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Abstract

The purpose of this document is to review the most commonly used algorithms in
multiple target tracking and data association. All reviewed algorithms belong to
class of probabilistic or Bayesian methods, that is, they represent all uncertainties
as probability distributions. The purpose of the document is not to be a complete
reference of existing multiple target tracking methods, but more like an extended
review.

The document also reviews a collection of Monte Carlo methods, which are
commonly used in Bayesian inference, and which are useful in multiple target
tracking. Because dynamic modeling is also an important issue in practical appli-
cations and written material on the topic is quite scattered in the literature, a re-
view of dynamic modeling with stochastic differential equations is also included.
The dynamic modeling review is written in practical engineering point of view,
without rigorous mathematical treatment of the stochastic differential equations.
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Abbreviations and notations

Abbreviations

CLT Central Limit Theorem
DLM Dynamic Linear Model
CDLM Conditional Dynamic Linear Model
EKF Extended Kalman Filter
FD Finite Differences
FEM Finite Element Method
FPK Fokker-Planck-Kolmogorov
FPKE Fokker-Planck-Kolmogorov Equation
HMC Hybrid Monte Carlo
IID Independently and Identically Distributed
IMM Interacting Multiple Model
JPDA Joint Probabilistic Data Association
JPDAC JPDA with Coupled Targets
JPDAM JPDA with Merged Measurements
KF Kalman Filter
LTI Linear Time Invariant
LQG Linear Quadratic Gaussian
MC Monte Carlo
MCDA Monte Carlo Data Association
MCJPDA Monte Carlo Joint Probabilistic Data Association
MCMC Markov Chain Monte Carlo
MHT Multiple Hypothesis Tracking
MMSE Minimum Mean Squared Error
ODE Ordinary Differential Equation
PDA Probabilistic Data Association
PDF Probability Density Function
RBPF Rao-Blackwellized Particle Filter
SDE Stochastic Differential Equation
SIR Sequential Importance Resampling
SIS Sequential Importance Sampling
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SMC Sequential Monte Carlo
UKF Unscented Kalman Filter
UPF Unscented Particle Filter
UT Unscented Transformation

Symbols

A(·|·) Acceptance probability of Metropolis-Hastings
A Sensor’s surveillance area
A Temporary matrix in matrix fraction expansion
Ak Feedback matrix of discrete model on time jump tk−1 → tk
Aj,k Feedback matrix of discrete model of target j on time jump tk−1 → tk
A(t) Temporary time dependent matrix in matrix fraction expansion
A(x,q) Derivative of feedback function with respect to state
a Angular velocity
a(·) Feedback function in discrete state space model
B Temporary matrix in matrix fraction expansion
B(t) Temporary time dependent matrix in matrix fraction expansion
D Set of measurement data
D(1) First coefficient of Fokker-Planck-Kolmogorov Equation
D(2) Second coefficient of Fokker-Planck-Kolmogorov Equation
δ(τ ) Dirac delta function
1tk Time difference tk+1 − tk
ei Vector, where element i is 1, others 0.
E[h(x)] Expected value of function h(x) when x is distributed as p(x)
E[h(x)|y] Expected value of function h(x) when x is distributed as p(x|y)
E(·) Energy Function
f(·) Feedback function of dynamical model (ODE)
Fu(·) Generic update function
Fp(·) Generic prediction function
Flh(·) Generic likelihood function
F Feedback matrix of LTI model
F(t) Feedback matrix of linear model
g(x) Generic function g : Rn → Rd

g(x) Generic function g : Rn → R
G j (x) Gaussian distribution tied to target j
Hk Linear measurement model matrix on time tk

Hj,k Linear measurement model matrix of target j on time tk

h(·) Measurement function in (discrete) state space model
H(x, r) Derivative of measurement function with respect to state
I Identity Matrix
L Process noise matrix in LTI model
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L(t) Process noise matrix in linear model
L(x) Likelihood function
λk Latent variable of time step tk in MHT
λk Latent variable of time step k in Rao-Blackwellized Filter
3k Set of latent variables from steps t1, . . . , tk

Kk Kalman gain
KFp(·) Kalman filter prediction function
KFu(·) Kalman filter update function
KFlh(·) Kalman filter measurement likelihood function
κk Boolean indicator of positive/negative measurement at time step k
mk State mean on time tk

m−k State mean on time tk just before measurement yk

m(i)
k State mean in particle i on time tk after measurement yk

m−(i)k State mean in particle i on time tk just before measurement yk

m(i)
j,k Target j state mean in particle i on time tk after measurement yk

m−(i)j,k Target j state mean in particle i on time tk just before measurement yk

m(t) State mean as continuous function of time
M Number of modes in IMM
N Number of particles
N (·) Gaussian distribution
O(·) g(N ) ∈ O( f (N )) means that there exists c0, c1, N0 > 0

such that N > N0 implies g(N ) < c0 + c1 f (N )
o(·) g(h) ∈ o( f (h)) means that there exists c0, c1, N0 > 0

such that N > N0 implies g(N ) > c0 + c1 f (N )
Perr Probability that sensor fails to detect a target
P State covariance
Pk State covariance of time tk

P−k State covariance of time tk just before measurement yk

P(i)k State covariance in particle i of time tk after measurement yk

P−(i)k State covariance in particle i of time tk just before measurement yk

P(i)j,k Target j state covariance in particle i of time tk after measurement yk

P−(i)j,k Target j state covariance in particle i of time tk before measurement yk

P(t) State covariance as continuous function of time
p̃ Fourier Transformation of p
p Vector (or set) of probabilities
pc Prior probability of clutter
pj Prior probability of target j association, where j = 0 means clutter
p(x) Prior or marginal distribution of x
p(y|x) Probability (likelihood) of data y given state x
p(x|D) Posterior distribution of state x given data D
p(t) Parameters of dynamical model
π(·) Importance distribution in Importance Sampling
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5 Set of importance distributions for particles in particle set
q Scalar parameter defining the strength of spectral density
qk Process noise on time jump tk−1 → tk
qj,k Process noise of target j on time jump tk−1 → tk
Qc Spectral density
Qc(t) Time dependent Spectral density
Qk Process covariance on time jump tk−1 → tk
Qj,k Process covariance of target j on time jump tk−1 → tk
Q(·|·) Proposal distribution in Metropolis-Hastings
r Radius
ṙ Radial velocity
rk Measurement noise of measurement k on time tk

rj,k Target j measurement noise of measurement k on time tk

Rk Covariance of measurement noise on time step tk

Rj,k Covariance of target j measurement noise on time step tk

R Space of real numbers
Rn Space of real vectors of dimension n
ρ Temporary scalar variable
ρm Weight of mode m in IMM
S Non-centered covariance, i.e. correlation
Sk Innovation covariance in Kalman filter
6 Covariance of Gaussian Distribution
θ Angle
θ̇ Angular velocity
T Number of targets
t Independent variable representing time
tk Time step tk , time of measurement k
tr(A) Trace of matrix A, sum of diagonal elements
τ Independent variable representing time
u Uniformly distributed random scalar
U (·) Uniform Distribution
V Volume of clutter measurement space
vk Kalman filter innovation on step k
Vk Noise derivative of measurement model
V(x, r) Derivative of measurement function with respect to noise
w(t) Continuous white noise process
w
(i)
k Importance weight of particle i on time step k in SIR

Wi Sigma weight in Unscented Transformation
W(x,q) Derivative of feedback function with respect to noise
Wk−1 Noise matrix of discrete dynamical model on time jump tk−1 → tk
Wk Set of particle weights on time step k after measurement k
W−k Set of particle weights on time step k just before measurement k
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ω Independent variable in Fourier Transformation
x(t) State at time t
xk State at time tk

x(i)k Sample i in Monte Carlo representation of states at time tk

xj,k State of target j at time tk

x(i)j,k State of target j in particle i at time tk

x∗ Candidate state in MCMC methods
x−i Vector x without component i
ẋ Derivative of x with respect to time t
ẍ Second derivative of x with respect to time t
Xk Stacked vector of states of all targets at time step k
Xk Set of state particles on time step k
Xi Sigma point in Unscented Transformation
X Space of states x
yk Measurement at time step tk

yj,k Measurement at time step from target j
y1:k Collected measurement data until time tk

yj,1:k Collected measurement data until time tk from target j
y Mean of y
ys Measurement from specific sensor s
Y Space of measurements y
Z Normalization factor
∼ x ∼ p(x) means that random variable x is distributed as p(x)
≈ x ≈ y means that x is approximately y
∝ p(x) ∝ f (x) means that p(x) = f (x)/Z for some constant Z .
∂f/∂x Jacobian matrix of vector valued function f(x)
∇ f (x) Gradient of scalar valued function f (x)
∇T f (x) Transpose of gradient of scalar valued function f (x)
∇∇T f (x) Hessian matrix of scalar valued function f (x)
∀ j For all values of j
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Chapter 1

Introduction

1.1 Overview of the Problem

The basic tracking scenario consists of sensors, which produce noisy measure-
ments, for example, azimuth angle measurements as illustrated in Figure 1.1. The
purpose of tracking algorithm is to determine the target trajectory using the sensor
measurements. There is additional prior information on the dynamics of targets,
which restricts the forms of target trajectories into those that are possible when
the laws of physics are taken into account.

angle

Target

Target
Trajectory

Sensor

Figure 1.1: Sensor (depicted as circle) generates angle measurements of the target (de-
picted as triangle), and the purpose is to determine the target trajectory (dashed line).

More general tracking scenario consists of multiple sensors, which may have
different precisions, and they can produce different kinds of measurements, also
other than azimuth angle measurements. Typically, sensors are not synchronized
and they produce measurements during irregular intervals. Figure 1.2 illustrates
the case of multiple sensors. In estimation point of view, increasing number of
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CHAPTER 1. INTRODUCTION

sensors will ease the estimation procedure, since we get more information on the
same target trajectory.

angle 1

Target

Target
Trajectory

Sensor 1

angle 2

Sensor 2

Figure 1.2: Multiple sensors give us more information on the same trajectory and thus
ease the estimation procedure.

In case of multiple targets there is an additional difficulty, because without
additional information we do not know which of the measurements correspond to
which targets. Figure 1.3 illustrates this problem – if the observed information are
the angle measurements 1 – 4, how do we know which targets they belong to? This
is called as the problem of data association. The same problem applies to false
alarm or clutter measurements, since we do not know if a given measurement was
false alarm or measurement from a target.

angle 1

Target 1

Target 1
Trajectory

Sensor 1

angle 2

angle 3

Target 2
Trajectory

Target 2

angle 4

Sensor 2

Figure 1.3: In case of multiple targets, it is impossible to know without any additional
information, which target produced which measurement.

Attribute measurements can be used for inferring properties of the targets. For
example, the attribute measurements might contain information that target is most

2



CHAPTER 1. INTRODUCTION

likely a fighter. Estimation algorithm may then use the dynamic model for the cor-
rect platform type instead of averaging over all possible platform types according
to their prior (or step-back posterior) probabilities. Attributes also implicitly help
the procedure of data association, because if the platform type that was inferred
from measured attributes doesn’t match with the prior estimate of platform type,
the association likelihood will be lower and other way around.

Negative information arises in situation, when we can somehow infer that a
sensor didn’t give measurement from a target, which is assumed to exist. An artifi-
cial negative information measurement is then generated, which is a measurement
indicating that target is likely to be outside the surveillance area of the sensor.

1.2 Bayesian Inference

The mathematical approach in this document is based on philosophy that we for-
mulate and solve the estimation problems entirely on probabilistic basis1. Estima-
tion methods are developed for estimating the whole probability distributions as
accurately as possible, and individual parameter estimates are derived from these
distributions. Thus, we don’t derive estimators for parameters, but for probability
distributions.

The fundamental theorem of non-linear estimation and filtering theory is that
posterior distribution of states contains all possible information on state that can
be derived from measurements and model (Jazwinski, 1970; Bar-Shalom et al.,
2001). In data association case this theorem states that joint posterior distribution
of the states and associations contains all possible information that can be derived
from measurements, given the model.

Bayesian inference (see, e.g., Bernardo and Smith, 1994; Gelman et al., 1995)
utilizes the theory of statistics for building mathematical models of the nature.
It provides intuitive approach for deriving models, which are statistically opti-
mal, such that it is not even in theory possible to make better models in statistical
sense, conditional to modeling assumptions. Of course, the modeling assumptions
are never perfectly accurate and so the model will always be sub-optimal. Addi-
tional sub-optimality is due to approximations required for converting theoretical
computational models into algorithms suitable for sequential processing in digital
computers.

The procedure of Bayesian inference is in principle the following:

1. Carefully formulate the states and measurements involved in the phenomenon
including their values, ranges and connections to physical world. In this
document, the unknown states (such as position and velocity of a vehicle)

1Pure probabilistic methods are often called as Bayesian methods
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CHAPTER 1. INTRODUCTION

are denoted as
x ∈ X, (1.1)

where X ⊂ Rn is the space of states. The measurements are denoted as

y ∈ Y, (1.2)

where Y ⊂ Rm is the space of measurements.

2. Formulate forward model or noise model, which connects the hidden states
to measurements, taking the uncertainty of measurement model into ac-
count. For example, if correct position was known, what would we measure
in average and what would be the distribution of error. This model is called
the likelihood:

p(y|x) = {probability of measurement y given state x}. (1.3)

Note that likelihood means the probability density here, not the logarithm
of it, unlike within many texts on classical statistics for example in book
Milton and Arnold (1995).

3. Combine multiple measurements into joint likelihood:

p(y1, . . . , yT |x) =
∏

t

p(yt |x). (1.4)

The posterior probability density is now given as

p(x|y1, . . . , yT ) ∝ p(x)
∏

t

p(yt |x), (1.5)

where ∝ means proportional to such that left hand side is constant times
the right hand side. Note that in case of probability densities this constant
can be always calculated since probability densities must integrate to unity
with respect to the random variable.

In fact the expanded formula is

p(x|y1, . . . , yT ) = p(x)
∏

t p(yt |x)∫
p(x)

∏
t p(yt |x) dx

. (1.6)

where the denominator is independent of x.

4. Formulate prior model for states x, which can for example constrain the
velocities and position into sensible certain area. This prior model can be
also non-informative2, if no additional prior information is available.

2for example, uniform over all possible values
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CHAPTER 1. INTRODUCTION

Another types of prior models are dynamical models such as stochastic dif-
ferential equations in form

ẋ(t) = f(x(t),w(t)), (1.7)

which can be thought as prior models that define the time dependent stochas-
tic behavior of states. Here ẋ stands for derivative of x with respect to time
t and w(t) is the process noise modeling the uncertainties in dynamics.

