV might be caused by bad importance weights of the
IS-LOO-CV for the MLPs (see Figure 3.3).

Figure 3.8 shows different components that contribute to the uncertainty in
paired comparison of the distributions of the expected utilities. The variability
due to having slightly different training sets in the 10-fold-CV and the variability
due to the Monte Carlo approximation have larger effect in pairwise comparison,
but they are almost negligible compared to the variability due to not knowing the
true noise variance. Figure 3.8 also shows that in this case, the bias in the 10-fold-
CV is negligible.

Figure 3.9 shows the effective number of parameters for the MLP and GP
models used in this problem. The estimates were computed with the k-fold-CV
and the DIC with mean parameterization. In this case the latent variable approx-
imation used to get the total pDIC,eff of GP fails. The effective number of param-
eters in the covariance function of the GP models estimated with the DIC (see
section 3.3.4) was about 2. This is quite sensible, as there was only one residual
model parameter and the three covariance function parameters correlate strongly.
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Figure 3.5: Robot arm example: The upper plot shows input points of data set 3, with
the full range (broken line) and with the realized range approximated by two convex hulls
(solid line). The lower plot shows how the true future utility (test error) inside the hull
coincides better with credible interval for estimated expected utility.
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Figure 3.6: Robot arm example: The expected difference of root mean square errors
for MLP vs. GP. Results are shown for three different realizations of the data. The
disagreement between the IS-LOO-CV and the 10-fold-CV shows slightly more clearly
when comparing models than when estimating expected utilities (compare to Figure 3.2).
Figure 3.3 indicates reason to suspect the reliability of the IS-LOO-CV.
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Figure 3.7: Robot arm example: The expected ratio of mean predictive likelihoods (nth
root of the pseudo-Bayes factors) for MLP vs. GP. Results are shown for three different
realizations of the data. The disagreement between the IS-LOO-CV and the 10-fold-
CV shows slightly more clearly when comparing models than when estimating expected
utilities (compare to Figure 3.2). Figure 3.3 indicates reason to suspect the reliability of
the IS-LOO-CV.
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10−fold CV (90% CI)
Bias due to 10−fold CV using smaller training sets
Variability due to having different training sets
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Figure 3.8: Robot arm example: The different components that contribute to the uncer-
tainty, and bias correction for the expected difference of the expected root mean square
errors for MLP vs. GP. Results are shown for the data set 1. The variability due to hav-
ing slightly different training sets in the 10-fold-CV and the variability due to the Monte
Carlo approximation are almost negligible compared to the variability from not knowing
the true noise variance. In this case, the biases effectively cancel out and the combined
bias correction is negligible.
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Figure 3.9: Robot arm example: The effective number of parameters for the MLP and
GP models estimated with the k-fold-CV and the DIC (with mean parameterization).
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3.4.2 Case I: Concrete quality estimation

In this section we present results from a real world problem of predicting the
quality properties of concrete (described in section 2.3.1). In the following we
report the results for the volume percentage of air in the concrete, air-%. Similar
results were obtained for the other variables.

We tested 10-hidden-unit MLP networks and GP models with Normal (N ),
Student’s tν , input dependent Normal (in.dep.-N ) and input dependent tν residual
models. The Normal model was used as standard reference model and Student’s
tν , with an unknown degrees of freedom ν, was used as longer tailed robust resid-
ual model that allows a small portion of samples to have large errors. When ana-
lyzing results from these two first residual models, it was noticed that the size of
the residual variance varied considerably depending on three inputs, which were
zero/one variables indicating the use of additives. In the input dependent residual
models, the parameters of the Normal or Student’s tν were made dependent on
these three inputs with common hyperprior.

Figure 3.10 shows the expected normalized root mean square errors and the
expected 90%-quantiles of absolute errors for MLP and GP with Normal (N )
residual model. The root mean square error was selected as general discrepancy
utility and the 90%-quantile of absolute error was chosen after discussion with the
concrete expert, who preferred this utility as it is easily understandable. The IS-
LOO-CV gives much lower estimates for the MLP and somewhat lower estimates
for the GP than the 10-fold-CV. Figure 3.11 shows that the IS-LOO-CV for both
MLP and GP has many data points with small (or very small) effective sample
size, which indicates that the IS-LOO-CV cannot be used in this problem.

Figure 3.12 shows the expected normalized root mean square errors, the ex-
pected 90%-quantiles of absolute errors and the expected mean predictive like-
lihoods for GP models with Normal (N ), Student’s tν , input dependent Normal
(in.dep.-N ) and input dependent tν residual models. There is not much differ-
ence in expected utilities if root mean square error is used (it is easy to guess the
mean of prediction), but there are larger differences if mean predictive likelihood
is used instead (it is harder to guess the whole predictive distribution). The bias
corrections are not shown but they were about 3-5% of the median values, that is,
they have notable effect in model assessment. The biases were similar in different
models, so they more or less effectively cancel out in model comparison.

Tables 3.1, 3.2, and 3.3 show the results for the pairwise comparisons of the
residual models. In this case, the uncertainties in the comparison of the nor-
malized root mean square errors and the 90%-quantiles of absolute errors are so
big that no clear difference can be made between the models. As we get simi-
lar performance with all models (measured with these utilities), we could choose
anyone of them without the fear of choosing a bad model. With the mean predic-
tive likelihood utility, there is more difference as it also measures the goodness
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Figure 3.10: Concrete quality estimation example: The expected utilities for MLP and
GP with the Normal (N ) residual model. The top plot shows the expected normalized root
mean square errors and the bottom plot shows the expected 90%-quantiles of absolute
errors. The IS-LOO-CV gives much lower estimates for the MLP and somewhat lower
estimates for the GP than the 10-fold-CV. Figure 3.11 indicates reason to distrust the
IS-LOO-CV.
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Figure 3.11: Concrete quality estimation example: The effective sample sizes of the
importance sampling m(i)

eff for each data point i (sorted in increasing order) for MLP and
GP with the Normal (N ) noise model. Both models have many data points with a small
effective sample size, which implies that the IS-LOO-CV cannot be trusted.
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Figure 3.12: Concrete quality estimation example: The expected utilities for GP models
with Normal (N ), Student’s tν , input dependent Normal (in.dep.-N ) and input dependent
tν residual models. The top plot shows the expected normalized root mean square errors
(smaller value is better), the middle plot shows the expected 90%-quantiles of absolute
errors (smaller value is better) and the bottom plot shows the expected mean predictive
likelihoods (larger value is better). There is not much difference in expected utilities of
different residual models if root mean square error is used as utility (it is easy to guess the
mean of the prediction), but there are larger differences if mean predictive likelihood is
used instead (it is harder to guess the whole predictive distribution). See Tables 3.1, 3.2,
and 3.3 for the pairwise comparisons of the residual models.
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Table 3.1: Concrete quality estimation example: Pairwise comparison of GP models with
different residual models using the normalized root mean square error as utility (see also
Figure 3.12). The values in the matrix are probabilities that the model in the row is better
than the model in the column. Uncertainties in the predictive utilities are so big (see also
Figure 3.12) that no clear difference can be made between the residual models using the
normalized root mean square error as utility.

