
BAYESIAN STATISTICS 7, pp. 000–000
J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid,
D. Heckerman, A. F. M. Smith and M. West (Eds.)
c© Oxford University Press, 2003

Expected Utility Estimation
via Cross-Validation
AKI VEHTARI and JOUKO LAMPINEN

Helsinki University of Technology, Finland
{aki.vehtari,jouko.lampinen}@hut.fi

SUMMARY

We discuss practical methods for the assessment, comparison and selection of complex
hierarchical Bayesian models. A natural way to assess the goodness of the model is to estimate
its future predictive capability by estimating expected utilities. Instead of just making a point
estimate, it is important to obtain the distribution of the expected utility estimate in order to
describe the associated uncertainty. We synthesize and extend the previous work in several ways.
We give a unified presentation from the Bayesian viewpoint emphasizing the assumptions made
and propose practical methods to obtain the distributions of the expected utility estimates.
We discuss the properties of two practical methods, the importance sampling leave-one-out and
the k-fold cross-validation. We propose a quick and generic approach based on the Bayesian
bootstrap for obtaining samples from the distributions of the expected utility estimates. These
distributions can also be used for model comparison, for example, by computing the probability
of one model having a better expected utility than some other model. We discuss how the cross-
validation approach differs from other predictive density approaches, and the relationship of
cross-validation to information criteria approaches, which can also be used to estimate the
expected utilities. We illustrate the discussion with one toy and two real world examples.
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COMPARISON; PREDICTIVE DENSITIES; INFORMATION CRITERIA.

1. INTRODUCTION
1.1. Expected Utilities

In prediction and decision problems, it is natural to assess the predictive ability
of the model by estimating the expected utilities, that is, the relative values of conse-
quences of using the model (Good, 1952; Bernardo and Smith, 1994).

The posterior predictive distribution of output y(n+1) for the new input x(n+1) given
the training data D = {(x(i), y(i)); i = 1, 2, . . . , n} is obtained by

p(y(n+1) |x(n+1), D,M) =
∫

p(y(n+1) |x(n+1), θ,D,M)p(θ |x(n+1), D,M)dθ.

where θ denotes all the model parameters and hyperparameters of the prior structures
and M is all the prior knowledge in the model specification. We assume that knowing
x(n+1) does not give more information about θ, that is, p(θ |x(n+1), D,M) = p(θ |D,M).

We would like to estimate how good our model is by estimating the quality of
the predictions the model makes for future observations from the same process that
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generated the given set of training data D. Given a utility function u, the expected
utility is obtained by taking the expectation

ū = E
(x(n+1),y(n+1))

[
u

(
y(n+1), x(n+1), D,M

)]
.

The expectation could also be replaced by some other summary quantity, such as the
α-quantile. Note that considering the expected utility for the next sample is equivalent
to taking the expectation over all future samples. Preferably, the utility u would be
application-specific, measuring the expected benefit or cost of using the model. For
example, Draper and Fouskakis (2000) discuss an example in which monetary utility is
used for data collection costs and the accuracy of predicting mortality rate in health
policy problem. Examples of generic utilities are the absolute error

u = abs(E
y(n+1)[y

(n+1) |x(n+1), D,M ] − y(n+1))

and the predictive likelihood

u = p(y(n+1) |x(n+1), D,M)
The predictive likelihood measures how well the model estimates the whole predictive
distribution and is thus especially useful in model comparison. It is also useful in non-
prediction problems, in which the goal is to get scientific insight in modeled phenomena.