5. Develop estimation algorithms for calculating the expectations (which are
known to be Minimum Mean Squared Error, MMSE estimators) in form

E[g(x)] =
∫

g(x) p(x|y1, . . . , yT ) dx. (1.8)

where g(x) is an arbitrary function. The closed form integration of Equa-
tion (1.8) is impossible for almost all practical distributions and functions.
However, if all functions involved are linear and noise models are Gaus-
sian, the closed form integration is possible (see e.g. Section 5.2). These
linear Gaussian solutions include the pseudo-inverse solution for matrices
and Kalman filter for dynamical models. This is one of the reasons for their
popularity.

For nonlinear functions and non-Gaussian distributions, more complex meth-
ods are required. These methods include number of numerical integration
methods such as Monte Carlo integration (see Chapter 2).

Techniques, where we first formulate accurate forward model, apply the prior
information and then invert the combined model are sometimes called stochastic
inversion algorithms. One way of formulating this kind of inversion problem is
using Bayesian analysis techniques, as we do in this document.

1.3 Filtering and State Estimation

Filtering in this context is equivalent to optimal state estimation in dynamic en-
vironment. The aim is to estimate hidden signal consisting of sequence of states,
using indirect noisy measurements. Estimation is optimal in sense that it mini-
mizes the expected estimation error. In case of multiple targets, minimizing the
estimation error also requires that we are able to solve the problem of data associ-
ation, with possible help of attribute measurements or without. Estimation is done
on-line, which means that updated state estimate is available as soon as new mea-
surement has been obtained. In Bayesian sense filtering is equivalent to recursive
estimation of posterior distribution of states.

5



CHAPTER 1. INTRODUCTION

Tracking is form of filtering where the hidden signal consists of states of a
moving or stationary targets (position, velocity etc.). The purpose of tracking is to
estimate the position of these targets as accurately as possible using only indirect
and noisy measurements such as azimuths, distances and elevations. In addition
to these kinematic measurements there are attribute measurements, which help
process of data association by providing information on types of targets in area. In
order to reach the goal of optimality, the estimation algorithm should be complete
in sense that it is able to track all existing targets, and clutter insensitive such that
there are no extra targets in addition to existing ones.

Measurement model defines how much we can infer from indirect measure-
ments. Given a measurement, we could in theory calculate estimate of the state
by inverting this measurement model. But unfortunately, using the measurements
alone, we could only calculate an approximate position for the exact time instant
when new measurement arrived, but not for any other time instants. The infor-
mation in previous measurements would be always lost, because there is no time
bridge between measurements.

Measurement model is typically in form

yk = h(xk, rk), (1.9)

where h(·) is an arbitrary but known function from state x to measurement y and k
denotes the measurement number. This function actually defines what we would
measure if we knew the state and there was no noise (e.g., rk = 0). The model
also contains the noise term rk which is used for modeling the uncertainty in real
measurements.

Dynamical model tries build a “time bridge” between the measurements of
different times. It is typically based on physical laws (e.g., differential equations),
which loosely define the target’s most likely movements. For example, if the
target is an airplane, it should obey physical laws. This means that, for example,
it cannot change direction very fast, and it must have certain velocity to keep
above ground.

Typically dynamical model is presented in form of stochastic differential equa-
tion

ẋ(t) = f(x(t),w(t)), (1.10)

where w(t) is an unknown noise term. In practice, we integrate Equation (1.10)
from measurement to measurement. Therefore dynamical model in Equation
(1.10) can be also written as discrete jump Markov model, jumping from mea-
surement to measurement:

xk+1 = fk(xk,qk). (1.11)

Filter is an algorithm, which does the job of optimal state estimation using the
measurement and dynamical models defined in Equations (1.9) and (1.10) respec-
tively. The basic functionality of a filter is the following:

6



CHAPTER 1. INTRODUCTION

1. Initialization: Start from initial state x(t0) = x0 with suitable degree of
uncertainty.

2. Prediction: When a new measurement arrives, use the dynamical model to
predict where the measurement should be, when only the old measurements
are taken into account. Prediction step is visualized in Figure 1.4.

3. Update: Use the new measurement to update the state estimate a bit so
that we have optimal combination of old and new information, weighted
according to their quality (probability). Update step is visualized in Figure
1.5.

t=t0,x(t)=x0

t=t1,x(t)=x1

t=t2,x(t)=x2

t=t3,x(t)=x3

y1

y2

y3

dx/dt = f(x) + w,
x(t0) = x0

dx/dt = f(x) + w,
x(t1) = x1

dx/dt = f(x) + w,
x(t2) = x2

(a)
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7
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−1

0

1

2

3

4

5

6

7

0

0.1

0.2

0.3

0.4

t=t[k] 

t=t[k+1] 

dx/dt=f(x) 

(b)

Figure 1.4: (a) Filtering can be thought as integration of dynamics from measurement
to measurement and updating the state estimate using the measurements. (b) Dynamical
model is used for integrating both the state estimate and its uncertainty from measurement
to measurement.

1.4 Optimal Filtering

The success of optimal linear filtering is mostly due to the journal paper of Kalman
(1960), which describes a recursive solution to the discrete linear filtering prob-
lem. Although, the original derivation of Kalman filter was based on least squares
approach, the same equations can be derived from pure probabilistic Bayesian
analysis. The Bayesian analysis of Kalman filtering is well covered in the clas-
sic book of Jazwinski (1970) and more recently in the book of Bar-Shalom et al.
(2001).
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Figure 1.5: (a) When measurement arrives, we have two differing estimates – the real-
ized noisy measurement and predicted measurement which both have their uncertainties.
(b) Update step combines the predicted and realized measurements in optimal fashion
depending on their uncertainty.

Kalman filtering, mostly because of its least squares interpretation, has been
widely used in stochastic optimal control. A practical reason to this is that the
inventor of Kalman filter, Rudolph E. Kalman, has also made several contributions
to the theory of linear quadratic Gaussian (LQG) regulators (see, e.g., Maybeck,
1982b), which are fundamental tools of stochastic optimal control.

As discussed in the book of West and Harrison (1997), in the sixties, Kalman
filter type recursive estimators were also used in Bayesian community and it is not
clear if theory of Kalman filtering or theory of dynamic linear models (DLM) was
the first. Although, these theories were originally derived from slightly different
starting points, they are equivalent. This document approaches the Bayesian fil-
tering problem in Kalman filtering point of view, because of its useful connection
to the theory and history of stochastic optimal control.

In the early stages of its history, Kalman filter was soon discovered to belong
to the class of Bayesian estimators (see, e.g., Ho and Lee, 1964), and the resulting
generalized theory is called as non-linear filtering theory (Jazwinski, 1970). This
theory is fundamentally Bayesian, because there really is no other way of formu-
lating the non-linear theory in a complete and mathematically rigorous manner.
An interesting historical detail is that while Kalman and Bucy were formulating
the linear theory in the United States, Stratonovich was doing the pioneering work
on the probabilistic (Bayesian) approach in Russia (Jazwinski, 1970).

8
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1.5 Continuous-Discrete Filtering

Optimal discrete filter, such as Kalman filter, solves the discrete filtering prob-
lem, which means that the underlying physical phenomenon is modeled as a dis-
crete time process. However, because the nature is continuous, physically more
realistic approach is continuous-discrete filtering, where the state dynamics are
modeled as continuous time stochastic processes (i.e., stochastic differential equa-
tions) and measurements are assumed to be obtained during discrete time steps.
This continuous-discrete filtering approach is due to Jazwinski (1970).

In theory, an optimal continuous-discrete filter does the following (Jazwinski,
1970):

• Prediction step solves the probability density at time step tk from Fokker-
Planck-Kolmogorov (FPK) partial differential equation using the old pos-
terior distribution at time step tk−1 as the boundary condition.

• Update step fuses the information in new measurement at time step tk with
the prior information contained in the predicted posterior distribution above
using the Bayes’ rule.

When we implement the above steps for specific model, we rarely need to consider
the actual theoretical basis in algorithms. For example, the continuous-discrete
Kalman filter does exactly the above, but due to linearity these steps reduce to:

• Prediction step solves the mean and covariance from ordinary differential
equations describing the dynamics of these moments.

• Update step calculates the new state mean and covariance using the Kalman
filter update equations.

As shown in Section 3.6 the above procedure can be actually implemented as
pure discrete process, because the solution to mean and covariance propagation
equations is actually linear function of initial conditions.

9



Chapter 2

Monte Carlo Methods

2.1 Principles and Motivation of Monte Carlo

Within statistical methods in engineering and science it is often necessary to eval-
uate expectations in form

E[g(x)] =
∫

g(x) p(x) dx. (2.1)

where g : Rn → Rm in an arbitrary function and p(x) is the probability distribu-
tion (density) of x.

This is especially the case within methods of estimation theory since the pos-
terior expectation is the MMSE estimator of such quantity. Unfortunately, closed
evaluation of such expectations turns out to be impossible in all except in few
cases such as linear Gaussian case. Therefore, numerical methods have been ap-
plied in majority of the cases.

Monte Carlo methods provide a numerical method of calculating the integrals
in form of Equation (2.1). Monte Carlo refers to general class of methods, where
closed form computation of statistical quantities is replaced by drawing samples
from the distribution and estimating the quantities by sample averages.

In (perfect) Monte Carlo approximation, we draw independent random sam-
ples from x(i) ∼ p(x) and estimate expectation as

E[g(x)] ≈ 1

N

∑

i

g(x(i)). (2.2)

Monte Carlo methods approximate the target density by number of samples that
are distributes according to the target density. Figure 2.1 represents a two dimen-
sional Gaussian distribution and its Monte Carlo representation.

The convergence of Monte Carlo approximation is guaranteed by Central
Limit Theorem (CLT) (see, e.g., Liu, 2001) and the error term is O(N−1/2), re-
gardless of dimensionality of x. This invariance of dimensionality is unique to

10
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Figure 2.1: (a) Two dimensional Gaussian density. (b) Monte Carlo representation of the
same Gaussian density.

Monte Carlo methods and makes them superior to practically all other numerical
methods when dimensionality of x is considerable.

Importance Sampling (see, Section 2.2) is a simple algorithm for generating
weighted samples from the target distribution. The difference to the perfect Monte
Carlo sampling is that each of the particles contain a weight, which corrects the
difference between actual target density and the approximation obtained from im-
portance distribution. Importance sampling is very important, since it is the basis
of Sequential Importance Sampling (see, Section 5.5), which in turn is the basis
of all Particle Filtering algorithms.

2.2 Importance Sampling

It is not always possible to obtain samples directly from p(x) due to its complex
form. In Importance Sampling (see, e.g., Liu, 2001) we use approximate dis-
tribution called importance distribution π(x) from which we can draw samples.
Having samples x(i) ∼ π(x) we could approximate the expectation integral (2.1)
as

E[g(x)] ≈ 1

N

∑

i

g(x(i)) p(x(i))
π(x(i))

. (2.3)

Figure 2.2 illustrates the idea of Importance sampling. We sample from the im-
portance distribution, which is an approximation to target distribution. Since the
distribution of samples is not the correct one, we have to associate a weight to
each of the samples in order to make the distribution correct.

Disadvantage is that we should be able to evaluate p(x(i)) in order to use it di-

11
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Figure 2.2: (a) Importance distribution approximates the target distribution (b) Weights
are associated to each of the samples to correct the approximation.

rectly, but we often don’t know the normalization constant of p(x(i)). Importance
Sampling method uses an approximation, where we define weights as

wi = p(x(i))
π(x(i))

. (2.4)

It approximates the expectation as

E[g(x)] ≈
∑

i g(x(i)) wi∑
i wi

, (2.5)

which has the fortunate property that we don’t have to know the normalization
constant of p(x).

2.3 Metropolis-Hastings

Metropolis-Hasting algorithm (Metropolis et al., 1953; Hastings, 1970) forms the
basis of all Markov Chain Monte Carlo (MCMC) methods (see, e.g., Gilks et al.,
1996). It can be used for generating samples from distribution p(x), which is
known up to normalization constant. At first the algorithm draws initial sample
point x(0) from some approximate distribution. Then the steps described in Algo-
rithm 1 are repeated until sufficient number of samples has x(i) been obtained.

We can prove the correctness of algorithm by noting that the Markov chain of
accepted points, which has transition kernel

K (x, x∗) = A(x∗|x)Q(x∗|x), (2.7)
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1. Let x be the current sample point. Draw new candidate point x∗ from
proposal distribution Q(x∗|x).
2. Accept the candidate point with probability

A(x∗|x) = min

{
p(x∗)Q(x|x∗)
p(x)Q(x∗|x) , 1

}
. (2.6)

In practice we should first draw number from uniform distribution u ∼
U (0, 1). If u < A(x∗|x) then store x∗ and let x ← x∗. Otherwise reject
the candidate point.

Algorithm 1: Metropolis-Hastings

has p(x) as its stationary distribution. This is due to fact that detailed balance
condition is met, which implies that Markov chain is reversible in time:

p(x)A(x∗|x)Q(x∗|x) = min
{

p(x)Q(x∗|x), p(x∗)Q(x|x∗)}

= min
{

p(x∗)Q(x|x∗), p(x)Q(x∗|x)} (2.8)

= p(x∗)A(x|x∗)Q(x|x∗).
Various forms of proposal distribution can be used:

1. Symmetric Proposal Distribution: Markov chain kernel K (x, x∗) is called
symmetric if K (x, x∗) = K (x∗, x). In Metropolis algorithm the proposal
distribution depends only on distance between current and candidate point
|x− x∗|, which means that Q(x∗|x) = Q(x|x∗). Then Metropolis-Hastings
acceptance probability reduces to

A(x∗|x) = min
{

p(x∗)/p(x), 1
}
. (2.9)

2. Random Walk: Markov chain, which produces samples if form xn+1 =
xn + wn , where wn is independent of chain, is called Random Walk. In
proposal distribution this means that its value depends only on difference
of current and candidate point Q(x∗|x) = pw(x∗ − x), where pw is the
probability density of wn .

3. Independence Chains: In this case candidate probabilities are independent
of current point Q(x∗|x) = g(x∗). Function g should be chosen to be as
close as possible to the target distribution p(x).

4. Other Methods: The most common special case of the algorithm is the
Gibbs Sampling (section 2.4). Also Hybrid Monte Carlo (HMC) (Duane
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et al., 1987) can be interpreted as variation of Metropolis-Hastings algo-
rithm.

