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Abstract

We demonstrate the advantages of using Bayesian multi layer perceptron (MLP) neural networks for image analysis.
The Bayesian approach provides consistent way to do inference by combining the evidence from the data to prior
knowledge from the problem. A practical problem with MLPs is to select the correct complexity for the model, i.e.,
the right number of hidden units or correct regularization parameters. The Bayesian approach offers efficient tools
for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the
results. In this contribution we review the Bayesian methods for MLPs and present comparison results from two
case studies. In the first case, MLPs were used to solve the inverse problem in electrical impedance tomography.
The Bayesian MLP provided consistently better results than other methods. In the second case, the goal was to
locate trunks of trees in forest scenes. With Bayesian MLP it was possible to use large number of potentially useful
features and prior for determining the relevance of the features automatically.
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1. Introduction

A universal task in many areas of image anal
ysis is to infer some needed piece of information
from measurements that only partly determine the
information. For example in classification and seg
mentation of image regions the set of precomputed
features are often insufficient for uniquely separat
ing the classes.
Recently Bayesian approaches have shown

considerable potential in such problems. In the
Bayesian approach prior information from the
problem is combined to the evidence from the
data, giving the posterior probability of the solu
tions. Predictions are made by integrating over
this posterior distribution. In case of insufficient
data the prior dominates the solution, and the

effect of the prior diminishes with increased ev
idence from the data. In one of the pioneering
works by Geman et.al. [5] , Bayesian approach
was developed for image restoration. This work
also introduced the Gibbs sampling technique for
computing posterior distributions.
In classification and non-linear function approx

imation, multi layer perceptron (MLP) neural net
works have become very popular in recent years.
With MLPs the main difficulty is in controlling the
complexity of the model. Another problem of stan
dard MLP models is the lack of tools for analyzing
the results (confidence intervals, like 10 % and 90
% quantiles, etc.). Bayesian methods have become
a viable alternative to the older error minimiza
tion based (ML or MAP) approaches [1 ,8 ,10]. The
main advantages of Bayesian MLPs are:
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• Automatic complexity control: Values of regu
larization coefficients can be selected using only
the training data, without the need to use sepa
rate training and validation data.

• Possibility to use prior information and hierar
chical models for the hyperparameters.

• Predictive distributions for outputs.
In this contribution we demonstrate the advan

tages of Bayesian MLPs in two case problems. In
section 3 we give a review of the Bayesian methods
for MLPs. In section 4 we report results on using
Bayesian MLPs for image reconstruction in electri
cal impedance tomography. In section 5 we present
results comparing Bayesian MLPs and other clas
sification methods for classification of objects in
forest scenes.

2. Multi Layer Perceptron

We concentrate here to one hidden layer MLPs
with hyperbolic tangent (tanh) activation func
tion. However Bayesian methods can be used for
other types of neural networks, like RBF networks,
too. Basic MLP model with k outputs is

fk(x,w) = wk0 +
m∑

j=1

wkj tanh

(
wj0 +

d∑
i=1

wjixi

)
,(1)

where x is a d-dimensional input vector,w denotes
the weights, and indices i and j correspond to hid
den and output units, respectively.
MLP is often considered as a generic semipara

metric model, which means that the effective num
ber of parameters may be less than the number of
available parameters. Effective number of param
eters determines the complexity of the model. For
small weights the network mapping is almost lin
ear and has low effective complexity, since the cen
tral region of sigmoidal activation function can be
approximated by linear transformation. Tradition
ally the complexity of MLP has been controlled
with early stopping or weight decay [1].
In early stopping weights are initialized to very

small values. Part of the training data is used
to train the MLP and the other part is used to
monitor the validation error. Iterative optimiza
tion algorithms used for minimizing the training

error gradually take parameters in use. Training
is stopped when the validation error begins to in
crease. Since training is stopped before a minimum
of the training error, the effective number of pa
rameters remains less than the number of available
parameters.
The basic early stopping is rather inefficient, as

it is very sensitive to the initial conditions of the
weights and only part of the available data is used
to train the model. These limitations can easily be
alleviated by using a committee of early stopping
MLPs, with different partitioning of the data to
training and stopping sets for each MLP. When
used with caution MLP early stopping committee
is good baseline method for neural networks.
In weight decay penalizing term is added to

the error function. Using, e.g., sum of squares of
weights the weights are encouraged to be small.
In practice each layer in an MLP should have
different regularization parameter [1] , giving the
penalty term