1.2 Cross-Validation Predictive Densities
Expected utilities can be estimated using cross-validation (CV) predictive densities. As
the distribution of (x(n+1), y(n+1)) is unknown, we approximate it by using the samples
we already have, that is, we assume that the distribution can be reasonably well ap-
proximated using the (weighted) training data {(x(i), y(i)); i = 1, 2, . . . , n}. To simulate
the fact that the future observations are not in the training data, the ith observation
(x(i), y(i)) in the training data is left out, and then the predictive distribution for y(i)

is computed with a model that is fitted to all of the observations except (x(i), y(i)). By
repeating this for every point in the training data, we get a collection of leave-one-out
cross-validation (LOO-CV) predictive densities

{p(y(i) |x(i), D(\i),M); i = 1, 2, . . . , n}
where D(\i) denotes all the elements of D except (x(i), y(i)). To get the expected utility
estimate, these predictive densities are compared to the actual y(i)’s using the utility
u, and the expectation is taken over i

ūLOO = Ei

[
u(y(i), x(i), D(\i),M)

]

If the future distribution is expected to be different from the distribution of the training
data, observations could be weighted appropriately. By appropriate modifications of the
algorithm, the cross-validation predictive densities can also be computed for data with
a nested structure or other finite range dependencies. Vehtari and Lampinen (2002a)
discuss these issues and assumptions made on future data distributions in more detail.

For simple models, the LOO-CV-predictive densities may be computed quickly
using analytical solutions, but models that are more complex usually require a full
model fitting for each of the n predictive densities. When using the Monte Carlo
methods we have to sample from p(θ |D(\i),M) for each i. If sampling is slow (e.g.,
when using MCMC methods), importance sampling LOO-CV (IS-LOO-CV) or the
k-fold-CV can be used to reduce the computational burden.
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1.3. Previous Work
Cross-validation methods for model assessment and comparison have been proposed by
several authors: for early accounts see Stone (1974) and Geisser (1975), and for a more
recent review see Gelfand et al. (1992). The cross-validation predictive density dates at
least to Geisser and Eddy (1979), and reviews of cross-validation and other predictive
densities appear in Gelfand and Dey (1994) and Gelfand (1996). Bernardo and Smith
(1994, Ch. 6) also discuss briefly how cross-validation approximates the formal Bayes
procedure of computing the expected utilities.

2. METHODS
2.1. Importance Sampling Leave-One-Out Cross-Validation

In IS-LOO-CV, instead of sampling directly from p(θ |D(\i),M), samples from the full
posterior p(θ |D,M) are reused and the full posterior is used as the importance sampling
density for the leave-one-out posterior densities (Gelfand et al., 1992; Gelfand, 1996).
Additional computation time compared to sampling from the full posterior distribution
is negligible.

The reliability of the importance sampling can be estimated by examining the
expected variability of the importance weights. We propose to use a heuristic measure of
effective sample sizes based on an approximation of the variance of importance weights
computed as m

(i)
eff = 1/

∑m
j=1(w

(i)
j )2, where w

(i)
j are normalized weights (Kong et al.,

1994). See further discussion of estimating the reliability of the IS-LOO-CV in Vehtari
and Lampinen (2002a). If there is reason to suspect the reliability of the importance
sampling, we suggest using predictive densities from the k-fold-CV, discussed in the
next section.

2.2. k-Fold Cross-Validation
k-fold CV is a robust way of obtaining CV predictive densities for complex hierarchi-
cal Bayesian models. In k-fold-CV, we sample only from k (e.g., k = 10) k-fold-CV
distributions p(θ |D(\s(i)),M) and get a collection of k-fold-CV predictive densities

{p(y(i) |x(i), D(\s(i)),M); i = 1, 2, . . . , n}

where s(i) is a set of data points as follows: the data are divided into k groups so
that their sizes are as nearly equal as possible and s(i) is the set of data points in the
group where the ith data point belongs. In the case of data with nested structure,
the grouping needs to respect the hierarchical nature of the data, and in the case of
non-structured finite range dependency, the group size should be selected according to
the range of the dependency.

Since the k-fold-CV predictive densities are based on smaller training data sets
D(\s(i)) than the full data set D, the expected utility estimate is slightly biased. This
bias can be corrected using a first order bias correction (Burman, 1989):

ūtr = Ei[u(y(i), x(i), D,M)]

ūcvtr = Ej [Ei[u(y(i), x(i), D(\sj),M)]] ; j = 1, . . . , k

ūCCV = ūCV + ūtr − ūcvtr,

where ūtr is the expected utility evaluated with the training data given the training data,
that is, the training error or the expected utility computed with the marginal posterior
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predictive densities, and ūcvtr is the average of the expected utilities evaluated with the
training data given the k-fold-CV training sets.