Comparison
residual model 1. 2. 3. 4.
1. N 0.40 0.22 0.33
2. tν 0.60 0.18 0.31
3. input dependent N 0.78 0.82 0.85
4. input dependent tν 0.67 0.69 0.15

Table 3.2: Concrete quality estimation example: Pairwise comparison of GP models
with different residual models using the 90%-quantile of absolute error as utility (see also
Figure 3.12). The values in the matrix are probabilities that the model in the row is better
than the model in the column. Uncertainties in the predictive utilities are so big (see
also Figure 3.12) that no clear difference can be made between residual models using the
90%-quantile of absolute error as utility.

Comparison
residual model 1. 2. 3. 4.
1. N 0.17 0.53 0.21
2. tν 0.83 0.87 0.67
3. input dependent N 0.47 0.13 0.23
4. input dependent tν 0.79 0.33 0.77

Table 3.3: Concrete quality estimation example: Pairwise comparison of GP models with
different residual models using mean predictive likelihood as utility (see also Figure 3.12).
The values in the matrix are probabilities that the model in the row is better than the model
in the column. It seems quite probable that the input dependent tν residual model is better
than N or tν and is not much better than input dependent N .

Comparison
Residual model 1. 2. 3. 4.
1. N 0.02 0.01 0.00
2. tν 0.98 0.22 0.06
3. input dependent N 0.99 0.78 0.32
4. input dependent tν 1.00 0.94 0.68
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Figure 3.13: Concrete quality estimation example: The effective number of parameters
for the GP models with Normal (N ), Student’s tν , input dependent Normal (in.dep.-N )
and input dependent tν residual models. The plot shows the estimates for the effective
number of parameters computed with the k-fold-CV and the DIC.

of the tails. If in addition to point estimates, the predictive distributions (or, e.g.,
credible intervals for predictions) are wanted, input dependent tν model would be
probably the best choice.

Figure 3.13 shows the effective number of parameters for the GP models used
above. There were 30–258 model parameters depending on the residual model
in those models. In this case, the approximation used in the DIC to get the total
pDIC,eff of GP seemed to work reasonably. The effective number of parameters in
the covariance function of the GP models estimated with the DIC were about 6,
39, 8 and 27, respectively. For comparison, in the MLP models there were 322–
335 model parameters (note that p >n) depending on the residual model and the
effective numbers of parameters were estimated to be about 75–90.

Knowing that the additives have strong influence on the quality of concrete it
was useful to report also the expected utilities separately for samples with different
additives (i.e. assuming that in all future casts no additives or just one of the
additives will be used). Figure 3.14 shows for the GP with input dependent tν
residual model the expected 90%-quantiles of absolute errors for samples with no
additives, with additive A or B, and all samples. Samples with the additive B have
much larger expected error. This is natural as the additive B is used to increase
the air-% in concrete and the variation in the measurements is relative to the value
of the air-%.
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Figure 3.14: Concrete quality estimation example: The expected utilities for the GP with
the input dependent tν residual model. The plot shows the expected 90%-quantiles of
absolute errors for samples with no additives, with additive A or B, and all samples. As
the additives have effect on the amount of variation in the quality of concrete, it is natural
that value of the expected utility also depends on additives.
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3.4.3 Case II: Forest scene classification

In this section, we illustrate that if, due to dependencies in the data, several data
points should be left out at a time, k-fold-CV has to be used to get more accu-
rate results. The case problem is the classification of forest scenes with an MLP
network described in section 2.3.2.

Textures and lighting conditions are more similar in different parts of one im-
age than in different images. If the LOO-CV is used or data points are divided
randomly in the k-fold-CV, training and test sets may have data points from the
same image, which would lead to over-optimistic estimates of the predictive util-
ity. This is caused by the fact that instead of having 4800 independent data points,
we have 48 sample images which each have 100 highly dependent data points.
This increases our uncertainty about the future data. To get a more accurate es-
timate of the predictive utility for new unseen images, training data set has to be
divided by images.

We tested two 20-hidden-unit MLPs with logistic likelihood model. The first
MLP used all 84 inputs and the second MLP used a reduced set of 18 inputs
selected using the reversible jump MCMC (RJMCMC) method (see Chapter 4).

As discussed in section 3.2.1 and demonstrated in section 3.4.2, leaving one
point out can change posterior so much that importance sampling does not work.
Leaving one image (100 data points) out will change posterior even more. Figure 3.15
shows the effective sample sizes of the importance sampling for the 84-input MLP
for the IS-LOO-CV and the IS-LOIO-CV (leave-one-image-out). For the 18-input
MLP the result was similar. In this case, neither the IS-LOO-CV nor the IS-LOIO-
CV can be used.

The expected classification errors for the 84 and 18-input MLPs are shown in
Figure 3.16. The predictive utilities computed by using the posterior predictive
densities (training error) give too low estimates. The IS-LOO-CV and the 8-fold-
CV with random data division give too low estimates because the data points from
one image are highly dependent. The IS-LOO-CV also suffers from somewhat
bad importance weights and the IS-LOIO-CV suffers from very bad importance
weights (see Figure 3.15). In the group 8-fold-CV, the data division was made by
handling all the data points from one image as one indivisible group. The bias
corrections are not shown but they were for the 84 and 18 input MLPs about 9%
and 3% of the median values, respectively. Note that the more complex model had
naturally a steeper learning curve and correspondingly a larger bias correction. In
this case, biases did not cancel out in model comparison.

