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Appendix: Prior and MCMC specification details

Short description of the prior and the MCMC specification details is given here. See (Neal, 1996, 1997, 1999;
Lampinen & Vehtari, 2001) and the FBM software manual (Neal, 2000) for additional details.

The MCMC sampling was done with the FBM1 software and Matlab-code derived from the Netlab2 toolbox.
FBM was used when possible (normal and logistic models) because of its speed. Matlab-based implementation
was slower, but it was much easier to implement new features to it.

In the following, we use the notation r ∼ F(a) as shorthand for p(r) = F(r |a) where a denotes the parameters
of the distribution F , and the random variable argument r is not shown explicitly. N (µ, σ 2) denotes a normal
distribution with mean µ and variance σ 2. Parametrization of the Inverse Gamma here is

Inv-gamma(σ 2|σ 2
0 , ν) ∝ (σ 2)−(ν/2+1) exp

(
−1

2
νσ 2

0 σ−2
)

,

which is equal to a scaled inverse chi-square distribution (Gelman et al., 1995, Appendix A). The parameter ν is
the number of degrees of freedom and σ 2

0 is a scale parameter. We first describe common details for MLP and GP
and then specific details for each case.

MLP

We used one hidden layer MLP with tanh hidden units, which in matrix format can be written as

f (x, θw) = b2 + w2 tanh
(

b1 + w1x
)

.

The θw denotes all the parameters w1, b1, w2, b2, which are the hidden layer weights and biases, and the output
layer weights and biases, respectively. The Gaussian priors for the weights were

w1 ∼ N (0, αw1)

b1 ∼ N (0, αb1)

w2 ∼ N (0, αw2)

b2 ∼ N (0, αb2)

1http://www.cs.toronto.edu/~radford/fbm.software.html
2http://www.ncrg.aston.ac.uk/netlab/

http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.ncrg.aston.ac.uk/netlab/
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where the α’s are the variance hyperparameters. The conjugate inverse Gamma hyperprior for αj ’s is

αj ∼ Inv-gamma(α0, j , να, j )

The fixed values for the highest level hyperparameters in the case studies were similar to those used in (Neal,
1996, 1998). The hyperpriors for w1 and w2 were scaled according to the number of inputs K and hidden units J .
Typical values were

να,w1 = 0.5

α0,w1 = (0.05/K 1/ν
α,w1 )2.

ARD prior was used for input weights

w1
j,k ∼ N (0, αk,w1),

αk,w1 ∼ Inv-gamma(ᾱw1 , να,w1)

ᾱw1 ∼ Inv-gamma(ᾱ0,w1 , νᾱ,w1),

where the average scale of the αk is determined by the next level hyperparameters. Sampling of the weights was
done with HMC and sampling of the hyperparameters was done with Gibbs sampling.

GP

We used a simple covariance function producing smooth functions

Ci j = η2 exp

(
−

p∑
u=1

ρ2
u(x (i)

u − x ( j)
u )2

)
+ δi j J 2 + δi jσ

2
e .

Jitter was fixed to J 2 = 0.01. Inverse Gamma prior for scale was

η2 ∼ Inv-gamma(αη2 , νη2)

And ARD prior was used for relevance parameters

ρ2
u ∼ Inv-gamma(αρ2 , νρ2)

αρ2 ∼ Inv-gamma(α0,ρ2 , ν0,ρ2),

Sampling of the parameters was done with HMC.

Robot Arm

The Normal residual model with Inverse Gamma prior for variance was used

e ∼ N (0, σ 2)

σ 2 ∼ Inv-gamma(σ 2
0 , νσ ).

Prior specification for MLP model specified in FBM notation was

net-spec log 2 8 2 / - x0.05:0.5:1 0.05:0.5 - x0.05:0.5 - 1
model-spec log real 0.05:0.5

These commands set hyperparameters of parameter priors to values: να,w1 = 0.5, ᾱ0,w1 = (0.05/21/ν
α,w1 )2,

νᾱ,w1 = 1, να,b1 = 0.5, α0,b1 = 0.052, να,w2 = 0.5, α0,w2 = (0.05/81/ν
α,w2 )2, αb2 = 1, and Normal residual

model parameters to σ0 = 0.05, and νσ = 0.5. MCMC specification for MLP model in FBM notation was
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net-gen log fix 0.1 0.5
mc-spec log repeat 10 heatbath hybrid 10 0.05
net-mc log 1
mc-spec log repeat 50 sample-sigmas heatbath hybrid 10 0.15
net-mc log 2
mc-spec log repeat 50 sample-sigmas heatbath 0.9 hybrid 10 0.2 negate
net-mc log 3
mc-spec log repeat 500 sample-sigmas heatbath 0.9 hybrid 10 0.4 negate
net-mc log 1000

net-gen intializes weights to zero and following paramteres as αk,w1 = 0.1, αb1 = 0.1, αw2 = 0.5, and σ = 0.1.
First three mc-spec specifications are used to improve convergence and last mc-spec specification specifies the
main run (net-mc does the sampling). The last mc-spec specification means: alternate Gibbs sampling and HMC
with chain length 10, step size 0.4, and persistence 0.9, save every 500th iteration and last net-mc does iterations
until 1000 iterations are saved. See FBM manual for full details. All samples were used to estimate convergence
and autocorrelations. For predictive densities 100 samples were used (every ninth sample starting from sample
100).