2.3. Distribution of the Expected Utility Estimate
Instead of just making a point estimate, it is important to obtain the distribution of
the expected utility estimate in order to describe the associated uncertainty. These
distributions can also be used to compare models.

Our goal is to estimate the expected utilities given the training data D, but the
cross-validation predictive densities p(y |x(i), D(\sj),M) are based on training data sets
D(\sj), which are each slightly different. This makes the ui’s slightly dependent in a
way that will increase the estimate of the variability of the ū. In the case of LOO-CV,
this increase is negligible (unless n is very small), and in the case of k-fold-CV, it is
practically negligible with reasonable values of k. If in doubt, this increase could be
estimated as proposed by Vehtari and Lampinen (2002a).

We propose to use the Bayesian bootstrap (BB; Rubin, 1981) to obtain samples
from the distribution of the expected utility estimate. In this approach it is assumed
that the posterior probabilities for the samples zi of a random variable Z have a Dirich-
let distribution and values of Z that are not observed have zero posterior probability.
Sampling from the Dirichlet distribution gives BB samples from the distribution of the
distribution of Z, and thus samples of any parameter of this distribution can be ob-
tained. We first sample from the distributions of each ui (variability due to Monte Carlo
integration) and then from the distribution of the ū (variability due to the approxima-
tion of the future data distribution). From obtained samples, it is easy to compute,
for example, credible intervals (CI), highest probability density intervals (HDPI), and
kernel density estimates. The approach can handle arbitrary summary quantities and
gives a good approximation also in non-Gaussian cases.

2.4. Model Comparison with Expected Utilities
The distributions of the expected utility estimates can be used to compare models, for
example, by plotting the distribution of ūM1−M2 = Ei[uM1,i − uM2,i] or computing the
probability p(ūM1−M2 > 0). Following the simplicity postulate (Jeffreys, 1961), it is
useful to start from simpler models and then test if more complex models would give
significantly better predictions. Note that comparison of point estimates instead of
distributions could easily lead to selection of unnecessarily complex models.

An extra advantage of comparing the expected utilities is that even if there is high
probability that one model is better, it might be discovered that the difference between
the expected utilities is still practically negligible. For example, it is possible that using
a statistically better model would save only a negligible amount of money.

3. RELATIONS TO OTHER APPROACHES
3.1. Other predictive approaches

For notational convenience we omit the x and consider expected predictive log-likelihood
E

y(n+1)[log p(y(n+1) |D,M)], which can be estimated using the cross-validation predic-

tive densities as Ei[log p(y(i) |D(\i),M)]. Relations to other predictive densities can
be illustrated by comparing the equations in Table 1, where D∗ is an exact repli-
cate of D, and y(si) is a set of data points so that y(s1) = ∅, y(s2) = y(1), and
y(si) = y(1,...,i−1); i = 3, . . . , n. Next we discuss the relations and differences in more



Expected Utility Estimation via Cross-Validation 5

detail. Other less interesting possibilities not discussed here are marginal prior, partial,
intrinsic, fractional and prequential predictive distributions.

Table 1. Relations to other predictive densities

Cross-validation
(Expected utility)

1
n

n∑
i=1

log p(y(i) |D(\i),M) = Ei

[
log p(y(i) |D(\i),M)

]

Marginal posterior
(Training error):

1
n

n∑
i=1

log p(y(i) |D∗,M)

Posterior
(Posterior BF):

1
n

n∑
i=1

log p(y(i) | y(si), D∗,M) =
1
n

log p(D |D∗,M)

Prior
(Bayes Factor):

1
n

n∑
i=1

log p(y(i) | y(si),M) =
1
n

log p(D |M)

Marginal Posterior Predictive Densities. Estimating the expected utilities with the
marginal posterior predictive densities measures the goodness of the predictions as
if the future data would be exact replicates of the training data. Accordingly this
estimate is often called the training error. It is well known that this underestimates
the generalization error of flexible models as it does not correctly measure the out-off-
sample performance. However, if the effective number of parameters is relatively small
(i.e., if peff � n), marginal posterior predictive densities may be useful approximations
to cross-validation predictive densities (see section 3.2), and in this case may be used
to save computational resources. In case of flexible non-linear models (see, e.g., section
4) peff is usually relatively large.