2.4 Gibbs Sampling

Gibbs sampling (see, e.g., Gilks et al., 1996) can be applied to a distribution p(x)
for which we draw exact samples from conditional densities of components given
the other components. During one iteration step each of the m components are up-
dated one at a time by drawing new values for them from the conditional densities.
Gibbs sampling step is presented as Algorithm 2.
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Figure 2.3: Gibbs sampling draws samples from target distribution by sampling from
conditional densities of individual components.

On each step, draw new vector xn+1 using the equations below and store
the result:

x(n+1)
1 ∼ p(x1|x(n)2 , x(n)3 , . . . , x(n)m )

x(n+1)
2 ∼ p(x2|x(n+1)

1 , x(n)3 , . . . , x(n)m )

x(n+1)
3 ∼ p(x3|x(n+1)

1 , x(n+1)
2 , x(n)4 , . . . , x(n)m )

. . .

x(n+1)
m ∼ p(xm |x(n+1)

1 , x(n+1)
2 , . . . , x(n+1)

m−1 )

Algorithm 2: Gibbs Sampling

Gibbs sampling can be interpreted as special case of Metropolis-Hastings
algorithm. Let’s assume that updates are done one at a time and Metropolis-
Hastings step is done after each update. If the probability of candidate component
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generated by i :th update is p(x∗|x(n)−i ) then the acceptance probability is

A(x∗|x(n)) = min

{
p(x∗)Q(x(n)|x∗)

p(x(n))Q(x∗|x(n)) , 1

}

= min

{
p(x∗)p(x(n)i )|x(n)−i )

p(x(n))p(x∗i |x(n)−i )
, 1

}

= min

{
p(xn
−i )

p(xn
−i )
, 1

}

= min {1, 1} = 1,

which means that every proposal is accepted.
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Chapter 3

Solutions to Linear Stochastic
Differential Equations

3.1 State Space Form of Ordinary Differential Equations

The purpose of this chapter is to familiarize reader to using stochastic differential
equations as dynamic models. The most attention is targeted to linear models,
which are the most common types of dynamic models used in tracking problems.

At first, illustration purposes, we will derive a simple differential equation
model and present it in state space form. Presenting ordinary differential equa-
tions in state space form means that higher order differential equation is repre-
sented as system of first order differential equations in form (see, e.g., Kreyszig,
1993)

ẋ = f(x, t). (3.1)

For example, second order differential equation

ẍ = 0 (3.2)

can be converted into state space form by defining variables as follows:

x1 = x (3.3)

x2 = ẋ . (3.4)

Now equation (3.2) can be rewritten as

ẋ1 = x2 (3.5)

ẋ2 = 0. (3.6)

This can be written in vectorial form (state space form)

ẋ = Fx, (3.7)
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where

x =
(

x1

x2

)
F =

(
0 1
0 0

)
. (3.8)

The purpose of this chapter is not to be a reference of existing dynamic models.
The idea is to demonstrate how dynamic models can be converted into the generic
form (state space form), which can be used in estimation algorithms.

In stochastic case, the most general differential equation concerned here is the
Langevin equation (Stratonovich, 1968; Jazwinski, 1970; Risken, 1989)

ẋ = f(x, t)+ L(x, t)w(t), (3.9)

where w(t) is the noise component. Our derivation will actually lead to stochastic
differential equations in Stratonovich sense, because we are using ordinary calcu-
lus for manipulating the integrals. Equivalent Ito equations could be obtained by
using suitable transformation rules (Stratonovich, 1968; Jazwinski, 1970)

3.2 Linear Motion Models

Target dynamics in tracking problems are often modeled as Linear Time Invariant
Ordinary Differential Equations in form

ẋ = Fx+ Lw(t), (3.10)

where w(t) ∼ N (0,Qc) is the (diagonal) process noise, which models the un-
certainty in dynamics. This is not actually Ordinary Differential Equation but
Stochastic Ordinary Differential Equation because of the noise component.

Let’s first consider a simple Linear Time Invariant (LTI) model, which is the
constant velocity or equivalently zero acceleration model:

ẍ = 0 (3.11)

ÿ = 0, (3.12)

where ẍ denotes the second time derivative of x-coordinate, that is, x-directional
acceleration. The model given by Equations (3.11) and (3.12) states that all fea-
sible target trajectories should have exactly zero acceleration everywhere. Which
is, of course, unnatural assumption. For this reason, we introduce process noises
wx(t) and wy(t) as follows:

ẍ = wx(t) wx(t) ∼ N (0, qx) (3.13)

ÿ = wy(t) wy(t) ∼ N (0, qy). (3.14)

This model allows trajectories that may vary from exactly zero acceleration mo-
tion, but still are most likely close to zero acceleration in short periods of time.
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The model above is in form of Equation (3.10), which can be seen by rewriting
this model in form

ẋ = ẋ (3.15)

ẏ = ẏ (3.16)

ẍ = wx(t) (3.17)

ÿ = wy(t) (3.18)

If we define the state as x = (x y ẋ ẏ)T and noise as w = (wx wy), this model is
in form of Equation (3.10) with

F =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 L =




0 0
0 0
1 0
0 1


 Qc =

(
qx 0
0 qy

)
. (3.19)

Another example of LTI model is the constant angular acceleration model

ẍ = −a ẏ + wx(t) wx(t) ∼ N (0, qx) (3.20)

ÿ = aẋ + wy(t) wy(t) ∼ N (0, qy), (3.21)

where a is the known constant angular acceleration. This model is also in form of
Equation (3.10) with

F =




0 0 1 0
0 0 0 1
0 0 0 −a
0 0 a 0


 L =




0 0
0 0
1 0
0 1


 Qc =

(
qx 0
0 qy

)
. (3.22)

Linear Differential Equations may also depend on time, in which case the model
can be written in form

ẋ = F(t)x+ L(t)w(t). (3.23)

An example of linear but time dependent model is the known angular velocity
model, where the angular velocity a(t) changes in deterministic way. The model
in this case is

ẍ = −a(t)ẏ + wx(t) wx(t) ∼ N (0, qx) (3.24)

ÿ = a(t)ẋ + wy(t) wy(t) ∼ N (0, qy), (3.25)

which can be written in form of Equation (3.23) by defining

F(t) =




0 0 1 0
0 0 0 1
0 0 0 −a(t)
0 0 a(t) 0


 L =




0 0
0 0
1 0
0 1


 Qc =

(
qx 0
0 qy

)
.

(3.26)
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Linear Differential Equations have the property that they are linear operators,
which implies that the stochastic linear differential Equation (3.23) transforms
Gaussian initial conditions into Gaussian distributions over any time period. Non-
linear differential equations will transform Gaussian initial conditions into non-
Gaussian distributions (see, e.g., Jazwinski, 1970).

3.3 Nearly Constant Angular Velocity Model

Consider non-linear nearly constant angular velocity model or coordinated turn
model in form

ẍ = −a ẏ + w1(t) (3.27)

ÿ = aẋ + w2(t) (3.28)

ȧ = w3(t), (3.29)

where

w1(t) ∼ N (0, qx) (3.30)

w2(t) ∼ N (0, qy) (3.31)

w3(t) ∼ N (0, qa). (3.32)

The model is in form
ẋ = f(x)+ Lw(t), (3.33)

where the state is defined as x = (x y ẋ ẏ a)T and

f(x) =




ẋ
ẏ
−a ẏ
aẋ
0




L =




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1




Qc =



qx 0 0
0 qy 0
0 0 qa


 .

(3.34)
This model is non-linear, because function f is non-linear.

3.4 Solutions of Stochastic Linear Differential Equations

Stochastic linear differential equations in form

ẋ(t) = F(t)x(t)+ L(t)w(t), (3.35)

where initial conditions are

x(0) = N (m(0),P(0)), (3.36)
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F(t) and L(t) are matrix valued functions, and w(t) is a Gaussian white noise
process with spectral density Qc, can be solved exactly using ordinary differential
equations

ṁ(t) = F(t)m(t) (3.37)

Ṗ(t) = F(t)P(t)+ P(t)F(t)T + L(t)Qc(t)L(t)T . (3.38)

The latter of these is called as the Lyapunov differential equation and is special
case of Riccati differential equation. There equations are the classical optimal
prediction equations of Kalman-Bucy filter (see; e.g., Kalman and Bucy, 1961;
Jazwinski, 1970; Stengel, 1994; Bar-Shalom et al., 2001).

3.5 Solutions of Stochastic Linear Time Invariant Differ-
ential Equations

Time independent versions of stochastic linear differential equations, which are
called as stochastic linear time invariant differential equations, are very useful in
dynamic modeling. They have the general form

ẋ(t) = Fx(t)+ Lw(t), (3.39)

where initial conditions are

x(0) = N (m(0),P(0)), (3.40)

F and L are constant matrices, and w(t) is a Gaussian white noise process with
moments

E[w(t)] = 0 (3.41)

E[w(t) w(t + τ)T ] = Qcδ(τ ). (3.42)

Mean Equation (3.37) has now closed form solution, which can be written in terms
of matrix exponential

m(t) = exp{Ft}m(0). (3.43)

The corresponding Lyapunov equation can be solved by using matrix fractions
(see, e.g., Stengel, 1994). If we define matrices A and B such that P = AB−1, it
is easy to show that P solves the Lyapunov Equation (3.38) if matrices A and B
solve the differential equation

(
Ȧ
Ḃ

)
=
(

F LQcLT

0 −FT

)(
A
B

)
, (3.44)
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and P(0) = A(0)B(0)−1. We can select, for example,

A(0) = P(0) (3.45)

B(0) = I. (3.46)

Because differential equation (3.44) is linear and time invariant, it can be solved
using the matrix exponential function:

(
A(t)
B(t)

)
= exp

{(
F LQcLT

0 −FT

)
t

}(
A(0)
B(0)

)
. (3.47)

Equivalent, but more explicit solution to Lyapunov Equation (3.38) in time invari-
ant case is given as

P(t) = exp(Ft)P(0) exp(Ft)T

+
∫ t

0
exp(F(t − τ))LQc(τ )LT exp(F(t − τ))T dτ. (3.48)

However, solution of Equation (3.47) is easier to use by numerical methods.

3.6 From Continuous Models to Discrete Markov Models

Assume that dynamical model is Linear Time Invariant (LTI) model in form

ẋ(t) = Fx(t)+ Lw(t), (3.49)

with initial conditions
x(t0) ∼ N (m(t0),P(t0)), (3.50)

and we wanted to create corresponding discrete Markov model jumping from time
instance t0 to t1, then t1 to t2 and so on. State x(t) could be, for example:

x =




x−coordinate
y−coordinate
x−velocity
y−velocity


 . (3.51)

Using the results from Section 3.5, with constant Qc and known initial conditions
m(tk) and P(tk), the mean and covariance of solution can be expressed as

m(tk +1tk) = exp(F1tk)m(tk) (3.52)

P(tk +1tk) = exp(F1tk)P(tk) exp(F1tk)
T

+
∫ 1tk

0
exp(F(1tk − τ))LQcLT exp(F(1tk − τ))T dτ. (3.53)
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Due to time-invariance property of LTI models, the Equations (3.52) and (3.53)
can be applied recursively. If we discretize as follows:

mk = m(tk) (3.54)

Pk = P(tk) (3.55)

Ak = exp(F1tk) (3.56)

Qk =
∫ 1tk

0
exp(F(1tk − τ))LQcLT exp(F(1tk − τ))T dτ, (3.57)

where we have let1tk = tk+1−tk , we can integrate the solution to Equation (3.49)
exactly using the relations

mk+1 = Akmk (3.58)

Pk+1 = AkPkAT
k +Qk . (3.59)

This formulation is particularly useful in case of Kalman filter (Kalman, 1960),
because the canonical form of Kalman Filter has this kind of discrete dynamic
model. The conclusion is that it doesn’t matter that Kalman Filter was originally
designed for discrete models, it still is exact for linear continuous dynamical mod-
els with discrete measurements.
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Chapter 4

Solutions to Non-Linear
Stochastic Differential Equations

4.1 Theories of Ito and Stratonovich

There are actually two mathematical theories related to stochastic differential
equations. The original theory of stochastic calculus was developed by Ito in
the forties. Another theory was developed later by Stratonovich (1968). Practical,
engineering oriented description of the differences in these formalisms is given in
the book of Jazwinski (1970).

In our concern, the main difference in Ito’s and Stratonovich’s definitions is
that Stratonovich integral can treated as conventional integral when it comes to
integration rules. Ito’s definition requires that one should always use the specific
rules of stochastic calculus, because the normal rules don’t apply. Ito’s definition
is more general than that of Stratonovich’s, and every Stratonovich integral has
equivalent Ito integral.

For the simple reason that calculations are easier with Stratonovich’s defini-
tion, it is (at least to our knowledge) more widely used in statistical physics (see,
e.g., Risken, 1989). For this same reason we shall also use Stratonovich’s defini-
tion of stochastic integral, and so we can treat the noise components in our equa-
tions as functions in classical sense. Note that Jazwinski (1970) always uses Ito’s
definition of stochastic integral, because there are special cases in continuous-time
non-linear filtering, where Stratonovich’s theory is not enough. These cases don’t
arise in our continuous-discrete filtering case.

23



CHAPTER 4. SOLUTIONS TO NON-LINEAR STOCHASTIC
DIFFERENTIAL EQUATIONS

4.2 Fokker-Planck-Kolmogorov Equations

Langevin equation is a stochastic differential equation in form

ẋ = f(x, t)+ L(x, t)w(t), (4.1)

where w(t) is a Gaussian white noise process with moments

E[w(t)] = 0 (4.2)

E[w(t) w(t + τ)T ] = δ(τ ). (4.3)

Note that a noise process with generic positive definite matrix Qc(t) can be used
by redefining L(x, t) as

L̂(x, t) = L(x, t)S(t), (4.4)

where Qc(t) = S(t)S(t)T .
In this section we shall use Einstein’s summation convention, which means

that we should sum over every index, which appears twice in a product term.
Greek letters are used for denoting indices, which should never be summed over.
Using this convention, Langevin Equation (4.1) can be equivalently written in
form

ẋi = fi (x, t)+ L i j (x, t)wj (t), (4.5)

where w(t)i is a Gaussian random process with the following properties:

E[wi (t)] = 0

E[wi (t)wj (t
′)] = δi jδ(t − t ′).