The pairwise comparison computed by using the group 8-fold-CV predictive
densities gave a probability of 0.86 that the 84-input model has lower expected
classification error than the 18-input model. We still might use the smaller model
for classification, as it would be not much worse, but slightly faster.

Figure 3.17 shows the expected mean predictive likelihoods and the effec-
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Figure 3.15: Forest scene classification example: The effective sample sizes of the im-
portance sampling m(i)

eff for each data point i (sorted in increasing order) for the 84-input
logistic MLP. The effective sample sizes are calculated both for the leave-one-point-out
(IS-LOO-CV) and the leave-one-image-out (IS-LOIO-CV) methods. In both cases there
are many data points with a small effective sample size, which implies that importance
sampling cannot be trusted in this problem.
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Figure 3.16: Forest scene classification example: The expected utilities (classification
errors) for the 84 and 18-input logistic MLPs. The IS-LOO-CV gives too low estimates
because the data points from one image are highly dependent (and also because of bad
importance weights). The IS-LOIO-CV gives too low estimates because of bad impor-
tance weights when leaving one image out at time (see Figure 3.15). The 8-fold-CV with
random data division gives too low estimates because the data points from one image are
highly dependent. The group 8-fold-CV gives better estimates, as the data division was
made by handling all the data points from one image as one indivisible group.
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Figure 3.17: Forest scene classification example: The top plot shows the expected mean
predictive likelihoods computed with the 8-fold-CV and the DIC. The bottom plot shows
the estimates for the effective number of parameters computed with the k-fold-CV and
the DIC. The 84-input MLP had p = 1721 and the 18-input MLP had p = 401.

tive number of parameters for the MLP models used above. There were 1721
and 401 parameters for 84 and 18-input MLPs, respectively. The 8-fold-CV
with random data division and the DIC give too optimistic estimates of the ex-
pected mean predictive likelihoods because data points from one image are highly
dependent. The group 8-fold-CV gives good estimates for the expected mean
predictive likelihoods, but now the difference between the posterior predictive
likelihood and the expected predictive likelihood is not the same as the effective
number of parameters. This can be seen clearly in the 18-input MLP, for which
p(ūtr − ūLOO > p) = 0.98.





Chapter 4

Input variable selection using
expected utilities

4.1 Introduction

In practical problems, it is often possible to measure many variables, but it is not
necessarily known which of them are relevant and required to solve the problem.
In Bayesian models, it is usually feasible to use large number of potentially rele-
vant input variables by using suitable priors with hyperparameters controlling the
effect of the inputs in the model (see Chapter 2). Although such models may have
good predictive performance, it may be difficult to analyse them, or costly to make
measurements or computations. To make the model more explainable (easier to
gain scientific insights) or to reduce the measurement cost or the computation
time, it may be useful to select a smaller set of input variables. In addition, if the
assumptions of the model and prior do not match well the properties of the data,
reducing the number of input variables may even improve the performance of the
model. Our goal is to find a model with the smallest number of input variables
having statistically or practically at least the same predictive ability as the full
model with all the available inputs.

With just a few models, it is easy to compare them using the cross-validation
approach. In the case of K inputs, there are 2K input combinations, and computing
the cross-validation predictive densities for each model easily becomes computa-
tionally prohibitive. For example, in our second example case (section 4.3.2), with
84 inputs, even if a million models could be checked in a second, going through
all the combinations would take over 600 million years. As the computation of
the cross-validation predictive densities may take minutes or hours for each model
candidate, we need some way to reduce the number of potential models that are
compared to just a few models.

We propose to use variable dimension jump Markov chain Monte Carlo meth-
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ods to find out potentially useful input combinations, for which the final model
choice and assessment is done using the cross-validation predictive densities. We
have used the reversible jump Markov chain Monte Carlo (RJMCMC) method
(Green, 1995), which is one of the simplest to implement and one of the fastest on
big problems. The RJMCMC visits models according to their posterior probabili-
ties, and thus models with negligible probability are probably not visited in finite
time. Consequently, only the most probable models are investigated and com-
putational savings can be considerable compared to going through all possible
models.

The posterior probabilities of the models, given by the RJMCMC, are pro-
portional to the product of the prior probabilities of the models and the prior pre-
dictive likelihoods of the models. The prior predictive likelihood measures the
goodness of the model if no training data were used and thus can be used to esti-
mate the lower limit of the expected predictive likelihood. In model comparison,
the predictive likelihood is a useful utility, as it measures how well the model pre-
dicts the predictive distribution. This way it is possible to choose a smaller set of
models in a reasonable amount of time for which better estimates of the expected
utilities (with any desired utility) can be computed using the cross-validation pre-
dictive densities. We review the RJMCMC method in section 4.2.2.

Estimates based on the prior predictive densities computed in many ways (in-
cluding the RJMCMC), have been used directly for model selection (including
the input variable selection) (see, e.g., Kass and Raftery, 1995; Ntzoufras, 1999;
Sykacek, 2000; Han and Carlin, 2001; Kohn et al., 2001; Chipman et al., 2001,
and the references therein). In section 3.3.1 we discussed the sensitivity of the
prior predictive densities to the choice of the priors of the model parameters.
In section 4.2.1, we discuss why it is not possible to be uninformative when choos-
ing priors for the model space and how information about the prior probabilities of
the number of input variables can be included using various priors. Furthermore,
Spiegelhalter (1995) argues that when selecting single model from some family
of models instead of integrating over the discrete model choices (e.g., input com-
binations), it is better to compare the consequences (e.g., utilities) of the models
instead of their posterior probabilities. Consequently, we argue that the posterior
probabilities of the models should not usually be used directly for input selection.

If there are many correlated inputs, it is probable that there are also many high-
probability input combinations and thus it may be hard to get enough samples in
reasonable time to estimate the probabilities of input combinations well. In this
case, we propose to use the marginal probabilities of the inputs, which are easier to
estimate, to indicate potentially useful inputs. This is illustrated in section 4.3.2.