The marginal posterior predictive densities are also useful in Bayesian posterior
analysis advocated, for example, by Gelman et al. (1996). In the Bayesian posterior
analysis, the goal is to compare posterior predictive replications to the data and examine
the aspects of the data that might not accurately be described by the model. Thus,
the Bayesian posterior analysis is complementary to the use of the expected utilities in
model assessment. To avoid using the data twice, we have also used the cross-validation
predictive densities for such analysis. This approach has also been used in some form
by Gelfand et al. (1992), Gelfand (1996), and Draper (1996).

Posterior Predictive Densities. Comparison of the joint posterior predictive densities
leads to the posterior Bayes factor p(D |D∗,M1)/p(D |D∗,M2) (Aitkin, 1991). Com-
paring the above equations it is obvious that use of the joint posterior predictive den-
sities would produce even worse estimates for the expected utilities than the marginal
posterior predictive densities; thus this method is to be avoided.

Prior Predictive Densities. Comparison of the joint prior predictive densities leads
to the Bayes factor p(D |M1)/p(D |M2) (Kass and Raftery, 1995). In an expected
utility sense 1

n log p(D |M) = 1
n

∑
i log p(y(i) | y(si),M) is an average of predictive log-

likelihoods with the number of data points used for fitting ranging from 0 to n− 1. As
the learning curve is usually steeper with smaller number of data points, this is less
than the expected predictive log-likelihood with n/2 data points. As there are terms
which are conditioned on none or very few data points, the prior predictive approach



6 A. Vehtari and J. Lampinen

is sensitive to prior changes. With more vague priors and more flexible models the few
first terms dominate the expectation unless n is very large.

This comparison shows that the prior predictive likelihood of the model can be
used as a lower bound for the expected predictive likelihood (favoring less flexible
models). Vehtari and Lampinen (2002b) discuss problems with a very large number of
models, where it is not computationally possible to use cross-validation for each model.
They propose to use variable dimension MCMC methods to estimate the posterior
probabilities of models, which can be used to obtain relative prior predictive likelihood
values: in this way it is possible to select a smaller set of models for which expected
utilities are estimated via cross-validation.

3.2. INFORMATION CRITERIA
Information criteria such as AIC, NIC, DIC (Akaike, 1973; Murata et al.,1994; Spiegel-
halter et al., 2002) also estimate expected utilities (except the BIC by Schwarz (1978)
which is based on prior predictive densities). AIC and DIC are defined using deviance
as utility. NIC is defined using arbitrary utilities, and a generalization of DIC using
arbitrary utilities was presented by Vehtari (2002). Given a utility function u, it is pos-
sible to use Monte Carlo samples to estimate Eθ[ū(θ)] and ū(Eθ[θ]), and then compute
an expected utility estimate as

ūDIC = ū(Eθ[θ]) + 2(Eθ[ū(θ)] − ū(Eθ[θ])).

Information criteria estimate expected utilities using asymptotic approximations,
which will not necessarily be accurate with complex hierarchical models and finite
data. The CV approach uses full predictive distributions, obtained by integrating out
the unknown parameters, while information criteria use plug-in predictive distributions
(maximum likelihood, maximum a posteriori or posterior mean), which ignore the un-
certainty about parameter values and model. The cross-validation approach is less
sensitive to parametrization than information criteria, as it deals directly with predic-
tive distributions. With appropriate grouping k-fold-CV can also be used when there
are finite range dependencies in the data, while use of information criteria is limited
to cases with more strict restrictions on dependencies (Vehtari, 2003). In the case of
information criteria, the distribution of the estimate is not so easy to estimate and usu-
ally only point estimates are used. Even if an information criterion is used for models
for which assumptions of the criterion hold, this may lead to selection of unnecessarily
complex models, as more complex models with possibly better but not significantly
better criterion values may be selected.