(4.6)

If we start from an initial distribution

x(0) ∼ p(x, 0), (4.7)

the distribution on later times p(x, t) is given by the Fokker-Planck-Kolmogorov
Equation (FPKE), which is partial differential equation in form (see, e.g. Jazwin-
ski, 1970)

∂p

∂t
= − ∂

∂xi

(
D(1)

i (x, t)p
)
+ 1

2

∂2

∂xi∂x j

(
D(2)

i j (x, t)p
)
. (4.8)

The drift coefficients are given as

D(1)
i (x, t) = fi (x, t)+ 1

2
Lk j (x, t)

∂L i j (x, t)

∂xk
(4.9)

D(2)
i j (x, t) = L ik(x, t)L jk(x, t). (4.10)
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Langevin Equation (4.1) is exactly the type, which arises, for example, in coor-
dinate transformations of linear dynamic models. For nearly constant velocity
model in polar coordinates (Equation (7.38)) we have

D(1)
1 (r, θ, ṙ , θ̇ ) = ṙ (4.11)

D(1)
2 (r, θ, ṙ , θ̇ ) = θ̇ (4.12)

D(1)
3 (r, θ, ṙ , θ̇ ) = θ̇2r (4.13)

D(1)
4 (r, θ, ṙ , θ̇ ) = −2ṙ θ̇

r
(4.14)

D(2)
33 (r, θ, ṙ , θ̇ ) = q (4.15)

D(2)
44 (r, θ, ṙ , θ̇ ) =

q

r
, (4.16)

and other terms are zero. The Fokker-Planck-Kolmogorov equation is given as

∂p

∂t
= − ∂

∂r
(ṙ p)− ∂

∂θ

(
θ̇ p
)− ∂

∂ ṙ

(
θ̇2r p

)+

+ ∂

∂θ̇

(
2ṙ θ̇

r
p

)
+ 1

2

∂2

∂ ṙ2
(qp)+ 1

2

∂2

∂θ̇2

(q

r
p
)
, (4.17)

which we should solve for p(r, θ, ṙ , θ̇ , t).

4.3 Approximate Solutions to Non-Linear Equations

Consider generic non-linear Langevin equation in form

ẋ = f(x, t)+ L(x, t)w(t), (4.18)

where w(t) is a Gaussian random process with the following properties:

E[w(t)] = 0

E[w(t)w(t + τ)T ] = Qcδ(τ ).
(4.19)

There are several alternative ways for approximately solving the Langevin equa-
tion or the associated Fokker-Planck-Kolmogorov (FPK) equation:

• Linearization is the most common way of approximating the nonlinear
dynamics. The idea is to calculate approximate mean solution from the
nonlinear noise-free model and then use the linearized model in covariance
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propagation

ṁ = f(m, t) (4.20)

F(t) = ∂f
∂xT

(m(t), t) (4.21)

L(t) = L(m(t), t) (4.22)

Ṗ = F(t)P+ PFT (t)+ L(t)Qc(t)LT (t). (4.23)

This is actually Extended Kalman Filter (EKF) prediction step in it contin-
uous form.

• Second Order Taylor Series approximation of i :th component of function
f(x, t) with respect to mean m gives

fi (x, t) ≈ fi (m, t)+ ∇T fi (m, t)(x−m)+
+ 1

2
(x−m)T∇∇T fi (m, t)(x−m), (4.24)

where ∇T fi (m, t) (which is a row vector) denotes the transpose of gradient
and ∇∇T fi (m, t) is the Hessian matrix. From above we get that

E[ fi (x, t)] ≈ fi (m, t)+ 1

2
tr
{∇∇T fi (m, t)P

}
. (4.25)

Second order approximation to mean propagation equation can be now writ-
ten in form

ṁ = f(m, t)+ 1

2

∑

i

tr
{∇∇T fi (m, t)P

}
ei , (4.26)

where vectors ei are unit coordinate vectors such that their i :th element is 1
and all other are 0. This second order Taylor series approximation is widely
used in second order extended Kalman filter.

• Unscented Transformation (UT) (Julier and Uhlmann, 1995) can be used
for approximating the first two moments (mean and covariance) of state
distribution. The idea is to integrate set of deterministically chosen sigma
points through the dynamics, and estimate the moments from those points.

• Interacting Multiple Models (IMM) (see, e.g., Bar-Shalom et al., 2001) is
a special case of Multiple Model Kalman Filter algorithms, and it is well
suited to approximating non-linear dynamic models. The state distribu-
tion is represented as a mixture Gaussian distribution and there is a special
Markov model, which approximates the probability flow between the Gaus-
sian components.
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• Monte Carlo Methods (Risken, 1989) are common methods in approx-
imating the solutions of Partial Differential Equations such as FPKE. The
idea is to discretize the Wiener process (or Brownian motion process), which
models the noise in Langevin equation. Then we can simulate sample tra-
jectories from the Langevin equation by using random number generator
and Euler integration.

• Numeric Solving of Partial Differential Equation with, for example, the
method of Galerkin (Gunther et al., 1997), Finite Differences (FD) (Challa
and Bar-Shalom, 2000) or Generalized Edgeworth Series (Challa et al.,
2000).
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Chapter 5

Filtering and State Estimation

5.1 Optimal (Bayesian) Filtering

Optimal filtering (see, e.g. Jazwinski, 1970; Ho and Lee, 1964; Maybeck, 1979,
1982a; Bar-Shalom et al., 2001), also called as Bayesian filtering considers state
estimation models in form

xk ∼ p(xk | xk−1) (5.1)

yk ∼ p(yk | xk), (5.2)

where xk is the unknown hidden state, which is only observable indirectly through
measurements yk . Measurements are corrupted by measurement noise, which has
the known distribution given by p(yk | xk). Markov model for state transitions
p(xk | xk−1) models the time evolution of state between the measurements.

The purpose of state estimation is to infer the state xk as accurately as possible
using the measurements yk . According to the philosophy of optimal filtering, the
fundamental purpose of optimal filter is to form an approximate representation
of the posterior distribution of states. More accurate this representation is, more
closer the algorithm is to optimal performance.

Using the basic rules of statistics, we can infer the posterior distribution of
state step xk conditional to all measurements up to that time

p(xk | y1:k) = p(xk | y1, . . . , yk). (5.3)

Recursive equations for calculating the posterior distribution sequentially in re-
cursive manner are called the Bayesian Filtering equations. The recursion starts
from initial distribution

x0 ∼ p(x0), (5.4)
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and the successive posteriors can be calculated from the equations

p(xk | y1:k−1) =
∫

p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1 (5.5)

p(xk | y1:k) = 1

Zk
p(yk | xk) p(xk | y1:k−1), (5.6)

where the normalization constant is given as

Zk =
∫

p(yk | xk) p(xk | y1:k−1) dxk . (5.7)

The marginal measurement likelihood, which gives the predictive distribution of
measurement yk given all previous measurements, is given as

p(yk | y1:k−1) =
∫

p(yk | xk) p(xk | y1:k−1) dxk . (5.8)

Note that this likelihood term is the same as the normalization constant Z k given
by Equation (5.7).

5.2 Kalman Filter

Kalman filter (KF) (see, e.g., Jazwinski, 1970; Maybeck, 1979; Bar-Shalom et al.,
2001; Grewal and Andrews, 2001), which originally appeared in (Kalman, 1960),
considers a dynamic linear model model

xk = Ak−1xk−1 + qk−1 (5.9)

yk = Hkxk + rk, (5.10)

where

qk−1 ∼ N (0,Qk−1) (5.11)

rk ∼ N (0,Rk). (5.12)

The symbols are defined as follows:

• xk = x(tk) is the hidden state at time step tk . This state can include, for
example, the velocity and position of a vehicle x = (x y ẋ ẏ)T .

• yk is the implicit measurement that can be made from state x at time tk . This
measurement can be for example noisy position estimate given by some
sensor or direction/distance/velocity measurement of radar or anything else.
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• Ak−1 is the transition matrix of dynamic behavior which defines how state
xk−1 evolves on average when time passes from tk−1 to tk . This matrix can
result from integrating continuous time model from last measurement time
instance at tk−1 to current at tk using the methods presented in Chapter 3. In
that case Ak−1 is exactly the transition matrix of the continuous solution.

• Qk−1 defines the increase of uncertainty in the discrete dynamic model dur-
ing the transition from tk−1 to tk . This uncertainty can be integrated from
the continuous model using the methods for noisy differential equations as
described in Chapter 3.

• Hk defines the measurement process.

• Rk is the covariance of noise in the measurement procedure.

We have presented the model without input signal, since it is irrelevant in our
application. Matrices Ak−1, Hk , Qk−1 and Rk are assumed known for all k > 0.
The initial configuration defined by parameters m0 and P0 is also assumed to be
known.

In probabilistic terms, the model is

p(yk | xk) = N (yk | Hkxk,Rk) (5.13)

p(xk | xk−1) = N (xk | Ak−1xk−1,Qk−1) (5.14)

p(x0) = N (x0 | m0,P0). (5.15)

Kalman Filter prediction step is described as Algorithm 3 and update step as Al-
gorithm 4. The marginal measurement likelihood calculation (Equation (5.8)) for
Kalman filter is given as Algorithm 5.
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Synopsis:

[m−k ,P−k ] = KFp(mk−1,Pk−1,Ak−1,Qk−1)

Data : Previous state mean mk−1 and state covariance Pk−1. Model pa-
rameters: transition matrix Ak−1 and process covariance Qk−1.

Result
:

Calculates predicted state mean m−k and covariance P−k .

Calculate predicted mean and covariance:

m−k = Ak−1mk−1 (5.16)

P−k = Ak−1Pk−1AT
k−1 +Qk−1 (5.17)

Algorithm 3: Kalman Filter prediction step
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Synopsis:

[mk,Pk, vk,Sk,Kk] = KFu(yk,m−k ,P−k ,Hk,Rk)

Data : Measurement yk , predicted state mean m−k and state covariance
P−k . Model parameters: measurement matrix Hk and measurement
covariance Rk .

Result
:

Calculates updated state mean mk , state covariance Pk , innovation
mean vk , innovation covariance Sk and Kalman gain Kk ,

Calculate innovation mean and covariance:

vk = yk −Hkm−k (5.18)

Sk = HkP−k HT
k + Rk (5.19)

Calculate gain, updated state mean and covariance:

Kk = P−k HT
k S−1

k (5.20)

mk = m−k +Kkvk (5.21)

Pk = P−k −KkSkKT
k (5.22)

Algorithm 4: Kalman Filter update step
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Synopsis:

ρ = KFlh(yk,m−k ,P−k ,Hk,Rk)

Data : Measurement yk , predicted state mean m−k and state covariance
P−k . Model parameters: measurement matrix Hk and measurement
covariance Rk .

Result
:

Calculates the marginal measurement likelihood p(yk | y1:k−1).

Calculate innovation mean and covariance:

vk = yk −Hkm−k (5.23)

Sk = HkP−k HT
k + Rk (5.24)

Calculate the probability:

ρ = N (vk | 0,Sk) (5.25)

Algorithm 5: Kalman Filter marginal measurement likelihood

In probabilistic terms, the Kalman Filter equations can be used for calculating
parameters of the following distributions:

p(xk | y1:k−1) = N (xk | m−k ,P−k ) (5.26)

p(xk | y1:k) = N (xk | mk,Pk) (5.27)

p(rk | y1:k−1) = N (rk | vk,Sk), (5.28)

where residual or innovation sequence is defined as

rk = yk −Hkxk . (5.29)

The original derivation of Kalman filter (Kalman, 1960) was based on computing
sequential orthogonal projections of new measurements yk into linear space of
the measurements from the previous steps Yk−1. The basis of this derivation is
in linear Gaussian processes even thought the derivation is based on optimality
property of orthogonal projection in linear spaces. Alternative derivation, based
on probabilistic formulation is given in Appendix A.1.
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5.3 Extended Kalman Filter

Extended Kalman Filter (EKF) (see, e.g., Jazwinski, 1970; Maybeck, 1982a; Bar-
Shalom et al., 2001; Grewal and Andrews, 2001) is a nonlinear extension of
Kalman Filter. The model is (without input for simplicity):

xk = a(xk−1,qk−1) qk−1 ∼ N (0,Qk−1)

yk = h(xk, rk), rk ∼ N (0,Rk).
(5.30)

The state mean and observation mean are approximated by nonlinearities evalu-
ated at mean values of noise terms

E[xk] ≈ a(mk−1, 0) = m−k (5.31)

E[yk] ≈ h(m−k , 0) = yk . (5.32)

In order to estimate covariances, the following linearization is made

xk ≈ m−k + Ak−1(xk−1 −mk−1)+Wk−1qk−1 (5.33)

yk ≈ yk +Hk(xk−1 −m−k )+ Vkrk, (5.34)

where

Ak−1 = ∂a(x,q)
∂x

∣∣∣∣
x=mk−1,q=0

(5.35)

Wk−1 = ∂a(x,q)
∂q

∣∣∣∣
x=mk−1,q=0

(5.36)

Hk = ∂h(x, r)
∂x

∣∣∣∣
x=m−k ,r=0

(5.37)

Vk = ∂h(x, r)
∂r

∣∣∣∣
x=m−k ,r=0

. (5.38)

With these approximations the Extended Kalman Filter prediction equations take
the form of Algorithm 6 and update equations form given of Algorithm 7.
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Synopsis:

[m−k ,P−k ] = EKFp(mk−1,Pk−1, a(x,q),A(x,q),Qk−1,W(x,q))

Data : Previous state mean mk−1 and state covariance Pk−1. Parameter
a(x,q) defines the dynamic transition function. A(x,q) is deriva-
tive function of a with respect to state, Qk−1 is the process covari-
ance and W(x,q) is the derivative function of a with respect to
noise.

Result
:

Calculates predicted state mean m−k and covariance P−k .

Calculate mean prediction:

m−k = a(mk−1, 0) (5.39)

Calculate predicted covariance:

Ak−1 = A(mk−1, 0) (5.40)

Wk−1 =W(mk−1, 0) (5.41)

P−k =Wk−1Qk−1WT
k−1 + Ak−1Pk−1AT

k−1 (5.42)

Algorithm 6: Extended Kalman Filter prediction step

35



CHAPTER 5. FILTERING AND STATE ESTIMATION

Synopsis:

[mk,Pk, vk,Sk,Kk] = EKFu(yk,m−k ,P−k ,h(x, r),H(x, r),Rk,V(x, r))

Data : Measurement yk , predicted state mean m−k and state covariance
P−k . Parameter h(x, r) defines measurement function. H(x, r) is
derivative function of h with respect to state. Rk is the measure-
ment covariance and V(x, r) is derivative function of h with re-
spect to noise.