In addition to input selection, the marginal probabilities of inputs, given by
the RJMCMC, can be used to estimate the relevance of the inputs, which has
great importance in analyzing the final model. In section 2.2.4 we discussed and
demonstrated the fact that instead of the predictive importance, nonlinearity of the
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input has the largest effect on the ARD values. In section 4.3.1 we also illustrate
the difference between the marginal probabilities of inputs and the ARD values
for relevance estimation.

The proposed approach is generic, and faster methods might be used for
simple regular models, for example by combining analytic approximations of
p(D|Ml) or ūMl with stochastic optimization (e.g., simulated annealing) over l.
Although not demonstrated here, if extremely parsimony MLP models are de-
sired, the proposed approach could also be used to select the connections and the
number of hidden units in MLP network.

As illustrative examples, we use MLP networks and Gaussian processes in
two real world problems (section 4.3).

4.2 Methods

In this section we discuss prior issues specific in input selection (section 4.2.1) and
review the RJMCMC method, which can be used to obtain estimates of the (unnor-
malized) prior predictive likelihoods for a huge amount of models in a time com-
parable to computing the cross-validation predictive densities for a single model
(section 4.2.2).

4.2.1 Priors for input selection

In this section we discuss the model space priors for input selection p(Ml |I ),
where I denotes the assumptions about the model space. We also discuss the
effect of parameter priors p(θMl |Ml) to the posterior probabilities of the input
combinations.

If we have K potential inputs, there are L = 2K different models. A simple
and popular choice is the uniform prior on models

p(Ml) ≡ 1/L , (4.1)

which is noninformative in the sense of favoring all models equally, but as seen
below, will typically not be noninformative with respect to the model size.

It will be convenient to index each of the 2K possible input combinations with
the vector

γ = (γ1, . . . , γK )T , (4.2)

where γk is 1 or 0 according to whether the input k is included in the model or not,
respectively. We get equal probability for all the input combinations (models) by
setting

p(γ ) = (1/2)K . (4.3)
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From this we can see that the implicit prior for the number of inputs k is the
Binomial

p(k) = Bin(K , 1/2), (4.4)

which clearly is not uninformative, as E[k] = 0.5K and Var[k] = 0.25K . For
example, if K=27, then k lies in the range 7 to 20 with prior probability close to 1
(see also examples in section 4.3).

To favor smaller models various priors on the number of inputs (or other com-
ponents) have been used; for example, geometric (Rios Insua and Müller, 1998),
truncated Poisson (Phillips and Smith, 1996; Denison et al., 1998; Sykacek, 2000),
and truncated Poisson with a vague Gamma hyperprior for λ (Andrieu et al.,
2000). A problem with these approaches is that the implicit Binomial prior still is
there, producing the combined prior

p(k) = Bin(K , 1/2)h(k), (4.5)

where h(k) is the additional prior on the number of inputs. Although it is pos-
sible to move the mass of the prior to favor a smaller number of inputs with the
additional prior, the Binomial prior effectively restricts k a priori to lie in a short
range.

Instead of an additional prior on the number of inputs, we could set the prob-
ability of single input being in the model, π , to the desired value and get

p(γ ) = π k(1 − π)1−k (4.6)

and correspondingly
p(k) = Bin(K , π). (4.7)

In this case, E(k|π) = Kπ and var(k|π) = Kπ(1 − π). Although having more
control, this would still be quite informative about the number of inputs k.

A more flexible approach is to place a hyperprior on π . Following Kohn et al.
(2001) and Chipman et al. (2001), we use a Beta prior

p(π) = Beta(α, β), (4.8)

which is convenient, as then the prior for k is Beta-binomial

p(k) = Beta-bin(n, α, β). (4.9)

In this case, E[k|π, α, β] = K α
α+β

and Var[k|π, α, β] = K αβ(α+β+K )

(α+β)2(α+β+1)
, and thus

the values for α and β are easy to solve after setting E[k] and Var[k] to the desired
values. As the Beta-binomial is often nonsymmetric, it may be easier to choose
the values for α and β by plotting the distribution with different values of α and β,
as we did in the examples in section 4.3. If α = 1 and β = 1 then the prior on k is
uniformly distributed on (0, K ), but now the models are not equally probable, as
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the models with few or many inputs have higher probability than the models with
about K/2 inputs. Consequently, it is not possible to be uninformative in input
selection, and some care should be taken when choosing priors, as efforts to be
uninformative in one respect will force one to be informative in other respect.

Above we have assumed that each input has equal probability. This assump-
tion could be relaxed by using, for example, a prior of the form

p(γ ) =
∏

π
γk
k (1 − πk)

1−γk , (4.10)

where πk is the probability of input k being in the model. This kind of prior could
be further combined with a hierarchical prior on πk to gain more flexibility. It
seems that prior information about the relative probabilities of the inputs is rarely
available, as this kind of priors are seldom used.

In some cases there might be information about dependencies between input
combinations that could be used. For example, dependency priors in the case of
related input variables are discussed by Chipman (1996). Although we know that
the inputs in our case problems are not independent, we do not know a priori what
dependencies there might be, so we use the independence prior. Additionally, as
one of our goals is to get more easily explainable models, it is desired that inputs
that are as independent as possible are selected. In section 4.3, we illustrate some
problems arising in input selection when inputs are not independent.

As discussed and illustrated in section 3.3.1, the prior for parameters p(θMl |Ml)

greatly affects the posterior probability of the model Ml having extra parameter
θ+

Ml
. If the prior on the extra parameters p(θ+

Ml
|Ml) is too tight, the extra pa-

rameters might not reach a useful range in the posterior, thus making the model
less probable. On the other hand, if the prior is too vague, the probability of
any value for the extra parameter gets low, and correspondingly, the probability
of the model gets low. This kind of prior sensitivity in input selection has been
discussed and demonstrated for example by Richardson and Green (1997),Del-
laportas and Forster (1999), and Ntzoufras (1999). Often, it is recommended
to test different priors, but there is no formal guidance what to do if the differ-
ent priors produce different results. Some methods for controlling the effects of
the prior in linear models are discussed by Ntzoufras (1999), but these methods
may be difficult to generalize to other models. Using hierarchical priors seems
to alleviate partly the problem, as discussed by Richardson and Green (1997) and
illustrated in section 4.3. Furthermore, since the effect of the model space prior is
considerable and its selection usually quite arbitrary, there is probably no need to
excessively fine tune the priors of the parameters in question. Naturally, the prior
sensitivity is an even smaller problem when the final model choice is based on the
expected utilities computed by using the cross-validation predictive densities.
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4.2.2 Reversible jump Markov chain Monte Carlo

The reversible jump Markov chain Monte Carlo (RJMCMC) (Green, 1995) is
an extension to the Metropolis-Hastings method allowing jumps between mod-
els with different dimensional parameter spaces. In the case of input selection,
models have different number of parameters as they have different number of in-
puts. When adding or removing inputs, the corresponding parameters are added
or removed, respectively.