α1
∑
j,i

w2
ji + α2

∑
j,k

w2
kj . (2)

Problem is how to select good values for αi. Tra
ditionally this has been done with cross validation
(CV). Since CV gives noisy estimate for error, it
does not guarantee that good values for αi can be
found. Also it easily becomes computationally pro
hibitive as computational expenses grow exponen
tially with number of parameters to be selected.

3. Bayesian Learning for MLP

Bayesian methods use probability to quantify
uncertainty in inferences and the result of Bayesian
learning is a probability distribution expressing
our beliefs regarding how likely the different pre
dictions are. Bayesian paradigm offers consistent
way to do inference using models with even very
large number of parameters. See, e.g., [4] for good
introduction to Bayesian methods.
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3.1. Bayesian Learning

Consider a regression or classification problem
involving the prediction of a noisy vector y of tar
get variables given the value of a vector x of input
variables.
The process of Bayesian learning is started by

defining a model, M , and prior distribution p(θ)
for the model parameters θ. Prior distribution ex
presses our initial beliefs about parameter values,
before any data has been observed. After observ
ing new data D = {(x(1),y(1)), . . . , (x(n),y(n))} ,
prior distribution is updated to the posterior dis
tribution using Bayes’ rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ L(θ|D)p(θ), (3)

where the likelihood function L(θ|D) gives the
probability of the observed data as function of the
unknown model parameters.
To predict the new output y(n+1) for the new

input x(n+1) , predictive distribution is obtained
by integrating the predictions of the model with
respect to the posterior distribution of the model
parameters

p(y(n+1)|x(n+1),D) =∫
p(y(n+1)|x(n+1), θ)p(θ|D)dθ. (4)

This is the same as taking the average prediction
of all the models weighted by their goodness.

3.2. Models

A statistical model is defined by with its likeli
hood function. If we assume that the n data points
(x(i),y(i)) are exchangeable we get

L(θ|D) =
n∏

i=1

p(y(i)|x(i), θ). (5)

The term p(y(i)|x(i), θ) in Eq. (5) depends on our
problem. In regression problems, it is generally as
sumed that the distribution of the target data can
be described by a deterministic function of inputs,
corrupted by additive Gaussian noise of a constant
variance. Probability density for a target yj is then

p(yj |x,w, σ) =
1√
2πσj

exp(− (yj − fj(x,w))2

2σ2
j

),(6)

where σ2
j is the noise variance for the target.

See [10] for t-distribution and per-case normal
noise variance models. For a two class classifica
tion (logistic regression) model, the probability
that a binary-valued target, yj , has the value 1 is

p(yj = 1|x,w) = [1 + exp(−fj(x,w))]−1 (7)

and for many class classification (softmax) model,
the probability that a class target, y , has value j is

p(y = j|x,w) =
exp(fj(x,w))∑
k exp(fk(x,w))

. (8)

In Eqs. (6), (7) and (8) function f(x,w) is in this
case an MLP. Traditionally in many methods one
of the problems has been to find a good topology
for the MLP. In Bayesian approach we could use
infinite number of hidden units. We do not need to
restrict the size of the MLP based on the size of
the training set, but in practice, we will have to use
finite number of hidden units due to computational
limits [10].

3.3. Priors

Next, we have to define the prior information
about our model parameters, before any data has
been seen. Usual prior is that the model has some
unknown complexity but the model is not constant
nor extremely flexible. To express this prior belief
we set hierarchical model specification.
Parameters w define the model f(x,w). As dis

cussed in section 2 , complexity of the MLP can be
controlled by controlling the size of the weights w.
This can be achieved by using, e.g., Gaussian prior
distribution for weightsw given hyperparameter α

p(w|α) = (2π)−m/2αm/2 exp(−α
m∑

i=1

w2
i /2). (9)