Result
:

Calculates updated state mean mk , state covariance Pk , innovation
mean vk , innovation covariance Sk and Kalman gain Kk ,

Evaluate the derivatives:

Hk = H(m−k , 0) (5.43)

Vk = V(m−k , 0) (5.44)

Calculate innovation mean and covariance:

vk = yk − h(m−k , 0) (5.45)

Sk = HkP−k HT
k + VkRkVT

k (5.46)

Calculate gain, updated state mean and covariance:

Kk = P−k HT
k S−1

k (5.47)

mk = m−k +Kkvk (5.48)

Pk = P−k −KkSkKT
k (5.49)

Algorithm 7: Extended Kalman Filter update step
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Synopsis:

ρ = EKFlh(yk,m−k ,P−k ,h(x, r),H(x, r),Rk,V(x, r))

Data : Measurement yk , predicted state mean m−k and state covariance
P−k . Parameter h(x, r) defines measurement function. H(x, r) is
derivative function of h with respect to state. Rk is the measure-
ment covariance and V(x, r) is derivative function of h with re-
spect to noise.

Result
:

Calculates the marginal measurement likelihood p(yk | y1:k−1).

Evaluate the derivatives:

Hk = H(m−k , 0) (5.50)

Vk = V(m−k , 0) (5.51)

Calculate innovation mean and covariance:

vk = yk − h(m−k , 0) (5.52)

Sk = HkP−k HT
k + VkRkVT

k (5.53)

Calculate the probability:

ρ = N (vk | 0,Sk) (5.54)

Algorithm 8: Extended Kalman Filter marginal measurement likelihood

5.4 Unscented Kalman Filter

Unscented Kalman Filter (UKF) (Julier et al., 1995; Wan and van der Merwe,
2001) is based on Unscented Transformation (UT) (Julier and Uhlmann, 1995),
which is method for generating approximations of Gaussian distributions when
they are propagated through nonlinear functions. Classical way of establishing
this approximation is linearization as in case of EKF, but Unscented Transforma-
tion provides an alternative.

Assume that variable x ∈ Rn has Gaussian distribution N (mx ,Pxx) and this
variable is propagated through nonlinear function y = g(x), and the purpose is to
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generate the best possible Gaussian approximation for distribution of variable y.
The classical linear approximation already employed in EKF would be

my ≈ g(mx) (5.55)

Pyy ≈ G Pxx GT , (5.56)

where G is the Jacobian of g(x) evaluated at x = mx

G = dg(x)
dx

∣∣∣∣
x=mx

. (5.57)

The unscented transformation (Julier and Uhlmann, 1995) works very differently
– the idea is to generate fixed number of sigma points, which capture the mean
and covariance of original distribution exactly. Those sigma points are propagated
one at a time through function g(·) and new transformed distribution is estimated
from them. The sigma points are selected so that distribution of y can be estimated
from these transformed sigma points as accurately as possible. The procedure is
presented as Algorithm 9.

In Algorithm 9, the matrix square root of positive definite matrix P means a
matrix S = √P such that

P = S ST . (5.69)

Since the only requirement to S is the definition above, we can for example use
the lower triangular matrix of Cholesky factorization (see, e.g., Kreyszig, 1993).

Unscented Kalman Filter is an approximate solution to the same nonlinear
state model as EKF, but instead of linearization, it uses Unscented Transformation.
The state model is

xk = a(xk−1,wk−1) wk−1 ∼ N (0,Qk−1)

yk = h(xk, vk), vk ∼ N (0,Rk).
(5.70)

The UKF computations are described as Algorithm 10. If the process noise model
is additive (as usually is the case) the equations in Algorithm 10 can be simplified
(see Wan and van der Merwe, 2001).

5.5 Sequential Importance Resampling

Sequential Importance Sampling (SIR) (see, e.g., Doucet et al., 2001) can be used
for estimating recursively the moments of model

xk ∼ p(xk | xk−1) (5.84)

yk ∼ p(yk | xk), (5.85)

38



CHAPTER 5. FILTERING AND STATE ESTIMATION

1. Compute the set of 2n+1 points from the rows or columns of the matrix√
(n + λ)Pxx :

X0 = mx (5.58)

Xi = mx +
(√
(n + λ)Pxx

)
i
, i = 1, . . . , n (5.59)

Xi = mx −
(√
(n + λ)Pxx

)
i
, i = n + 1, . . . , 2n (5.60)

and the associated weights:

W (m)
0 = λ/(n + λ) (5.61)

W (c)
0 = λ/(n + λ)+ (1− α2 + β) (5.62)

W (m)
i = 1/{2(n + λ)}, i = 1, . . . , 2n (5.63)

W (c)
i = 1/{2(n + λ)}, i = 1, . . . , 2n (5.64)

Parameter λ is a scaling parameter defined as

λ = α2(n + κ)− n (5.65)

The positive constants α, β and κ are are used as parameters of the
method.

2. Transform each of the sigma points as

Yi = g(Xi ), i = 0, . . . , 2n (5.66)

3. Mean and covariance estimates for y can be calculated as

my ≈
2n∑

i=0

W (m)
i Yi (5.67)

Pyy ≈
2n∑

i=0

W (c)
i (Yi −my)(Yi −my)

T (5.68)

Algorithm 9: Unscented Transformation
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Initialize: Calculate the augmented prior mean and covariance:

ma
0 = E[xa

0] =
(
mT

0 0 0
)T

(5.71)

Pa
0 = E[(xa

0 −ma
0)(x

a
0 −ma

0)
T ] =




P0 0 0
0 Q0 0
0 0 R1


 (5.72)

Sigma points: Use the unscented transformation method for generating
sigma points:

Xk−1 =
[
ma

k−1 ma
k−1 ±

(√
(n + λ)Pa

k−1

)
i

]
(5.73)

Prediction: Estimate predicted state distribution from the sigma points:

Xk|k−1 = a(Xx
k−1,Xw

k−1) (5.74)

m−k =
2n∑

i=0

W (m)
i Xi,k|k−1 (5.75)

P−k =
2n∑

i=0

W (c)
i (Xi,k|k−1 −m−k )(Xi,k|k−1 −m−k )

T (5.76)

Update: Estimate measurement covariance and posterior state distribu-
tion from the sigma points:

Yk|k−1 = h(Xx
k|k−1,Xv

k−1) (5.77)

y−k =
2n∑

i=0

W (m)
i Yi,k|k−1 (5.78)

Pyk ,yk =
2n∑

i=0

W (c)
i (Yi,k|k−1 − y−k )(Yi,k|k−1 − y−k )

T (5.79)

Pxk ,yk =
2n∑

i=0

W (c)
i (Xi,k|k−1 −m−k )(Yi,k|k−1 − y−k )

T (5.80)

Kk = Pxk ,yk P−1
yk ,yk

(5.81)

mk = m−k +Kk(yk − y−k ) (5.82)

Pk = P−k −KkPyk ,yk KT
k (5.83)

Algorithm 10: Unscented Kalman Filter
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where xk is the state, and yk is the measurement as in case of generic Bayesian
Filtering. In addition to model above there is importance distribution π(·), which
is an approximation to posterior distribution of states given the value of previous
step

π(xk | xk−1, y1:k) ≈ p(xk | xk−1, y1:k). (5.86)

The importance distribution should be in such functional form that we can draw
samples from that distribution and evaluate probability densities of those points.

Algorithm is started from initial distribution, whic is given in form of prior
sample set {x(i)0 , i = 1, . . . , N } and corresponding weights w(i)

0 . Then the SIR
step described as Algorithm 11 is repeated for each measurements. SIR uses re-
sampling Algorithm 12 sub-program. This is the basic resampling method and
more advanced resampling methods can be found, for example, in article (Kita-
gawa, 1996).

On every step, the expectation of any function g(x) in posterior distribution of
xk can be calculated as weighted sample average

E[g(xk)] ≈
N∑

i=1

w
(i)
k g(x(i)k ). (5.93)

Bootstrap filter (Gordon et al., 1993) is a special case of Sequential Importance
Resampling, where importance distribution is π(xk | xk−1, y1:k) = p(xk | xk−1)

and resampling is performed on every step. Optimal importance distribution is
given as π(xk | xk−1, y1:k) = p(xk | xk−1, y1:k), which can be used in practice for
example in Monte Carlo data association case.

In SIR resampling is not performed on every step, but only when it is actually
needed. One way of implementing this is to do resampling on every k’th step,
where k is some predefined constant. This method has the advantage that it is
unbiased. Another way, which is also used in our simulation system, is adaptive
resampling, where effective number of weights is used for monitoring the need for
resampling. Adaptive resampling has the disadvantage that in theory, additional
adaptive term in algorithm may introduce bias in estimation result. However, this
bias is negligible in most cases.

An estimate for effective number of particles based on an approximation of
the variance of importance weights can be computed as:

neff ≈ 1
∑N

i=1

(
w
(i)
k

)2 , (5.94)

where w(i)k is the normalized weight of particle i on time step k (Liu and Chen,
1995). Resampling is performed when effective number of particles is signifi-
cantly less than total number of particles. In our simulation system, we resample
if neff < N/4, where N is the total number of particles.
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Synopsis:

[Xk,Wk] = SIR(Xk−1,Wk−1, p(xk | xk−1), p(yk | xk), π(xk | xk−1, y1:k))

Data : Previous state distribution as weighted sample set
(Xk−1,Wk−1) = {x(i)k−1, w

(i)
k−1 : i = 1, . . . , N } Model pa-

rameters: transition distribution p(xk | xk−1), measurement
likelihood distribution p(yk | xk) and importance distribution
π(xk | xk−1, y1:k).

Result
:

Predicted and updated state distribution as weighted sample set
(Xk,Wk) = {x(i)k , w

(i)
k : i = 1, . . . , N }

Draw new point x(i)k for each point in sample set {x(i)k−1, i = 1, . . . , N }
from the importance distribution:

x(i)k ∼ π(xk | x(i)k−1, y1:k) (5.87)

Calculate new weights as follows:

w
(i)
k ∝ w(i)k−1

p(yk | x(i)k ) p(x(i)k | x(i)k−1)

π(x(i)k | x(i)k−1, y1:k)
(5.88)

and normalize them sum to unity.

if (effective number of weights is too low) then

[Xk,Wk] = Resample(Xk,Wk)

end

Algorithm 11: Sequential Importance Resampling (SIR) prediction and update.

Good importance distributions can be obtained by local linearization where
mixtures of Extended Kalman Filters (EKF) or Unscented Kalman Filters (UKF)
are used as importance distribution (Doucet, 1998; van der Merwe et al., 2001).
van der Merwe et al. (2001) also suggest a Metropolis-Hastings step after (or
in place of) resampling step to smooth the resulting distribution, but from their
results, it seems that this extra computation step has no significant performance
effect. A particle filter with UKF importance distribution is often referred as Un-
scented Particle Filter (UPF).
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Synopsis:

[X′k,W′k] = Resample(Xk,Wk)

Data : Weighted sample set (Xk,Wk) = {x(i)k , w
(i)
k : i = 1, . . . , N }.

Result
:

Weighted sample set (X′k,W
′
k) = {x

′(i)
k , w

′(i)
k : i = 1, . . . , N }.

for i = 1, . . . , N do
Draw uniform random number:

u ∼ U (0, 1) (5.89)

Find the smallest index i ′ such that cumulative sum of normalized
weights is greater or equal to u:

i ′∑

j=1

w
( j)
k ≥ u (5.90)

and set

x
′(i) = x(i

′) (5.91)

w
′(i)
k = 1/N (5.92)

end

Algorithm 12: Resampling for SIR algorithm

5.6 Rao-Blackwellized Particle Filter

The idea of Rao-Blackwellized particle filtering (see, e.g., Akashi and Kumamoto,
1977; Doucet, 1998; Chen and Liu, 2000; Doucet et al., 2001; Gustafsson et al.,
2002) is that sometimes it is possible to calculate part of the filtering equations
analytically and the other part by Monte Carlo sampling instead of calculating
everything by pure sampling. According to Rao-Blackwell theorem this leads to
estimators with much less variance than could be obtained by pure Monte Carlo
sampling (Casella and Robert, 1996). An intuitive way of thinking this is that
marginalization replaces the finite Monte Carlo particle set representation by an
infinite closed form particle set, and that infinite set of particles is always more
accurate than any finite set.
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Consider the following Conditional Dynamic Linear Model (CDLM)

xk = A(λk−1)xk−1 + qk−1 (5.95)

yk = H(λk)xk + rk, (5.96)

where

qk−1 ∼ N (0,Q(λk−1)) (5.97)

rk ∼ N (0,R(λk)) (5.98)

λk ∼ p(λk | λk−1). (5.99)

The model is conditionally linear, since given parameters λ, the model is Linear
Gaussian. The idea of Rao-Blackwellization is that we can integrate Gaussian
parts of model in closed form with Kalman Filter and use particle filter for re-
maining part of model.

5.7 Other Methods

• Second Order Extended Kalman Filter (Bar-Shalom et al., 2001) uses
second order Taylor series expansion of the non-linearities instead of the
first order linearization used in standard EKF.

• Unscented Kalman Filter (Julier et al., 1995; Wan and van der Merwe,
2001) is based on Unscented Transformation, which is used for generating
Gaussian approximation of state distribution instead of EKF’s linearization.

• Non-Linear Projection Filter (Gunther et al., 1997) is able to approxi-
mate non-linear dynamic models especially well. The idea is to integrate
the Fokker-Planck-Kolmogorov equation of non-linear dynamic model by
method of Galerkin (see, e.g., Guenther and Lee, 1988). Finite Element
Method (FEM) is a special case of Galerkin method with localized basis
functions.
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Chapter 6

Approaches to Tracking Multiple
Targets in Clutter

6.1 Multiple Hypothesis Tracking for Clutter

Clutter can be modeled such that, in addition to the actual measurement, we ob-
serve an indicator variable λk , which defines the association event:

λk = 0 : {measurement k originated from false alarm} (6.1)

λk = 1 : {measurement k originated from target} (6.2)

If we denote the whole history of measurement source indicators until the time
step k with 3k = {λ1, . . . , λk}. On one step we might have multiple measure-
ments but assuming that the measurements are conditionally independent we can
treat all measurements sequentially.

The likelihood is now joint likelihood of measurements and associations:

p(yk, λk |xk) = {probability of observation yk with origin λk on state xk}. (6.3)

This likelihood can be factorized as

p(yk, λk |xk) = p(yk |λk, xk) p(λk |xk), (6.4)

and we can model the measurement likelihood p(yk |λk, xk) and association like-
lihood p(λk |xk) separately.

For example, we could have a Gaussian measurement model for target origi-
nated measurements and the probability of false alarms could be constant δ. Then,
we have the following likelihood for a single measurement yk :

p(yk |3k, xk) = p(yk |λk, xk) =
{
δ, λk = 0
N (yk |h(xk, vk),Rk), λk = 1.