If the current state of the Markov chain is (M1, θM1) the jump to state (M2, θM2)

is accepted with probability

α = min

(
1,

p(D|θM2, M2)p(θM2 |M2)p(M2|I ) j (M2, M1)q(t2|θM2, M2, M1)

p(D|θM1, M1)p(θM1 |M1)p(M1|I ) j (M1, M2)q(t1|θM1, M1, M2)
×∣∣∣∣∂hM1,M2(θM1, t1)

∂(θM1, t1)

∣∣∣∣
)

,

(4.11)

where j (M1, M2) is the probability of jumping from M1 to M2, q is the proposal
distribution for the parameter t and hM1,M2 is an invertible function defining the
mapping between the parameter spaces, (θM2, t2) = hM1,M2(θM1, t1).

In the case of suitable proposal distribution, the acceptance probability term
can be greatly simplified. When adding a new input, we set hM1,M2 as identity,
that is, θM2 = (θM1, t1), and use the conditional prior of the new parameters as
the proposal distribution. Then the Jacobian determinant is 1, the prior terms for
the parameters common to both models cancel out, and the prior and the proposal
distribution for the new parameters cancel out. Moreover, as we set j (M1, M2) =
j (M2, M1), Equation 4.11 simplifies to

α = min

(
1,

p(D|θM2, M2)p(M2|I )
p(D|θM1, M1)p(M1|I )

)
. (4.12)

We use hierarchical priors for the parameters specific to inputs, and so the condi-
tional prior is adapting to the data. Thus, the conditional prior is a natural proposal
distribution with a reasonable acceptance rate and mixing behavior.

To make convergence diagnostics and estimation of credible intervals easier,
it is useful to run several (e.g., 10) independent RJMCMC chains (with different
starting points) for each case. For between-model convergence diagnostics, we
used in our case problems the chi-squared and Kolmogorov-Smirnov tests pro-
posed by Brooks et al. (2001), which also utilize several independent chains. As
there was large number of models, the number of visits to each model was typ-
ically very low, and thus we analysed the visits to each subpopulation having
equal number of inputs. The Kolmogorov-Smirnov test seemed to be the best in
revealing between-model convergence problems. For other convergence assess-
ment methods for the RJMCMC, see (Brooks and Giudici, 1999, 2000).
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The RJMCMC is not the only method suitable for estimating the unnormalized
prior predictive likelihoods, but it is one of the simplest to implement and one
of the fastest on big problems. The RJMCMC visits models according to their
posterior probabilities, and models with negligible probability are probably not
visited in a finite time. This way only the most probable models are investigated
and computational savings can be considerable compared to going through all the
possible models. Some alternative methods have been reviewed, for example, by
Ntzoufras (1999) and Han and Carlin (2001).

4.3 Illustrative examples

As illustrative examples, we use MLP networks and Gaussian processes in two
real world problems: concrete quality estimation (section 4.3.1) and forest scene
classification (section 4.3.2). We first describe the additional implementation de-
tails.

In the RJMCMC, we had two model change proposals. The first one was the
commonly used proposal, which proposes to change state γk of the random input
k. The second was used to improve mixing. It proposed to simultaneously remove
one random input for which γk = 1 and add one random input for which γk = 0.
Although not in fact changing the dimensionality, it was handled in a same way
as the first proposal.

To improve conditional priors of the input parameters, a previously fixed de-
gree of freedom in the prior for the ARD values was changed to have its own prior
distribution (having most of the mass between 0.4 and 4). This change did not
have significant effect on the predictive distributions of the single models, but it
seemed to slightly improve the proposal distributions for the RJMCMC. In the
case of MLPs, the sampling for that extra variable was made by discretized Gibbs
and in the case of GPs with the HMC.

We also experimented with the conditional maximization and the auxiliary
variable methods (Brooks et al., 2000), but we could not improve the acceptance
rates despite of some tuning attempts. Finding the conditional maximum was too
slow and unstable while the auxiliary variable method easily got stuck despite
tuning attempts.

4.3.1 Case I: Concrete quality estimation

In this section, we present results from the real world problem of predicting the
quality properties of concrete (described in section 2.3.1).

The aim of the study was to identify which properties of the stone material
are important, and additionally, examine the effects that properties of the stone
material have on concrete. It was desirable to get both the estimate of relevance
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of all available input variables and select a minimal set required to get a model
with statistically the same predictive capability as with the full model. A smaller
model is easier to analyze and there is no need to make possibly costly or toxic
measurements in the future for properties having negligible effect. The problem
is complicated because there are strong cross-effects, and the inputs measuring
similar properties have strong dependencies.

For models used in (Järvenpää, 2001), we had made the input selection using
the DIC (see section 3.3.4) and heuristic backward selection. Although this ap-
proach produced reasonable results, it required a full model fitting for each model
investigated, contained some ad hoc choices to speed up the heuristic backward
selection, and lacked clear results for the relevance of the different inputs. Below
we present results using the RJMCMC and the expected utilities computed by us-
ing the cross-validation predictive densities. With this approach, we were able to
get more insight about the problem, smaller models, and improved reliability of
the results.

We used 10-hidden-unit MLP networks and GP models. The residual model
used was input dependent Student’s tν with unknown degrees of freedom ν. As
the size of the residual variance varied depending on three inputs, which were
zero/one variables indicating the use of additives, the parameters of the Student’s
tν were made dependent on these three inputs with a common hyperprior.

We report here detailed results for the air-% and less detailed results for the
bleeding. See (Vehtari and Lampinen, 2001a) for additional results for the flow
value, and the compressive strength, for which similar results were obtained.