Spiegelhalter et al. (2002) divided the estimation of the expected deviance (DIC)
into model fit and complexity parts, where the latter is called the effective number of
parameters peff . In the CV approach, an estimate of peff is not needed, but it can be
estimated in the case of independent data by the difference of the marginal posterior
predictive log-likelihood and the expected predictive log-likelihood (Vehtari, 2001, Ch.
3.3.4)

peff,CV =
n∑

i=1

log p(y(i) |D,M) −
n∑

i=1

log p(y(i) |D(\i),M)

When k-fold-CV is used, the second term is replaced with the bias corrected estimate
(section 2.2).
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4. ILLUSTRATIVE EXAMPLES
As illustrative examples, we use multi layer perceptron (MLP) neural networks and
Gaussian processes (GP) with Markov Chain Monte Carlo sampling (Neal, 1996, 1999;
Lampinen and Vehtari, 2001) in one toy problem (MacKay’s robot arm) and two real
world problems: concrete quality estimation and forest scene classification (see Vehtari
and Lampinen, 2001, for details of the models, priors and MCMC parameters). The
MCMC sampling was done with the FBM1 software and Matlab-code partly derived
from the FBM and Netlab2 toolbox. Importance weights for MLP networks and GPs
were computed as described in Vehtari (2001, Ch. 3.2.2).

4.1. Toy Problem: MacKay’s Robot Arm
The task is to learn the mapping from joint angles to position for an imaginary

robot arm. Two real input variables, x1 and x2, represent the joint angles and two real
target values, y1 and y2, represent the resulting arm position in rectangular coordinates.
The relationship between inputs and targets is y1 = 2.0 cos(x1) + 1.3 cos(x1 + x2) + e1,
y2 = 2.0 sin(x1)+1.3 sin(x1 +x2)+ e2, where e1 and e2 are independent Gaussian noise
variables of standard deviation 0.05. As training data sets, we used the same data sets
that were used by MacKay (1992). We used an 8-hidden-unit MLP and a GP with
normal (N) residual model.

Figure 1 shows the different components that contribute to the uncertainty in the
estimate of the expected utility. The variability due to having slightly different training
sets in 10-fold-CV and the variability due to the Monte Carlo approximation are negli-
gible compared to the variability due to not knowing the true noise variance. Figure 1
also demonstrates the comparison of models using paired comparison of the expected
utilities. The two models are almost indistinguishable on grounds of predictive utility.

0.050 0.052 0.054 0.056 0.058

MLP

GP

Root mean square error

10−fold CV (90% CI)
Bias in uncorrected 10−fold CV
Variability due to different training sets
Variability due to Monte Carlo integration

 0.000  0.001  0.002

MLP vs. GP

Difference in root mean square errors

10−fold CV (90% CI)
Bias in uncorrected 10−fold CV
Variability due to different training sets
Variability due to Monte Carlo integration

Figure 1. The left plot shows the different components that contribute to the uncertainty, and
bias correction for the expected utility (root mean square error) for MLP and GP. The right
plot shows same information for the expected difference of root mean square errors.

4.2. Case Study I: Concrete quality estimation
The goal of this project was to develop a model for predicting the quality properties
of concrete, as a part of a large quality control program of the industrial partner of
the project (Järvenpää, 2001). In the study, we had 27 explanatory variables and 215
samples. Here we report results for the volume percentage of air in the concrete. We
tested 10-hidden-unit MLP networks and GP models with Normal (N), Student’s tν ,
input dependent Normal (in.dep.-N) and input dependent tν residual models.