(6.5)
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Since the measurement likelihood depends only on the current associations, we
can calculate the posterior distribution of states as follows:

p(xk |3k, y1:k) ∝ p(yk, λk |xk) p(xk |3k−1, y1:k−1). (6.6)

The joint probability of states and latent variables is then

p(xk,3k |y1:k) = p(xk |3k, y1:k) p(3k |y1:k).. (6.7)

The unknown terms p(xk |3k−1, y1:k−1) in (6.6) and p(3k |y1:k) in (6.7) can be
calculated using the Multiple Hypothesis Tracking (MHT) recursions (Reid, 1979;
Bar-Shalom and Li, 1995; Blackman and Popoli, 1999; Stone et al., 1999) which
are presented as Algorithm 13.

Generic Multiple Hypothesis Tracking Recursions:

p(xk |y1:k−1,3k−1) =
∫

p(xk |xk−1) p(xk−1|y1:k−1,3k−1) dxk−1 (6.8)

p(3k |y1:k) ∝ p(3k−1|y1:k−1)

∫
p(yk, λk |xk) p(xk |y1:k−1,3k−1) dxk

(6.9)

Algorithm 13: Multiple Hypothesis Tracking

On every step of MHT, we have to calculate p(3k |y1:k) for each possible his-
tory of latent variables. This number of histories grows exponentially by number
of steps and makes direct application of MHT computationally infeasible. In the-
ory, MHT recursion always produces optimal estimators with respect to model
hypotheses.

6.2 Probabilistic Data Association

Probabilistic data association (PDA) filter (Bar-Shalom and Li, 1995; Blackman
and Popoli, 1999) has the following assumptions:

• There is only one target of interest having linear dynamical and measure-
ment models

xk = Ak−1xk−1 + wk−1, wk−1 ∼ N (0,Qk−1)

yk = Hkxk + vk, vk ∼ N (0,Rk).

• The track has been initialized.
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• The past information about the target is summarized approximately by Gaus-
sian distribution

p(xk |y1:k−1) = N (xk |m−k ,P−k ). (6.10)

• At each time, a validation gate Vk is set up and only measurement inside
this region are accepted. Validated measurements are those measurements
lying inside the validation area. This validation gate is defined as

Vk = {y : [y− ŷ−k ]T S−1
k [y− ŷ−k ] ≤ γ }

= {y : vT
k S−1

k vk ≤ γ }, (6.11)

with suitable threshold value γ (see Bar-Shalom and Li, 1995, for details).

• Among the possibly several validated measurements only one is target orig-
inated – if the target was detected and the corresponding measurement fell
into the validation region.

• The remaining measurements are assumed to be due to false alarm or clutter
and are modeled as IID (Independent Identically Distributed) with uniform
spatial distribution.

• The target detections occur independently over time with known probability
PD .

PDA consists of the steps described as Algorithm 14. Association probabilities
βk,i needed in the algorithm are given for parametric PDA with Poisson clutter
model as follows:

βk,i =




ei

b+∑mk
j=1 ej

, i = 1, . . . ,mk

b
b+∑mk

j=1 ej
, i = 0,

(6.22)

where

ei = e−
1
2 vT

k,i S
−1
k vk,i (6.23)

b =
(

2π

γ

)
λVkc−1

ny

1− PD PG

PD
, (6.24)

and Vk is the volume of gate, n y is the dimension of measurements y, PG is prob-
ability of gate, cny is the volume of n y dimensional unit hypersphere and mk is the
number of measurements at time step k. Poisson model for clutter assumes that
number of false measurements in validation region is

pFA(m) = e−λV (λV )m

m! , (6.25)
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Initialization: Set mean and covariance to values m0,P0 such that the
prior state distribution is x0 ∼ N (m0,P0).
Prediction:
The prediction step is the same as with standard Kalman Filter:

m−k = Ak−1mk−1

P−k = Qk−1 + Ak−1Pk−1AT
k−1 (6.12)

Gating: Select set of validated measurements

Yk = {y(i)k }, i = 1, . . . ,mk (6.13)

for time step tk by accepting only those measurements that lie inside the
gate (6.11). Predicted mean ŷ−k and covariance for the “true” measurement
are given as

ŷ−k = Hkm−k (6.14)

Sk = HkP−k HT
k + Rk (6.15)

Update:
The mean and covariance updates are defined as follows:

mk = m−k +Kkvk (6.16)

Pk = βk,0P−k + (1− βk,0)Pc
k + P̃k (6.17)

where the Kalman Gain Kk , combined innovation vk , the covariance of the
correct measurement Pc

k and spread of the innovations term P̃k are given
as:

Kk = P−k HT
k S−1

k (6.18)

vk =
mk∑

i=1

βk,i vk,i (6.19)

Pc
k = P−k −KkSkKk (6.20)

P̃k = Kk

[
mk∑

i=1

βk,i vk,i vT
k,i − vk,i vT

k,i

]
KT

k (6.21)

Association probabilities can be calculated from (6.22).

Algorithm 14: Probabilistic Data Association
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where λ is the spatial density of false alarms. Alternative model is the diffuse
prior model which is also called as nonparametric PDA

pFA(m) ∝ 1, (6.26)

which has the same equations as the Poisson model except λVk in (6.24) is re-
placed with mk

b =
(

2π

γ

)
mkc−1

ny

1− PD PG

PD
. (6.27)

6.3 Bootstrap Filter for Clutter

By augmenting the state with the same latent variable that was used in Section
6.1, a very simple Bootstrap filter can be derived. Predictive distribution for joint
distribution of state and latent variable history is

p(xk,3k |y1:k−1) = p(λk |xk) p(xk,3k−1|y1:k−1)

= p(λk |xk)

∫
p(xk |xk−1) p(xk−1,3k−1|y1:k−1) dxk−1, (6.28)

with the assumption, that associations represented by the latent variables are in-
dependent on each step.

The likelihood could be (for example) given as

p(yk |xk,3k) = p(yk |xk, λk) =
{
ρ0, λk = 0
N (yk |h(xk, vk),Rk) λk = 1.

(6.29)

We could use some better model for false alarms, but it can be easily included
afterwards. The likelihood is not really restricted to Gaussian but it is used here
for simplicity. So, the bootstrap filter would be as described in Algorithm 15.
Note that the algorithm directly uses dynamic model as its importance distribu-
tion, which makes it Bootstrap filter.

All the enhancing methods described in Chapter 5 can used here, but this
simple Bootstrap version is presented here as an example how this can be done.

6.4 Multiple Hypothesis Tracking with Multiple Targets

Multiple target tracking is an extension to single target tracking in clutter and for
this reason the algorithms are very similar. Multiple Hypothesis Tracking (MHT),
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Initialization: Sample N samples from prior distributions

x(i)0 ∼ p(x0) λ
(i)
0 ∼ p(λ0) (6.30)

Prediction: Sample N new samples from

x(i)k ∼ p(xk |x(i)k−1) (6.31)

and corresponding latent variables from

λ
(i)
k ∼ p(λk |x(i)k ) (6.32)

Update: Evaluate importance weights

w
(i)
k ∝ w(i)k−1 p(yk |x(i)k , λ

(i)
k ) (6.33)

and normalize them.

Resampling: Use the resampling scheme as in Algorithm 11.
Set k ← k + 1 and go to step 2.

Algorithm 15: Bootstrap Filter for Clutter

which was described in Section 6.1, can be extended to multiple targets by defin-
ing the latent variable λk as follows:

λ = 0 : {measurement originated from false alarm}
λ = 1 : {measurement originated from target 1}
λ = 2 : {measurement originated from target 2}

...

λ = T : {measurement originated from target T }. (6.34)

With this definition the MHT recursions in Equations (6.8) and (6.9) can be used
as such, but the complexity will be even more enormous. However, this kind of
latent variable formulation can be used as starting point for developing more prac-
tical algorithms. The formulation doesn’t take split measurements (one measure-
ment that originated from multiple targets) into account, but it can be extended to
that also. We may also obtain several measurements from each sensor during a
measurement scan.

Bar-Shalom and Li (1995) note that since MHT approach is measurement
oriented (opposite to target oriented), track initialization can be combined into the
algorithm. With suitable definitions of latent variable states (e.g., new target state)
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it is possible to develop algorithms for tracking unknown number of targets. See
the citation for details.

6.5 Joint Probabilistic Data Association Filter

Joint Probabilistic Data Association (JPDA) filter (see e.g., Bar-Shalom and Li,
1995; Blackman and Popoli, 1999, for more complete presentation) is an exten-
sion of Probabilistic Data Association (PDA) filter for multiple targets. The as-
sumptions are the following:

• There is a known number of targets in clutter.

• The track of each target has been initialized

• Measurements from one target can fall in the validation region of a neigh-
boring target – this can happen over several sampling times and acts as a
persistent inference.

• A target can give a rise to at most one measurement.

• The detection of target occurs independently over time and from other tar-
gets according to a known probability.

• A measurement could have originated from at most one target.

• The past is summarized by an approximate sufficient statistic – state esti-
mates (approximate conditional mean) and covariances for each target.

• The states are assumed Gaussian distributed with the above means and co-
variances.

• Each target has linear Gaussian dynamic and measurement models as in
(6.10). The models for various targets don’t have to be the same.

Validation matrix is defined as

� = [ωj,t ], j = 1, . . . ,m, t = 0, 1, . . . , NT , (6.35)

with binary elements that indicate if measurement j lies in the validation region
of target t . The index t = 0 stands for “none of the targets”.

A joint association event θ is represented by the event matrix

�̂ = [ω̂j,t(θ)], (6.36)
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consisting of the units in � corresponding to the associations in θ :

ω̂j,t =
{

1 if θj,t ∈ θ
0 otherwise.

(6.37)

Target detection indicator is defined as

δt(θ) =
m∑

j=1

ω̂j,t(θ) (6.38)

and measurement association indicator is defined as

τj (θ) =
NT∑

t=1

ω̂j,t(θ) (6.39)

The number of false measurements with these definitions is

φ(θ) =
m∑

j=1

(1− τj (θ)). (6.40)

The Algorithm of JPDA is shown in Algorithm 16. The state estimation equa-
tions for JPDA are the same as for PDA except that association probabilities βk,i

are evaluated in different manner. Probabilities are given as

βk, j,t = p(θj,t |Yk)

=
∑

θ

p(θ |Yk)ω̂j,t(θ). (6.50)

• Decoupled parametric JPDA with Poisson clutter model can be written as

p(θk |Yk) ∝
∏

j

{
λ−1 ftj (yk, j )

}τj
∏

t

(
Pt,D

)δt
(
1− Pt,D

)1−δt
, (6.51)

where
ftj (yk, j ) = N (yk, j |ŷ−k,tj

,Sk,tj ). (6.52)

• Decoupled nonparametric JPDA can be written as

p(θk |Yk) ∝ φ!
∏

j

{
V ftj (yk, j )

}τj
∏

t

(
Pt,D

)δt
(
1− Pt,D

)1−δt
, (6.53)

with the same definition of ftj .
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Initialization: Set mean and covariance for each target t to values
m0,t ,P0,t such that the prior state distribution is x0,t ∼ N (m0,t ,P0,t).

Prediction:
The prediction step is the same as with standard Kalman Filter for each
target t separately:

m−k,t = Ak−1,t mk−1,t

P−k,t = Qk−1,t + Ak−1,t Pk−1,t AT
k−1,t (6.41)

Gating: Select set of validated measurements for each target Yk,t =
{y(i)k,t}, i = 1, . . . ,mk,t for time step tk by accepting only those mea-
surements that lie inside the gate (similar to with (6.11), but for each target
separately). Predicted mean ŷ−k and covariance for the “true” measure-
ments are given as

ŷ−k,t = Hk,t m−k,t (6.42)

Sk,t = Hk,t P−k,t H
T
k,t + Rk,t (6.43)

Update: The mean and covariance updates are defined as follows:

mk,t = m−k,t +Kkvk (6.44)

Pk,t = βk,0P−k,t + (1− βk,0)Pc
k,t + P̃k,t (6.45)

where the Kalman Gain Kk,t , combined innovation vk,t , the covariance of
the correct measurement Pc

k,t and spread of the innovations term P̃k,t are
given as:

Kk,t = P−k HT
k,t S
−1
k,t (6.46)

vk,t =
mk,t∑

i=1

βk,i,t vk,i,t (6.47)

Pc
k,t = P−k,t −Kk,t Sk,t Kk,t (6.48)

P̃k,t = Kk

[mk,t∑

i=1

βk,i,t vk,i,t vT
k,i,t − vk,i,t vT

k,i,t

]
KT

k,t (6.49)

Association probabilities can be calculated from (6.50).

Algorithm 16: Joint Probabilistic Data Association
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• JPDA coupled (JPDAC) filter has the joint association event probability
given as

p(θk |Yk) ∝ φ!
mk

pFA(φ)V
−φ ftj1 ,tj2 ,...

(yk, j , j : τj = 1)

×
∏

t

(
Pt,D

)δt
(
1− Pt,D

)1−δt
,

(6.54)

where ftj1 ,tj2 ,...
is the joint PDF of the measurements of the targets under

consideration. Clutter model pFA can be one of (6.26) and (6.25).

The state consists of stacked states and the joint covariance matrix contain-
ing all the targets together with joint effects is used. See (Bar-Shalom and
Li, 1995) for details.

• JPDA with merged measurements (JPDAM) is an extension of JPDA, which
uses probabilistic model for the merged measurements from two targets.
Detailed analysis and formulas are given in (Bar-Shalom and Li, 1995).

6.6 Bootstrap Filter for Multiple Target Tracking

Due to latent variable formulation used in particle filtering for cluttered case, we
can easily extend it to multiple target case. Assume for simplicity that we know
the number of targets, say N . Now the state vector consists of states of all the
N targets:

xk =




xk,1

xk,2
...

xk,N


 . (6.55)

The likelihood measurement n for each target j could be, for example, given as

p(yk,n|xk, j ,3k) = p(yk,n|xk, j , λk) =
{
ρ0, λk = 0
N (yj,nk|hi (xk, j ),Rk, j ) λk = j.

(6.56)
Each measurement likelihood depends only on the associated components in xk .

In case of multiple measurements, the association indicator contains separate
components for each measurement. The prior probability (or likelihood in MHT)
of associations may now depend on number of false alarms this indicator defines.
This number of false alarms can be for example formulated as Poisson of Diffuse
models as in case of PDA and JPDA.