In the case of air-% and GP with both uniform and Beta priors, the between-
model jump acceptance was about 6% and in the case of MLP with uniform and
Beta priors, the between-model jump acceptance was about 5% and 1.5%, re-
spectively. To increase the effective jump acceptance, between-model jumps were
made three times more probable than in-model jumps. In the case of GP, from
about 108 possible input combinations, the 4000 saved states visited about 3500
and 2500 different input combinations with uniform and Beta priors, respectively.
Few most probable models were visited by all ten independent chains and for
example, ten most probable models were visited by at least eight chains. Thus,
useful credible intervals could be computed for the model probabilities.

We first report results for the GP model predicting the air-%. Figures 4.1
and 4.2 show the posterior probabilities of the number of inputs with an equal
prior probability for all the models and with Beta-bin(27, 5, 10) prior on the num-
ber of inputs, respectively. With equal prior probability for all models, the prior
probability for the number of inputs being less than eight is so low that it is un-
likely that the RJMCMC will visit such models. Parameters for the Beta-binomial
prior were selected to better reflect our prior information, that is, we thought it
might be possible to have a low number of inputs, most probably about 6-12 in-
puts and not excluding the possibility for a larger number of inputs. Note that the
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Figure 4.1: Concrete quality estimation example, predicting the air-% with GP: The
posterior probabilities of the number of inputs with “uninformative” prior, i.e., equal prior
probability for all models.
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Figure 4.2: Concrete quality estimation example, predicting the air-% with GP: The pos-
terior probabilities of the number of inputs with Beta-bin(27, 5, 10) prior on the number
of inputs.
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Figure 4.3: Concrete quality estimation example, predicting the air-% with GP: The
marginal posterior probabilities of the inputs with a Beta-bin(27,5,10) prior on the number
of inputs. The inputs in the most probable model are in boldface (see Figure 4.5).

Beta-binomial prior used is in fact more vague about the number of inputs than
the “uninformative” prior. The posterior distribution of the number of inputs is
quite widespread, which is natural as the inputs are dependent and the ARD prior
allows use of many inputs.

Figure 4.3 shows the marginal posterior probabilities of the inputs with a Beta-
bin(27,5,10) prior on the number of inputs. The nine most probable inputs are
clearly more probable than the others and the other inputs have posterior proba-
bility approximately equal to or less than the mean prior probability of an input
(1/3).

Figure 4.4 shows the ARD values of the inputs for the full model. Eight of
the nine most probable inputs have also a larger ARD value than the other inputs,
but they cannot be clearly distinguished from the other inputs. Moreover, input
“BET” (measuring the specific surface area of the fines) is ranked much lower by
the ARD than by the probability (compare to Figure 4.3). Further investigation
revealed that “BET” was relevant, but had near linear effect.

Figure 4.5 shows the posterior probabilities of the ten most probable input
combinations with a Beta-bin(27,5,10) prior on the number of inputs. All the
ten models are very similar, only minor changes are present in few inputs, and,
the changed inputs are known to correlate strongly. In this case, two models
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Figure 4.4: Concrete quality estimation example, predicting the air-% with GP: The ARD
values of the inputs of the full model. The nine most probable inputs are in boldface.
Compare to Figure 4.3.

are significantly more probable than others, but between them, there is no clear
difference. As the other probable models are similar to the two most probable
models, it is likely that the probability mass has been spread to many equally
good models.

For the final model choice, we computed the expected utilities using the cross-
validation predictive densities for the most probable models. Differences between
the most probable models and the full model were small, and so there was no big
danger of choosing a bad model. To verify that by conditioning on single model
we do not underestimate the uncertainty about the structure of model (see, e.g.,
Draper, 1995a; Kass and Raftery, 1995), we also computed the expected utility for
the model, in which we integrated over all the possible input combinations. Such
integration can readily be approximated using the previously obtained RJMCMC
samples. There was no significant difference in the expected likelihoods.

To illustrate the differences between the prior-predictive and the cross-valida-
tion predictive densities, Figure 4.6 shows the expected utilities computed using
the cross-validation predictive densities for the full model and the models having
the k (k = 5, . . . , 15) most probable inputs. Note that the expected predictive
likelihoods are similar for models having at least about eight most probable in-
puts, while prior predictive likelihoods (posterior probabilities) are very different



84 Input variable selection

SEM 
AE 
WR 
BET 
F − density 
F − Hf 
F − Zeta pot. 
F − Cu 
SC − density 
SC − avg. pore size 
SC − tot. pore size 
SC − Surface texture 
SC − Elng 3.15/4.0 
SC − Elng 1.6/2.0 
SC − Elng 0.8/1.0 
SC − Angularity 
SC − Qnty 3.15/4.0 
SC − Qnty 1.6/2.0 
SC − Qnty 0.8/1.0 
SC − Flkn 3.15/4.0 
SC − Flkn 1.6/2.0 
SC − Flkn 0.8/1.0 
F − Mica 
SC − pore area >900Å 
SC − pore area >300Å 
SC − pore area 300−900Å 
SC − pore area 60−300Å 

Number of inputs9 8 10 10 7 8 9 10 8 10

1 2 3 4 5 6 7 8 9 10

0.00

0.05

0.10
Probability of model (90% CI)

Figure 4.5: Concrete quality estimation example, predicting the air-% with GP: The prob-
abilities of the ten most probable models with a Beta-bin(27,5,10) prior on the number of
inputs. The top part shows the probabilities of the models, the middle part shows which
inputs are in the model, and the bottom part shows the number of inputs in the model.
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Figure 4.6: Concrete quality estimation example, predicting the air-% with GP: The
expected utilities (mean predictive likelihoods) of the models having the k most probable
inputs (see Figure 4.3). After about nine inputs, adding more inputs does not improve
the model performance significantly. To give an impression of the differences in pairwise
comparison, there is for example about 90% probability that the nine input model has a
higher predictive likelihood than the eight input model.

for models with different number of inputs. For example, the prior predictive
likelihood of the full model is vanishingly small compared to the most probable
models, but the cross-validation predictive likelihood is similar to the most prob-
able models. The performance of the full model is similar to smaller models, as
the ARD type prior allows many inputs without reduced predictive performance.
Note that if the point estimate (e.g., mean) of the expected utility would be used for
model selection, larger models would be selected than when selecting the small-
est model with statistically the same utility as the best model. The problem of
selecting larger models than necessary is a common problem when estimating
the expected utilities with information criteria that give just a point estimate (see
section 3.3.4).