1
http://www.cs.toronto.edu/~radford/fbm.software.html

2
http://www.ncrg.aston.ac.uk/netlab/
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Figure 2 shows some results comparing IS-LOO-CV and k-fold-CV. IS-LOO-CV
fails as importance sampling does not work well in this problem. k-fold-CV without
bias correction gives overly pessimistic estimates. Figure 3 shows results comparing
k-fold-CV and DIC in estimating the expected utilities and the effective number of
parameters for four different noise models. DIC gives more optimistic estimates, which
is probably due to using the plug-in predictive distribution and ignoring the uncertainty
about the parameter values. Furthermore, since DIC provides only point estimates, it
is harder to know whether the difference between models is significant
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Figure 2. The left plot shows the comparison of IS-LOO-CV and k-fold-CV with and without
bias correction. The right plot shows the effective sample sizes of the importance sampling
m

(i)
eff for each data point i (sorted in increasing order). Small effective sample sizes imply that

IS-LOO-CV does not work.

0.8 0.9 1 1.1

GP −  N

GP − in.dep.  N

GP −  tν

GP − in.dep.  tν

Mean predictive likelihood

With 10−fold−CV (90% CI)
With DIC
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GP −  N

GP − in.dep.  N

GP −  tν

GP − in.dep.  tν

Effective number of parameters  p
 eff

With 10−fold−CV (90% CI)
With DIC

Figure 3. The left plot shows the expected utility estimates with k-fold-CV and DIC. The right
plot shows the effective number of parameters estimates with k-fold-CV and DIC.

4.3. Case Study II: Forest scene classification
The case study here is the classification of forest scenes with MLP (Vehtari et al., 1998).
The final objective of the project was to assess the accuracy of estimating the volumes
of growing trees from digital images. To locate the tree trunks and to initialize the
fitting of the trunk contour model, a classification of the image pixels to tree and non-
tree classes was necessary. Training data was 4800 samples from 48 images (100 pixels
from each image) with 84 different Gabor and statistical features as input variables.
We tested two 20-hidden-unit MLPs with a logistic likelihood model. The first MLP
used all 84 inputs and the second MLP used a reduced set of 18 inputs selected using
the reversible jump MCMC method (Vehtari, 2001).

The training data has a nested structure as textures and lighting conditions are
more similar in different parts of one image than in different images. If LOO-CV is
used or data are divided randomly in the k-fold-CV, the training and test sets may have
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data points from the same image, which would lead to over-optimistic estimates. This
is caused by the fact that instead of having 4800 independent data points, we have 48
sample images which each have 100 highly dependent data points. This increases our
uncertainty about the future data. To get a more accurate estimate of the expected
utility for new unseen images, the training data set has to be divided by images.

Figure 4 shows the expected classification accuracy and the effective number of
parameters estimated via cross-validation and (generalized) DIC. The 8-fold-CV with
random data division and the DIC give overly optimistic estimates of the expected
classification accuracy. The random 8-fold-CV also underestimates the uncertainty in
the estimate. The DIC and the random 8-fold-CV give similar estimates of the effective
number of parameters, which supports the argument that DIC assumes independent
data points. If there are dependencies in the data, it is not possible to explain the
difference between the model fit (the marginal posterior predictive log-likelihood) and
the expected predictive log-likelihood with the effective number of parameters because
this difference may be larger than the total number of parameters in the model. For
example, in the case of the 18-input MLP with total of 401 parameters, this difference
is about 650.

87 88 89 90 91 92 93
Classification accuracy %

MLP − 84 inputs

MLP − 18 inputs

With random 8−fold−CV (90% CI)
With group 8−fold−CV (90% CI)
With DIC

200 400 600 800 1000
Effective number of parameters  p

 eff

MLP − 84 inputs

MLP − 18 inputs

With random 8−fold−CV (90% CI)
With group 8−fold−CV (90% CI)
With DIC

Figure 4. The left plot shows the expected mean predictive likelihoods computed with the 8-
fold-CV and the DIC. The right plot shows the estimates for the effective number of parameters
computed with the random 8-fold-CV and the DIC, and the difference between the marginal
posterior predictive log-likelihood and the expected predictive log-likelihood computed with group
8-fold-CV. The 84-input MLP had ptotal = 1721 and the 18-input MLP had ptotal = 401.
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