Prior specification for GP model specified in FBM notation

gp-spec log 2 2 - - 0.01 / 0.05:0.5 0.05:0.5:1
model-spec log real 0.05:0.5

These commands set hyperparameters of parameter priors to values: J = 0.01, αη2 = 0.052, νη2 = 0.5, νρ2 = 0.5,
α0,ρ2 = 0.052, ν0,ρ2 = 1, and Normal residual model parameters to σ0 = 0.05, and νσ = 0.5. MCMC specifica-
tion for GP model in FBM notation

gp-gen log fix 0.2 0.1
mc-spec log repeat 5 heatbath hybrid 10 0.1
gp-mc log 1
mc-spec log repeat 5 heatbath hybrid 10 0.4 sample-variances
gp-mc log 1000

gp-gen intializes following paramteres as η2 = 0.2, ρ2
u = 0.1 and σ = 0.2. First mc-spec specification is used

to improve convergence (per-case variances are not yet sampled) and second mc-spec specification specifies the
main run (gp-mc does the sampling). The last mc-spec specification means: aletranate HMC with chain length
10, step size 0.4, no persistence and sampling per-case variances with Gibbs sampling, save every 5th iteration and
last gp-mc does iterations until 1000 iterations are saved. See the FBM manual for full details. All samples were
used to estimate convergence and autocorrelations. For predictive densities 100 samples were used (every ninth
sample starting from sample 100).

Concrete Quality Estimation

Prior specifications for MLPs and GPs were same as in robot arm case except for parameters of alternative residual
models.

For MLP, we used Student’s t-distribution, where the tails can be controlled by choosing the number of degrees
of freedom ν in the distribution. The integration over the degrees of freedom was done by Gibbs sampling for
discretized values of ν, so that the residual model is

e ∼ tν(0, σ 2)

ν = V [i]
i ∼ Ud(1, K )

V [1 : K ] = [2, 2.3, 2.6, 3, 3.5, 4, 4.5, 5 : 1 : 10, 12 : 2 : 20, 25 : 5 : 50]
σ 2 ∼ Inv-gamma(σ0, νσ )

where [a : s : b] denotes the set of values from a to b with step s, and Ud(a, b) is a uniform distribution of integer
values between a and b.
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For GP instead of Student’s t-distribution, we used per-case residual variance model, with Inverse-Gamma
prior having unknown degrees of freedom

en ∼ N (0, (σ 2)n)

(σ 2)n ∼ Inv-gamma(σave, νσ )

νσ ∼ Inv-gamma(σν, νν)

σave ∼ Inv-gamma(σ0, νσ,ave),

where the fixed hyperparameters are σν, νν, σ0 and νσ,ave. This is equal to the tν-distribution residual model with
unknown degrees of freedom νσ (Geweke, 1993), but easier to implement for GP (Neal, 1999).

We also used input dependent Normal and tnu residual models. Three inputs, which were zero/one variables
indicating use of additives, divide the data to six groups. For each group, we had own residual model parameters
with common hyperprior. For example for input dependent Normal model (in.dep.-N ) we had

ei ∼ N (0, σ 2
l(i))

σ 2
l ∼ Inv-gamma(σ 2, νσl )

σ 2 ∼ Inv-gamma(σ 2
0 , νσ ),

where l is index of group, and l(i) is index of group to which i th data point belongs.
For MLP the main HMC parameters were: the length of individual chains was 100, step size 0.5 with Neal’s

heuristic step size adjustment, persistence parameter 0.9, and window length in windowing 5. The burn-in stage
contained 16 000 iterations and the actual sampling 80 000 iterations, from which 100 samples were stored for the
analysis.

For GP the main HMC parameters were: the length of individual chains was 100, step size 0.4 with Neal’s
heuristic step size adjustment and persistence parameter 0.9. The burn-in stage contained 200 iterations and the
actual sampling 1 000 iterations, from which 100 samples were stored for the analysis.

Forest scene classification

Prior specifications for MLP was same as in robot arm case except ᾱ0,w1 = (0.2/21/ν
α,w1 )2 and logistic transfor-

mation was used to compute the probability that a binary-valued target, y, has value 1

p(y = 1|x, θw, M) = [1 + exp(− f (x, θw))]−1.

The main HMC parameters were: the length of individual chains was 10, step size 0.2 with Neal’s heuristic step
size adjustment, persistence parameter 0.95. The burn-in stage contained 5000 iterations and the actual sampling
45 000 iterations, from which 100 samples were stored for the analysis.
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