Karlsson and Gustafsson (2001) propose a Particle Filter called SIR/MCJPDA
for this multiple target tracking problem with known number of targets. They
also propose using a particle filter controller, which it is not described here. The
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SIR/MCJPDA method is described as the Algorithm 17. This algorithm is, in
fact, the same as defined in Algorithm 15, but extended to contain multiple targets
instead of only one.

Initialization: Sample N samples from prior distributions for each target
j

x(i)0, j ∼ p(x0, j ) (6.57)

Prediction: Sample N new samples from

x(i)k ∼ p(xk |x(i)k−1) (6.58)

and corresponding latent variables from

λ
(i)
k ∼ p(λk |x(i)k ) (6.59)

Update: Evaluate importance weights

w
(i)
k ∝ w(i)k−1 p(yk |x(i)k , λ

(i)
k ) (6.60)

and normalize them.
Resampling: Use the resampling scheme as in Algorithm 11.
Set k ← k + 1 and go to step 2.

Algorithm 17: Bootstrap Filter for Multiple Targets

Hue et al. (2000) suggest that the measurement association probabilities could
be also treated as random variables and propose an algorithm based on Gibbs
sampling (see Section 2.4) of these probabilities.
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Angular Tracking

7.1 Role of Angular Tracking

In multiple sensor tracking systems it is often most natural to use Cartesian co-
ordinates and their derivatives as the state variables. This is the most general
coordinate system, which is common to all sensors and targets together. Typi-
cally, even if we did the tracking in some other coordinate system we would have
to convert result to Cartesian coordinates in some point anyway. Using, for exam-
ple, polar coordinates centered on one of the sensors would lead to unnecessary
transformations of coordinates. This is a problem when dealing with probability
distributions and their sufficient statistics representations.

Cartesian and polar coordinates themselves are equivalent in sense that we
can always transform a polar coordinate point into equivalent Cartesian coordi-
nate point and vice versa using the formulas given in Section 7.3. However, it
is much harder to convert probability distributions between the coordinate sys-
tems. In tracking algorithms, probability distributions are used for representing
uncertainty and this becomes an issue. We have to use either polar coordinate
system or Cartesian coordinate system but we shouldn’t mix them to avoid those
transformations.

In tracking, linearity is good thing and non-linearity is bad, because linear sys-
tems can be solved exactly (and efficiently) using simple formulas, but non-linear
systems (in general) cannot. Thus, non-linear systems are order of magnitude
harder. This is why we should avoid non-linearities whenever possible. This
hardness of handling non-linearities comes from the fact that linear transforma-
tions of Gaussian distributions remain Gaussian, but in non-linear transformations
we lose the Gaussianity.

If we are using linear motion models and angular sensors, using Cartesian
representation leads to following kind of model:

• Dynamic model is linear, because approximate Newtonian dynamics are
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stochastic linear differential equations in Cartesian coordinates.

• Measurement model is non-linear, because angle is related to Cartesian
coordinate through tan−1(·).

In initialization, we will have a situation that we are actually doing single sensor
tracking with one angular sensor. This is likely to be very hard, because poste-
rior distribution in Cartesian coordinates is almost infinite or at least very long
in one direction. The problem is that if we tried to represent it as Gaussian dis-
tribution we would have correlated Gaussian distribution having one very long
non-independent direction. In this case it could be better to represent the state
temporarily in polar coordinate system. This has the benefit that the long direction
becomes independent direction (range) and the other component (angle) won’t be
disturbed by that direction.

Another advantage of using polar coordinates is that posterior distribution
given measurements from only one sensor has shape of a sector in Cartesian co-
ordinates. In polar coordinates this posterior distribution is Gaussian if we ignore
the nonlinearity caused by dynamic model. Thus, in initialization stage, when
dynamic model has very small effect on tracking, state distribution can be more
accurately represented in polar coordinates.

If we are using linear motion models and one angular sensor, using Polar
coordinate representation centered to the sensor leads to following kind of model:

• Dynamic model is non-linear, because approximate Newtonian dynamics
are stochastic non-linear differential equations when transformed to polar
coordinate system.

• Measurement model is linear, because angle is part of our state representa-
tion.

In initialization stage it could be more useful to be able to handle measurements
exactly and use approximate model for dynamics, because the dynamics won’t be
anyhow useful before we have obtained enough measurements. Also, we could
use simplified dynamic models in initialization stage in order to reduce number of
parameters to be estimated in the beginning.

7.2 Transformations of Coordinate Systems

Assume that we are modeling dynamics of an object with generic Ordinary Dif-
ferential Equation in form

ẋ = f(x, t) (7.1)

where state x ∈ Rn may contain, for example, position of the target together with
finite number of its derivatives.
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Suppose that we want represent this dynamic model in different coordinate
system defined by coordinates 8

8̇ = f̂(8, t), (7.2)

and the transformation from coordinates 8 to x and its inverse are given as

x = u(8) (7.3)

8 = u−1(x). (7.4)

The derivation begins by differentiating the inverse transformation with respect to
time:

8̇ =
(
∂u−1(x)
∂xT

)
ẋ. (7.5)

Since u is invertible, we have

u−1(u(8)) = 8 (7.6)
(
∂u(8)
∂8T

)(
∂u−1(x)
∂xT

)
= I (7.7)

(
∂u−1(x)
∂xT

)
=
(
∂u(8)
∂8T

)−1

, (7.8)

where x = u−(8). Using the result above and the original model, we get

8̇ =
(
∂u−1(x)
∂xT

)
ẋ

=
(
∂u(8)
∂8T

)−1

f(x, t)

=
(
∂u(8)
∂8T

)−1

f(u(8), t).

(7.9)

So, the model can be written in form

8̇ = f̂(8, t), (7.10)

when function f̂ is defined as

f̂(8, t) =
(
∂u(8)
∂8T

)−1

f(u(8), t). (7.11)
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7.3 Transformation to Polar Coordinates

Suppose that we want to use polar coordinate representation of the object posi-
tion. And we want represent the dynamics in terms of polar coordinates (r, θ) and
their derivatives. Polar coordinate system in formed with respect to some origin
(x0, y0), and the transformation from polar to Cartesian is

x = r cos(θ)+ x0 (7.12)

y = r sin(θ)+ y0. (7.13)

Note that we are using mathematical convention of polar coordinates, where zero
angle is to the east from origin and the positive direction is counterclockwise
around the origin.

The transformation for derivatives can be obtained by differentiating Equa-
tions (7.12) and (7.13) with respect to time

ẋ = ṙ cos(θ)− r sin(θ)θ̇ (7.14)

ẏ = r cos(θ)θ̇ + ṙ sin(θ) (7.15)

The coordinate transformation x = u(8) is given as



x
y
ẋ
ẏ


 =




r cos(θ)+ x0

r sin(θ)+ y0

ṙ cos(θ)− r sin(θ)θ̇
r cos(θ)θ̇ + ṙ sin(θ)


 . (7.16)

The Jacobian matrix of the transformation is given as

∂u(8)
∂8T

=




cos(θ) −r sin(θ) 0 0
sin(θ) r cos(θ) 0 0
−θ̇ sin(θ) −ṙ sin(θ) −θ̇r cos(θ) cos(θ)− r sin(θ)
θ̇ cos(θ) ṙ cos(θ) −θ̇r sin(θ) sin(θ)r cos(θ)


 (7.17)

The inverse of this matrix is

(
∂u(8)
∂8T

)−1

=




cos(θ) sin(θ) 0 0
− sin(θ)

r
cos(θ)

r 0 0
−θ̇ sin(θ) θ̇ cos(θ) cos(θ) sin(θ)

ṙ sin(θ)−θ̇r cos(θ)
r2 − θ̇r sin(θ)+ṙ cos(θ)

r2 − sin(θ)
r

cos(θ)
r


 .

(7.18)
The transformation from Cartesian to polar coordinates is

r =
√
(x − x0)2 + (y − y0)2 (7.19)

θ = arctan

(
y − y0

x − y0

)
. (7.20)
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By differentiating these we get

ṙ = ẏ(y − y0)+ ẋ(x − x0)√
(x − x0)2 + (y − y0)2

(7.21)

θ̇ = ẏ(x − x0)− ẋ(y − y0)

(y − y0)2
. (7.22)

So, the polar initial conditions (r(0), θ(0), ṙ(0), θ̇ (0)) can be calculated from
Cartesian initial conditions (x(0), y(0), ẋ(0), ẏ(0)) using the Equations (7.19),
(7.20), (7.21) and (7.22).

7.4 Known Angular Velocity Model in Polar Coordinates

Consider 2-dimensional model for constant speed with known angular velocity

ẍ = −a ẏ (7.23)

ÿ = aẋ . (7.24)

If state x is defined to contain 2 dimensional Cartesian position and velocity of
the object

x =




x
y
ẋ
ẏ


 , (7.25)

the model is actually LTI model with feedback matrix

F =




0 0 1 0
0 0 0 1
0 0 0 −a
0 0 a 0


 . (7.26)

Now we get

f̂(8, t) =
(
∂u(8)
∂8T

)−1

Fu(8)

=




ṙ
θ̇

θ̇2r − θ̇ra
ṙa−2ṙ θ̇

r


 .

(7.27)

The resulting model is given as

r̈ = θ̇2r − θ̇ra (7.28)

θ̈ = ṙa − 2ṙ θ̇

r
. (7.29)
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7.5 Nearly Constant Velocity Model in Polar Coordinates

The model in previous section was deterministic differential equation, but dy-
namic models are more frequently expressed as stochastic differential equations
in form

ẋ = Fx+ Lw(t), (7.30)

where w is a Gaussian white noise process:

E[w(t)] = 0 (7.31)

E[w(t)w(t + τ)T ] = Qcδ(τ ). (7.32)

In polar coordinates, this model can be expressed as

8̇ = f̂(8, t), (7.33)

where

f̂(8, t) =
(
∂u(8)
∂8T

)−1

Fu(8)+
(
∂u(8)
∂8T

)−1

Lw(t). (7.34)

As on example, consider nearly constant velocity model, which can be obtained
from Equations (7.23) and (7.24) by setting angular velocity to zero a = 0, and
using a Wiener noise model for velocities:

ẍ = w1(t), w1(t) ∼ N (0, q)

ÿ = w2(y), w2(t) ∼ N (0, q), (7.35)

which is model in form of Equation (7.30) with

x =




x
y
ẋ
ẏ


 F =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 (7.36)

and

L =




0 0
0 0
1 0
0 1


 Qc =

(
q 0
0 q

)
. (7.37)

In polar coordinates, the nearly constant velocity model in Equation (7.35) is given
as

r̈ = θ̇2r + sin(θ)w2(t)+ cos(θ)w1(t)

θ̈ = −2ṙ θ̇

r
+ cos(θ)

r
w2(t)− sin(θ)

r
w1(t), (7.38)
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with

E[w(t)] = 0

E[w(t)w(t + τ)T ] = Qcδ(τ ).
(7.39)
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Negative Information Modeling

8.1 Overview of Negative Information Modeling

In a target tracking system physical sensors report measurements only when they
receive some kind of signal, which can be further processed into a measurement.
In the single-sensor case all we can do is to use these signal-induced measure-
ments. However, when there are multiple sensors measuring from the same origin
(e.g., the radar of a target), and some sensors can detect this signal and some can-
not, our information is increased by knowing the fact that some sensors could not
detect the target. (We need initially multiple sensors since if no sensor detects the
target, we do not know that there is a target.) This is called negative information,
and from it we know that target must be in such a place or orientation that this sen-
sor cannot see it. The inability to observe the target can, for example, be caused
by the target being outside the sensor’s surveillance area in the state space or its
radar pointing into the wrong direction. More generally, the target’s position in
the state space (position, direction, derivatives, etc.) is such that the sensor cannot
see it.

The physical sensors observing the target do not generate the negative infor-
mation, since they cannot guess what they should see. They don’t know anything
about the targets, nor which target their measurement originated from. But after
the normal or positive information measurement processing and data association
has been performed, it is possible to detect which sensors could have reported
measurements, and did not. If such sensors exist, we can generate artificial nega-
tive information measurements which indicate that the target is likely to be outside
the surveillance areas of these sensors.

The negative information model consist of two parts:

1. Detecting the negative information and generating the negative information
measurements.
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2. Updating the system state estimate using the information in negative infor-
mation measurements.

8.2 Detecting the Negative Information

Here we shall present a conceptual example of how we could, in principle, detect
negative information. However, the reader should understand that the whole prob-
lem is very complex. In order to detect negative information, we would have to be
able to fully model the detection generation procedure connected to specific sen-
sors and targets. There simply is no generic way of doing this. However, sensor
experts (sensor engineers) may have such practical knowledge that they could help
in creating these detection generation and negative information detection models.

On a general level there are two kinds of sensor-measurement pairs. The
first is perhaps the more typical one, in which the measurement is generated by
a sensor and the measurement is dependent only on the location and speed of the
target. Examples of this are radar sensors, human observers and such. The target
cannot prevent the measurement, and thus we gain a lot from information from the
absence of measurements - if a sensor cannot see a target that is known to exist,
we know that the target is probably occluded to the sensor.

In the second type the measurement is obtained by interpreting something that
the target does. For example, underwater or radio listening stations can pick up
sonar and radio pulses. With this kind of measurements it is far more difficult to
obtain useful negative information. If a sensor does not receive measurements, it
might simply be because the target is silent, or then the target might be occluded to
the sensor, as before. Thus, in this case we gain less information from the absence
of measurements - only if we somehow know that the target is transmitting and
should be detected, can we deduce that it is occluded to a sensor which does not
report measurements.

The following scenario illustrates how negative information could generally
be detected. Consider Figure 8.1, where there are two sensors getting measure-
ments from a moving target. The sensors have finite surveillance areas. Initially,
the target is inside the surveillance areas of both sensors and we get measurements
from both of them. After a while the target leaves the surveillance area of Sensor
2 and only Sensor 1 continues to report measurements.

The signal detection streams as function of time are shown in Figure 8.2. From
the figure we can see that we get detections from both the sensors on quite regular
intervals. These detections don’t come from both the sensors at the same time,
but there is clearly a stream of detections coming from both sensors. Suddenly,
approximately at time t = 6, Sensor 2 stops reporting measurements. Looking
at Figure 8.1 we can see the reason - this is the time when the target exits the
surveillance area of Sensor 2.
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Sensor 1

Sensor 2

Target

Figure 8.1: In the beginning the target is inside the surveillance area of both sensors 1
and 2. When it leaves the surveillance area of sensor 2, only Sensor 1 continues to report
measurements.