This prior states that smaller weights are more
probable, but how much more is determined by
the value of the hyperparameter α. Since we do
not know the correct value for the hyperparameter
α , we set a vague hyperprior p(α) expressing our
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belief that complexity controlled by α is unknown
but the model is not constant nor extremely flexi
ble. A convenient form for this hyperprior is vague
Gamma distribution with mean µ and shape pa
rameter a

p(α) ∼ Gamma(µ, a) ∝ αa/2−1 exp(−αa/2µ).(10)

In order to have prior for weights which is invariant
under the linear transformations of data, separate
priors (each having its own hyperparameters αi)
for different weight groups in each layer of a MLP
are used [10].
In MLPs, the weights from less important inputs

are typically smaller than weights from more im
portant inputs 1 . Prior belief that some inputs are
likely to be more relevant than others can be imple
mented by using different priors for weight groups
from each input, and hierarchical hyperpriors for
these priors. The posteriors for hyperparameters
should then adjust according to relevance of the
inputs. This prior is called Automatic Relevance
Determination (ARD) [9 ,10 ,11].
For regression models we need prior for noise

variance σ in Eq. (6), which is often specified in
terms of corresponding precision, τ = σ−2. As for
α , our prior information is usually quite vague,
stating that noise variance σ is not zero nor ex
tremely large. This prior can be expressed with
vagueGamma-distribution withmean µ and shape
parameter a

p(τ) ∼ Gamma(µ, a) ∝ τa/2−1 exp(−τa/2µ). (11)

3.4. Prediction

After defining the model and prior information,
we combine the evidence from the data to get the
posterior distribution for the parameters

p(w, α, τ |D) ∝ L(w, α, τ |D)p(w, α, τ). (12)

Predictive distribution for new data is then ob
tained by integrating over this posterior distribu
tion

1 Note that in the non-linear network the effect of an input
may be small even if the weights from it are large and vice
verse, but in general the size of the weights roughly reflects
the relevance of the input.

p(y(n+1)|x(n+1),D) =∫
p(y(n+1)|x(n+1),w, α, τ)p(w, α, τ |D)dwατ.(13)

We can also evaluate expectations of various
functions with respect to the posterior distribution
for parameters. For example in regression we may
evaluate the expectation for a component of y(n+1)

ŷ(n+1)
k =

∫
fk(x(n+1),w)p(w, α, τ |D)dwατ, (14)

which corresponds to the best guess with squared
error loss.
The posterior distribution for the parameters

p(w, α, τ |D) is typically very complex, with many
modes. Evaluating the integral of Eq. (14) is there
fore a difficult task. The integral can be approxi
mated with parametric approximation as in [8] or
with numerical approximation as described in next
section.

3.5. Markov chain Monte Carlo method

Neal has introduced implementation of Bayesian
learning for MLPs in which the difficult integration
of Eq. (14) is performed usingMarkov chainMonte
Carlo (MCMC) methods [10]. In [6] there is a good
introduction to basic MCMC methods and many
applications in statistical data analysis.
The integral of Eq. (14) is the expectation of

function fk(x(n+1),w) with respect to the poste
rior distribution of the parameters. This and other
expectations can be approximated by Monte Carlo
method, using a sample of values w(t) drawn from
the posterior distribution of parameters

ŷ(n+1)
k ≈ 1

N

N∑
t=1

fk(x(n+1),w(t)). (15)

Note that samples from the posterior distribu
tion are drawn during the “learning phase” and
predictions for new data can be calculated quickly
using the same samples and Eq. (15).
In the MCMC, samples are generated using a

Markov chain that has the desired posterior distri
bution as its stationary distribution. Difficult part
is to create Markov chain which converges rapidly
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and in which states visited after convergence are
not highly dependent.
Neal has used the hybridMonte Carlo (HMC) al

gorithm [3] for parameters and Gibbs sampling [5]
for hyperparameters. HMC is an elaborate Monte
Carlo method, which makes efficient use of gra
dient information to reduce random walk behav
ior. The gradient indicates in which direction one
should go to find states with high probability. Use
of Gibbs sampling for hyperparameters helps to
minimize the amount of tuning that is needed to
obtain good performance in HMC.
When the amount of data increases, the evidence

from the data causes the probability mass to con
centrate to the smaller area and we need less sam
ples from the posterior distribution. Also less sam
ples are needed to evaluate the mean of the predic
tive distribution than the tail-quantiles like, 10%
and 90% quantiles. So depending on the problem
10–200 samples may be enough for practical pur
poses (given that samples are not too highly de
pendent).
In our examples 2 (sections 4 , 5) we have used

Flexible Bayesian Modeling (FBM) software 3 ,
which implements the methods described in [10].