To illustrate the effect of the prior on approximating functions, we also report
results for input selection with MLP. The results for the MLP were not sensitive to
changes in the hyperparameter values, so the difference in the results is probably
caused mainly by the difference in the form of the covariance function realized by
the GP and MLP models.

Figure 4.7 shows the posterior probabilities of the number of the inputs with
a Beta-bin(27,5,10) prior on the number of inputs. In the case of MLP, larger
number of inputs is more probable than in the case of GP (compare to Figure 4.2).
Figure 4.8 shows the marginal posterior probabilities of the inputs with a Beta-
bin(27,5,10) prior on the number of inputs. Most of the inputs have higher poste-
rior probabilities than the mean prior probability (1/3). There is no clear division
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Figure 4.7: Concrete quality estimation example, predicting the air-% with MLP: The
posterior probabilities of the number of inputs with a Beta-bin(27,5,10) prior on the num-
ber of inputs. Compare to the results for the GP in Figure 4.2.
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Figure 4.8: Concrete quality estimation example, predicting the air-% with MLP: The
marginal posterior probabilities of inputs with a Beta-bin(27,5,10) prior on the number of
inputs. The nine most probable inputs in the GP case are in boldface (see Figure 4.3).
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Figure 4.9: Concrete quality estimation example, predicting the air-% with MLP: The
ARD values of the inputs of the full model. Compare to Figure 4.8.

between more probable inputs and less probable inputs. The nine most proba-
ble inputs are same as in the GP case (compare to Figure 4.3), except that “SC
- pore area >300Å” has replaced very similar input “SC - pore area >300-900Å”.
Figure 4.9 shows the ARD values of the inputs for the full model. The order of the
inputs based on the ARD values is clearly different from the order of the inputs
based on marginal posterior probabilities (compare to Figure 4.8). Figure 4.10
shows the posterior probabilities of the ten most probable input combinations with
a Beta-bin(27,5,10) prior on the number of inputs. There is more variation in the
input combinations than in the case of GP and no model is significantly more
probable than the others (compare to Figure 4.5).

Although different inputs would be selected in the case of MLP from the case
of GP, the predictive performance (measured with the cross-validation predictive
likelihood) was similar for both model types. Figure 4.11 shows the expected
utilities computed by using the cross-validation predictive densities for the full
model and the models having the k (k = 5, . . . , 15) most probable inputs. The
cross-validation predictive likelihoods are similar for the models having at least
about eight most probable inputs and similar to the cross-validation predictive
likelihoods of the GP models (Figure 4.6).

To illustrate the variation depending on the target variable, we present next
the results for the GP model predicting the bleeding (exactly the same model and
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Figure 4.10: Concrete quality estimation example, predicting the air-% with MLP: The
probabilities of the ten most probable models with a Beta-bin(27,5,10) prior on the num-
ber of inputs. The top part shows the probabilities of the models, the middle part shows
which inputs are in the model, and the bottom part shows the number of inputs in the
model. Compare to the results for the GP in Figure 4.5.
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Figure 4.11: Concrete quality estimation example, predicting the air-% with MLP: The
expected utilities of the models having the k most probable inputs (see Figure 4.8). Com-
pare to results for the GP in Figure 4.6.

prior specification was used as in the GP model predicting the air-%). Figure 4.12
shows the marginal posterior probabilities of the number of inputs and Figure 4.13
shows the posterior probabilities of the ten most probable models. About one half
of the inputs have higher posterior probability than the mean prior probability
(1/3). The probability mass has been spread to many inputs and many similar
models because of many correlating inputs. It is less clear than in the case of
air-%, which are the most probable inputs and input combinations. However, as
the most probable models had indistinguishable expected utilities, there was no
danger of selecting a bad model. Note how the input “SC-Qnty 0.8/1.0”, which
is included in the most probable model, has lower marginal probability than the
five other inputs not in that model. This is not peculiar as the five particular inputs
correlate strongly with the inputs in the most probable model.

In addition to using the cross-validation predictive likelihoods for model se-
lection, we also computed the expected 90%-quantiles of absolute errors. These
were used to confirm that there was no practical difference in prediction accuracy
between the few most probable models. Naturally, it was also very important to
report to the concrete expert the goodness of the models using easily understand-
able terms.
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Figure 4.12: Concrete quality estimation example, predicting the bleeding with GP: The
marginal posterior probabilities of inputs with a Beta-bin(27,5,10) prior on the number of
inputs. The inputs in the most probable model are in boldface (see Figure 4.13).
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Figure 4.13: Concrete quality estimation example, predicting the bleeding with GP: Prob-
abilities of the ten most probable models with a Beta-bin(27,5,10) prior on the number of
inputs.
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4.3.2 Case II: Forest scene classification

In this section, we illustrate that in more complex problems it may be necessary
to aid input selection by using the marginal probabilities of the inputs.

The case problem is the classification of forest scenes with MLP (described in
section 2.3.2). The primary goal was to check if these features contained enough
information to produce reasonable classification results (see section 2.3.2) and the
secondary goal was to reduce the computational burden by reducing the number
of features used for the classification.

We used a 20-hidden-unit MLP with the logistic likelihood model. The bet-
ween-model jump acceptance rates were about 2% and 0.4% with uniform and
Beta priors, respectively. To increase the effective jump acceptance, between-
model jumps were made three and nine times more probable, respectively, than
in-model jumps.

From about 2 · 1025 possible input combinations, the 4000 saved states visited
about 3700 and 2500 different input combinations with uniform and Beta priors,
respectively. None of the ten independent chains visited any input combination
visited by the other chains. Consequently, it was impossible to make good esti-
mates of the probabilities of the input combinations. Instead of trying to obtain an
enormous amount of samples, it was possible to choose potentially useful input
combinations by using the marginal posterior probabilities of inputs.