4. Case I: Inverse Problem in Electrical
Impedance Tomography

In this section we report results on using
Bayesian MLPs for solving the ill-posed inverse
problem in electrical impedance tomography
(EIT). The full report of the proposed approach
is presented in [7].
The aim in EIT is to recover the internal struc

ture of an object from surface measurements.
Number of electrodes are attached to the surface
of the object and current patterns are injected
from through the electrodes and the resulting
potentials are measured. The inverse problem in
EIT, estimating the conductivity distribution from

2 The data and the specific modelling parameters are avail
able from the first author upon request.
3 <URL:http://www.cs.toronto.edu/˜radford/fbm.
software.html>

Figure 1. Example of the EIT measurement. The simulated
bubble formation is bounded by the circles. The current
is injected from the electrode with the lightest color and
the opposite electrode is grounded. The gray level and the
contour curves show the resulting potential field.
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Figure 2. Relative changes in potentials compared to ho
mogeneous background. The eight curves correspond to in
jections from eight different electrodes.

the surface potentials, is known to be severely
ill-posed [12].
Fig. 1 shows a simulated example of the EIT

problem. The circles in the image represent gas
bubbles floating in liquid. The conductance of the
gas is much lower than that of the liquid, producing
the equipotential curves shown in the figure. Fig. 2
shows the resulting potential signals, from which
the image is to be recovered.
In [7] we proposed a novel feedforward solution

for the reconstruction problem. The approach is
based on computing the principal component de
composition for the potential signals and the eigen
images of the bubble distribution from the auto
correlation model of the bubbles. The input to
the MLP is the projection of the potential signals
to the first principal components, and the MLP
gives the coefficients for reconstructing the image
as weighted sum of the eigenimages.
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   MLP ESC      
(NNTB3 defaults)

   MLP ESC       
(decent defaults) Bayesian MLP

Figure 4. Example of the image reconstruction with
Bayesian MLP and early stopping committees. See text for
explanation of the models.

The reconstruction was based on 20 principal
components of the 128 dimensional potential sig
nal and 30 eigenimages with resolution 41×41 pix
els. The training data consisted of 500 simulated
bubble formations with one to ten overlapping cir
cular bubbles in each image. To compute the recon
structions MLPs containing 30 hidden units were
used. MLP models tested were
MLP ESC (NNTB3 defaults) : Early stop
ping committee of 20 MLPs, with different di
vision of data to training and stopping sets for
each member. The weights were initialized with
the Matlab Neural Network Toolbox 3.0 default
procedure (Nguyen-Widrow algorithm).

MLP ESC (decent defaults) : Similar commit
tee to the previous, but the weights were initial
ized to near zero weights to guarantee that the
mapping is smooth in the beginning.

MLP ESC (mlp-bgd-1) : Early stopping com
mittee used in [11] for benchmarks.

Bayesian MLP : BayesianMLPwith FBM-software,
using vague priors, noisemodel with t4-distribution,
and MCMC-run specifications similar as used
in [11]. 20 networks from the posterior distribu
tion of network parameters were used.
Fig. 3 shows examples of the bubble images re

constructed with Bayesian MLP. Fig. 4 shows the
goodness of the image reconstructions with differ
ent MLP models for one example image. Table 1
shows the quality of the image reconstructions with
different MLP models, measured by error in the
void fraction and percentage of erroneous pixels in
the segmentation.
An important goal in the studied process tomog

raphy application was to estimate the void frac
tion, which is the proportion of gas and liquid in
the image. With the proposed approach such goal

Table 1
Errors in reconstructing the bubble shape and estimating
the void fraction from the reconstructed images. See text
for explanation of the different models.

Method Classification
error %

Error in void
fraction %

MLP ESC (NNTB3 def) 4.7 16.2

MLP ESC (decent def) 4.5 15.7

Bayesian MLP 3.8 6.0

Table 2
Relative errors in estimating the void fraction directly. See
text for explanation of the different models. Error mean and
90% interval estimated from 4 runs with different random
seeds.
Method Relative test error %

MLP ESC (NNTB3 defaults) 8.6±1.2

MLP ESC (mlp-bgd-1) 6.42±0.04

MLP ESC (decent defaults) 4.10±0.03

Bayesian MLP 3.16±0.02
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Figure 5. Scatterplot of the void fraction estimate with
10% and 90% quantiles.

variables can be estimated directly without explicit
reconstruction of the image. Table 2 shows the rel
ative absolute errors in estimating the void frac
tion directly from the projections of the potential
signals.
Fig. 5 shows the scatter plot of the void fraction

versus the estimate by the BayesianMLP. The 10%
and 90% quantiles are computed directly from the
posterior distribution of the model output.
See [7] for results for effect of additive Gaussian

noise to the performance of the method.
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Figure 3. Examples of bubble formations reconstructed with Bayesian MLP. The white blobs show the actual simulated
bubbles and the black lines show the contours of the reconstructed bubbles.

5. Case II: Forest Scene Analysis

In this section we report results of using
Bayesian MLP for classification of forest scenes, to
accurately recognize and locate the trees from any
background. Potential applications include forest
inventory (estimation of the volume and growth
rate of the trees) and autonomous forest harvester
(navigation and tree manipulation tasks).
Forest scene classification task is demanding due

to the texture richness of the trees, occlusions of
the forest scene objects and diverse lighting condi
tions under operation. This makes it difficult to de
termine which are optimal image features for the
classification. A natural way to proceed is to ex
tract many different types of potentially suitable
features.
In [13] we extracted total of 84 statistical andGa

bor features over different sized windows at each
spectral channel. Due to great number of features
used, many classifier methods would suffer from
the curse of dimensionality, but Bayesian MLP
manage well in high dimensional problems.
Total of 48 images were collected by using an

ordinary digital camera in varying weather condi
tions. The labeling of the image data was done by
hand via identifying many types of tree and back
ground image blocks with different textures and
lighting conditions. In this study only pines were
considered.
To estimate classification errors of different

methods we used eight folded cross-validation
(CV) error estimate, i.e., 42 of 48 pictures were
used for training and the six left out for error
evaluation, and this scheme was repeated eight
times. In addition to 20 hidden unit MLP models
MLP ESC and Bayesian MLP (see section 4), the

Table 3
CV error estimates for forest scene classification. See text
for explanation of the different models.

Error %, all 84
features

Error %, 16–20
pca features

KNN LOOCV 20 16

CART 30 23

MLP ESC 13 15

Bayesian MLP 12 13

Bayesian MLP +ARD 11 13

models tested were:
KNN LOOCV : K-nearest-neighbor, where K is
chosen by leave-one-out cross-validation.

CART : Classification And Regression Tree [2].
Bayesian MLP +ARD : Same as Bayesian
MLP plus using Automatic Relevance Determi
nation prior.
We also tested Principal Component Analysis

(PCA) for dimension reduction. With PCA we se
lected first components describing 99% of variance
in training data, which were the first 16 to 20 prin
cipal components depending on training set.
CV error estimates are collected in Table 3.

Fig. 6 shows example image classified with differ
ent methods.

6. Summary discussion

Above case problems in image analysis illustrate
the advantages of using Bayesian MLPs. The ap
proach contains automatic complexity control as
the Bayesian inference techniques allow the val
ues of regularization coefficients to be selected us
ing only the training data, without the need to
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Forest scene KNN CART MLP ESC Bayesian MLP Bayesian MLP +ARD

Figure 6. Examples of classified forest scene. See text for explanation of the different models.

use separate training and validation data. We can
use large number of inputs and there is no need
to search for minimal set of sufficient inputs. It is
possible to use prior information, like ARD. The
Bayesian approach gives the predictive distribu
tions for outputs, which can be used to estimate
reliability of the predictions.
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