Figure 4.14 shows the posterior probabilities of the number of inputs with
equal prior probability for all models. Due to the implicit Binomial prior on the
number of inputs (see discussion in section 4.2.1), the probability mass is con-
centrated between 30 to 54 inputs. Figure 4.15 shows the posterior probabilities
of the number of inputs with a Beta-bin(84,5,15) prior on the number of inputs
favoring smaller models. The RJMCMC did not generate samples from models
having fewer than 24 inputs (compare to the cross-validation predictive results
in Figure 4.17), but this may have been caused by poor between-model conver-
gence when the number of inputs was less than 30. The poor between-model con-
vergence was identified by convergence diagnostics, and it seemed very unlikely
that better results could have been obtained in reasonable time.

As the results with a uniform prior on the models had reasonable convergence,
it was possible to estimate the relative importance of the inputs using the marginal
posterior probabilities of the inputs from that run (Figure 4.16). Figure 4.17 shows
the comparison of the expected utilities of the models having the k most probable
inputs (k between 10 and 40). Reasonable results were achieved also with models
having fewer inputs than the smallest model in the RJMCMC. Based on classifi-
cation error results, just 12 (1/7th of the inputs in the full model) inputs would be
sufficient in the planned application. Note that the difference in the performance
between the 12 input model and full model is statistically but not practically sig-
nificant.
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Figure 4.14: Forest scene classification example: The posterior probabilities of the num-
ber of inputs with a uniform prior on the models. The posterior probabilities are similar
to prior probabilities and the probability mass is concentrated between 30 and 54 inputs.

1 10 20 30 40 50 60 70 80 84
0.00

0.05

0.10

 k

Prior probability
Posterior probability (90% CI)

Figure 4.15: Forest scene classification example: The posterior probabilities of the num-
ber of inputs with a Beta-Bin(84,5,15) prior on the number of inputs. The poor between-
model convergence can also be noticed from the large uncertainties in the probability
estimates seen in this figure (compare to Figure 4.14).
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Figure 4.16: Forest scene classification example: The marginal posterior probabilities of
the inputs with a uniform prior on models. These probabilities can be used to estimate the
relevance of the inputs.
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Figure 4.17: Forest scene classification example: The expected utilities of the models
having the k most probable inputs (see Figure 4.16). The top plot shows the mean predic-
tive likelihood and the bottom plot shows the classification error. The performance starts
decreasing when there are fewer than about 20 inputs (compare to the RJMCMC results
in Figure 4.15).





Chapter 5

Conclusions

The important advantage of the Bayesian approach is the possibility to handle the
situation where some of the prior knowledge is lacking or vague, so that one is
not forced to guess values for attributes that are unknown. For example, we do
not need to guess in advance the number of degrees of freedom in the models, the
distribution of model residuals, or the degree of complexity (nonlinearity) of the
model with respect to each input variable. However, the results of any data anal-
ysis depend on the assumptions and approximations made – thus the Bayesian
approach does not automatically give better results than any other approach. Even
though the Bayesian models do not need validation data to set the model com-
plexity, the validation of the final model is essential, which is the case also with
any other modeling approach.

We presented how to compute the distribution of the expected utility, which
can be used to describe, in terms of the application field, the goodness of the
predictive ability of a Bayesian model and the uncertainty in that estimate. The
IS-LOO-CV predictive densities are a quick way to estimate the expected utilities
and the approach is also useful in some cases with flexible nonlinear models such
as MLP and GP. If diagnostics hint that importance weights are not good, we can
instead use the k-fold-CV predictive densities with the bias correction. Using the
k-fold-CV takes k times more time, but it is more reliable. In addition, if data
have certain dependencies, the k-fold-CV has to be used to get reasonable results.
We proposed a quick and generic approach based on the Bayesian bootstrap for
obtaining samples from the distributions of the expected utilities. With the pro-
posed method, it is also easy to compute the probability that one model has better
expected utility than another one. We discussed the assumptions and restrictions
in the approach and relations to approaches for comparison of methods, other pre-
dictive densities, Bayes factors, information criteria, and the effective number of
parameters. We also demonstrated how the cross-validation approach can be used
to estimate the effective number of parameters. We illustrated the discussion and
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demonstrated the usefulness of the approach using one toy problem and two real
world problems.

It might be useful in the future to study the importance link functions to im-
prove the importance weights in IS-LOO-CV (section 3.2.1) and the coupling of
the Markov chains to reduce the computation time in k-fold-CV (section 3.2.3).
In addition, it would be useful to further investigate the relation to the DIC and the
effective number of parameters (section 3.3.4). Specifically, it would be useful to
study in which cases the DIC approach can be used to obtain reasonable estimates
of the expected utilities and how to diagnose potential problems.

In the case of input variable selection, our goal was to select a smaller set
of input variables in order to make the model more explainable and to reduce
the cost of making measurements and the cost of computation. In addition, if
the assumptions of the model and prior do not match well the properties of the
data, reducing the number of input variables may improve the performance of
the model. We proposed to use a variable dimension MCMC method to find out
potentially useful input combinations and to do the final model choice and assess-
ment using the expected utilities (with any desired utility) computed by using the
cross-validation predictive densities. We discussed briefly the RJMCMC method,
which is one of the simplest and fastest variable dimension MCMC methods.s The
approach is based on the fact that the posterior probabilities of the model, given
by the RJMCMC, are proportional to the product of the prior probabilities of the
models and the prior predictive likelihoods of the models, which can be used to
estimate the lower limit of the expected cross-validation predictive likelihood. We
discussed different ways of including information about prior probabilities on the
number of input variables. Additionally, in the case of very many inputs, we pro-
posed that instead of using the probabilities of input combinations, the marginal
probabilities of inputs can be used to select potentially useful models. We illus-
trated the discussion and demonstrated the usefulness of the approach using two
real world problems.

Mixing speed of RJMCMC depends on proposal distributions. Use of condi-
tional priors as proposal distributions worked reasonable well. Although we could
not improve mixing with advanced approaches, further study might produce bet-
ter alternatives. Furthermore, it might be useful to study such hierarchical priors
for inputs that would allow posterior analysis of hierarchical relations of the input
variables.

To summarize the results of this thesis, expected utilities are a useful way to
assess and compare Bayesian models and good estimates of the expected utilities
can be computed using cross-validation methods. Main contributions of the work
are the theoretical and methodological advances, which provide solid framework
to assess the performance of the models in the terms of the application specialist,
while taking properly into account the uncertainties in the process.
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