It is possible to detect the time instance when Sensor 2 loses the target from
the detections in Figure 8.2 by building a suitable stochastic model for the sen-
sor detection time series. Because we have detected that there clearly is a target
(because Sensor 1 sees it) and still Sensor 2 cannot see it, we can generate arti-
ficial negative information measurements for Sensor 2. These measurements are
target-sensor pairs, which indicate that this sensor cannot see this target. Another
possible reason would be that the signal has really ended (e.g., the target has been
destroyed), but this reason has been eliminated by the fact the other sensor still
sees the target.

This same idea can be easily generalized to multiple sensors. If at least one
sensor receives a signal, we know that there is a signal. If some other sensor does
not receive the signal, we can possibly use this as negative information. Of course,
if the sensor is of the kind where the target’s actions influence the measurement,
one has to be careful - there might be several reasons for this loss of signal. For
example, the sensor can be turned off or there might be an unexpected (unmod-
eled) phenomenon which blocks the signal inside the sensor’s surveillance area.
It might even be possible to disturb the negative information estimation algorithm
by selectively blocking the signal from some sensors, which could lead to wrong
position estimates of targets. However, by carefully designing the system this can
probably be avoided.

The generalization to multiple targets is also possible. In order to generate
the negative information measurements we must know the data associations of
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Figure 8.2: Signal detections in sensors 1 and 2, when the target is moving as in Figure
8.1. When the target exists the surveillance area of Sensor 2, the regular detection stream
suddenly ends.

“positive” measurements. After that we can check which of the sensors have
produced measurements from specific targets and which haven’t. This association
knowledge requirement means that negative information measurements depend
on association hypotheses - we have different negative information measurements
for different associations. If we use the Monte Carlo method for data association,
we should estimate the sensor-target time series for each association hypothesis
separately.

8.3 Using the Negative Information Measurements

In practice negative information can be utilized by generating negative informa-
tion measurements. A negative information measurement means that at a given
point of time, we know that a sensor should have reported a measurement, and
did not. That is, negative information is triggered, as described in Section 8.2. As
will be shown in the following, the possibility of negative information also affects
the likelihood of positive measurements (Stone et al., 1999).

Let S ⊂ <n be the state space of the target. We define our measurement space
as M̂ = M ∪ {φ}, where M ⊂ <m is the space of positive measurements and
φ denotes the event “no measurement”. The sensor model defines a probability
p̂(y|x) for all target states x ∈ S, where y ∈ M̂ . Thus the distribution over the
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whole M is

p(y|x) =
{
(1− p(φ|x)) p̂(y|x), y 6= φ
p(φ|x), y = φ. (8.1)

Instead of the probability of no detection p(φ|x) we can define the probability of
detection, pd(x) = 1− p(φ|x), in which case Equation 8.1 becomes

p(y|x) =
{

pd(x) p̂(y|x), y 6= φ
1− pd(x), y = φ. (8.2)

One can see that negative information affects also the likelihood function of pos-
itive measurements - if a measurement is received, we know that the target is not
located outside the area visible to the sensor. (However, it should be noted that this
effect is relatively minor compared to how negative information affects the poste-
rior when the target is not seen.) For multiple sensors with independent detections
the joint likelihood function is

L(x) =
Nd∏

i=1

p(i)d (x) p̂
(i)(y(i)|x)

Nn∏

j=1

(1− p( j)
d (x)), (8.3)

where y(i) is the i th measurement, p(i) the measurement model of the i th sensor,
Nd the number of sensors that detect the target and Nn the number of sensor that
miss the detection.

The negative information likelihood function p(φ|x) can be defined in many
ways. The simplest possibility is to have the negative information likelihood be
uniform in the occluded area and zero in the observed area whenever the sensor
does not receive measurements. That is, the state distributions are truncated ac-
cording to the sensor’s surveillance area. The negative information likelihood can
thus be written as

p(φ|x) =
{

0 if, x ∈ A
1 if, x /∈ A,

(8.4)

where A is the part of the state space observed by the sensor. A simple 1D negative
information scenario illustrates this kind of likelihood in Figures 8.3, 8.4, and 8.5.
The tracking is done by a regular bootstrap filter (Algorithm 11) using a simple
ẍ = 0 dynamic model.

The likelihood function presented above assumes that the probability of de-
tection is 1. A more realistic likelihood is not zero in the observed area, but rather
nonzero at some uniform level, reflecting the possibility of the sensor missing the
target. Naturally, this level should be lower in the areas visible to the sensor than
the occluded areas. For example, if the probability of no detection is 0.1 and no
measurements are reported, with uniform distributions the (unnormalized) likeli-
hood should be 0.1 inside the visible area and 0.9 outside the visible area. If a
measurement is received, the situation is reversed - the positive likelihoods of the
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Figure 8.3: Negative information modeling scenario. The light measurements in the
middle (between the dashed lines) are assumed to be missing, because sensor is unable to
measure the phenomenon when signal is in area [−0.2, 0.2].

particles inside the observed area are multiplied by 0.9, while those outside the
area receive the weight 0.1. This kind of likelihood is illustrated in Figure 8.6.
The figure shows the likelihood field when no sensor receives measurements.

In reality the observed areas are not clearly defined circles with uniform proba-
bilities of detection. Common sense dictates that most sensors detect targets better
when they are close to the sensor. Thus a better approximation of reality could, for
example, be a radial Gaussian detection function, that is, target detection would
fail with an increasing probability as distance from the sensor grows. However, at
this stage of development the uniform distributions are probably accurate enough.

We can directly implement a particle filter once the negative information like-
lihood function has been decided upon. The basic filter algorithm is unchanged,
with prediction step is carried out as usual. After this the weights are updated ac-
cording to the modified negative information likelihood function and resampling
is performed. Implementing a Kalman filter with negative information is a little
more complicated, as the likelihood distribution is not Gaussian or even a mixture
of Gaussians - also the positive information likelihood is affected, as explained
before. As the shapes of the areas occluded to sensors are usually quite compli-
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Figure 8.4: Tracking result of particle filter, when the lost measurements are modeled
as missing. That is, if no measurement arrive, we simply predict the new state and per-
form no measurement update. The distribution of the location quickly widens as only the
prediction model can be used. Note how the mean of the distribution moves in a linear
fashion.

cated, in most cases it is probably impossible to perform the measurement update
in closed form even when the negative information likelihood is of the simple,
uniform type. One way to solve this problem could be to transform the Kalman
filter into a particle filter for the measurement update, that is, sample a set from
the Kalman predictive distribution, update the sample weights as before with the
particle filter, and return to the Kalman filter by computing the posterior weighted
mean and covariance of the samples.

The main advantage of using negative information is that the distribution of
states is physically feasible and more realistic when the target is not visible. An
example of this is the tracking of a single person : if we see a person go into a room
and not come out, after five minutes we can be sure that the person is still in the
room if all exits have been observed. However, the precise location of the person
inside the room is very vague - in practice the distribution of the person’s location
is very close to uniform. If the occluded areas are small in volume and regular
in shape, then negative information can be used to aid the tracking process, if the
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Figure 8.5: Tracking result of particle filter, when the lost measurements are modeled as
being in area [−0.2, 0.2]. Now the distribution stays inside the boundaries and does not
explode.

tracked person enters a narrow corridor at a constant speed, it is highly probable
that the person will exit the corridor at the other end.
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Figure 8.6: Sample 2D negative information likelihood field, when no sensor receives
measurements and the probability of a sensor missing a target is 0.1. Each sensor ob-
serves a circular area around it, i.e. in the image the sensors are located in the centers
of the dark circles. Note how the lowest likelihood occurs at areas which two sensors can
see.
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Summary

In this document we have reviewed the most commonly used probabilistic meth-
ods in multiple target tracking. The document could be summarized as follows:

• Monte Carlo methods are useful tools for estimation and representation
of posterior distributions in Bayesian inference. Because the probabilistic
filtering problem belongs to class of Bayesian models, Monte Carlo meth-
ods can be applied to the filtering problem also. The sequential nature of
the model complicates the problem, but sequential Monte Carlo or particle
filtering methods have been developed for efficient estimation in dynamic
models.

• Kalman filtering methods such as linear Kalman filter, extended Kalman
filter and unscented Kalman filter are (or can be interpreted as) Bayesian
estimators that sequentially form Gaussian approximations of the state pos-
terior distribution. The methods can be directly used as sub-estimators in
multiple target tracking algorithms.

• Dynamics of targets are most naturally modeled as linear or non-linear
stochastic differential equations. This is the most general way of solving the
problem of asynchronous sensors that produce measurements on irregular
intervals.

• Multiple target tracking can be formulated as probabilistic filtering model,
where data association ambiguity is modeled using a latent variable, which
labels the measurement origin. The problem of multiple target tracking re-
duces to problem of developing methods for representing the joint posterior
distribution of states and latent variables as accurately as possible.

• PDA and JPDA are multiple target tracking algorithms that represent the
state posterior as set of Gaussian distributions, such that each Gaussian dis-
tribution represents one target.
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• MHT is a multiple target tracking algorithm that forms hypotheses of dif-
ferent data associations and calculates relative probabilities of them. Based
on these calculated probabilities it forms a set of most probable data asso-
ciation histories, which is propagated in time and updated using the sensor
measurements.

• Sequential Monte Carlo methods can be directly applied to estimation of
the probabilistic filtering model that represents the multiple target tracking
problem. These methods can be also used for handling the negative infor-
mation, where PDA, JPDA and MHT cannot be directly used. However, the
pure bootstrap filter is unlikely to be efficient as such, and good importance
distributions and possibility of Rao-Blackwellization should be evaluated.
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Derivations

A.1 Derivation of Kalman Filter

Assume a model

xk = Ak−1xk−1 + Bk−1uk−1 + qk−1 (A.1)

yk = Hkxk + rk, (A.2)

where

qk−1 ∼ N (0,Qk−1) (A.3)

rk ∼ N (0,Rk). (A.4)

Matrices Ak−1, Bk−1, Hk , Qk−1, Rk and input vector uk−1 are assumed known
for all k > 0. The initial configuration defined by parameters m0 and P0 is also
assumed to be known.

Equations (A.1) – (A.4) can be written in alternative notation as

p(xk | xk−1) = N (xk | Ak−1xk−1 + Bk−1uk−1,Qk−1) (A.5)

p(yk | xk) = N (yk | Hkxk,Rk). (A.6)

The prior distribution is then

p(x0) = N (x0 |m0,P0). (A.7)

Kalman Filter equations can be derived by induction. First assume that prior dis-
tribution is exactly Gaussian as given in Equation (A.7). Then assume that after
k − 1 steps we have Gaussian state distribution given as

p(xk−1 | y1:k−1) = N (xk−1 | mk−1,Pk−1). (A.8)
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The predictive state distribution (distribution before just before measurement) for
step k is

p(xk | y1:k−1) =
∫

p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1

=
∫

N (xk | Ak−1xk−1 + Bk−1uk−1,Qk−1)

× N (xk−1 | mk−1,Pk−1) dxk−1. (A.9)

The integral (A.9) can be calculated in closed form and since this integral simply
integrates over one parameter or Gaussian distribution, the result is Gaussian also.

Quite intuitive way to derive the parameters of this Gaussian is the following:

1. Assume that we have state distribution

xk−1 ∼ N (mk−1,Pk−1). (A.10)

2. The distribution of x∗k = Ak−1xk−1 follows from elementary rules for ex-
pected values and covariances

E[x∗k] = E[Ak−1xk−1] = Ak−1 E[xk−1] (A.11)

Cov[x∗k ] = Cov[Ak−1xk−1] = Ak−1Cov[xk−1]AT
k−1. (A.12)

3. We still have the deterministic input and process noise term. Since the input
is deterministic, it doesn’t affect covariance at all, only the mean. Process
noise in turn has mean zero and thus doesn’t affect mean at all. Thus, we
have:

E[xk] = E[x∗k] + Bk−1uk−1 = Ak−1 E[xk−1] + Bk−1uk−1 (A.13)

Cov[xk] = Cov[x∗k] +Qk1 = Ak−1Cov[xk−1]AT
k−1 +Qk−1. (A.14)

Now, using the notation mk−1 = E[xk−1] and Pk−1 = Cov[xk−1] we have

p(xk | y1:k−1) = N (xk | m−k ,P−k ), (A.15)

where

m−k = Ak−1mk−1 + Bk−1uk−1 (A.16)

P−k = Ak−1Pk−1AT
k−1 +Qk−1. (A.17)

Equations (A.16) and (A.17) are in fact the first two Kalman Filter equations.
They are also known as the prediction step of Kalman Filter for obvious reasons.
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This minus - is there to indicate that we didn’t take measurement yk into account
yet.

The posterior distribution given the predictive distribution above can be cal-
culated as

p(xk | y1:k) ∝ p(yk | xk ) p(xk | y1:k−1) (A.18)

∝ N (yk | Hkxk,Rk)N (xk | m−k ,P−k ). (A.19)

We know that distribution p(xk | y1:k) must be Gaussian

p(xk | y1:k) = N (xk |mk,Pk), (A.20)

since the product of two Gaussian distribution is always Gaussian. Since the mean
of Gaussian distribution is the same as maximum of the distribution, the mean is
actually

E[xk] = arg max
xk

N (yk | Hkxk,Rk)N (xk | m−k ,P−k ). (A.21)

This maximum is the same as minimum of negative logarithm of this function

E(xk) = 1

2
(yk −Hkxk)

T R−1
k (yk −Hkxk)+ 1

2
(xk −m−k )

T (P−k)
−1(xk −m−k ).

(A.22)

The derivative of this energy function is

∂E(xk)

∂xk
= HT

k R−1
k (Hkxk − yk)+ (P−k )−1(xk −m−k ). (A.23)

The maximum is where this gradient is zero:

HT
k R−1

k (Hkxk − yk)+ (P−k )−1(xk −m−k ) = 0. (A.24)

The solution is

xk = (HT
k R−1

k Hk + (P−k )−1)−1(HT
k R−1

k yk + (P−k )−1m−k ). (A.25)

We may now use the matrix inversion lemma

(HT
k R−1

k Hk + (P−k )−1)−1 = (P−k − P−k HT
k (Rk +HkP−k HT

k )
−1HkP−k ), (A.26)

and

xk = (P−k − P−k HT
k (Rk +HkP−k HT

k )
−1HkP−k )(H

T
k R−1

k yk + (P−k )−1m−k ) (A.27)

= P−k HT
k

[
I− (Rk +HkP−k HT

k )
−1HkP−k HT

k

]
R−1

k yk (A.28)

+m−k − P−k HT
k (Rk +HkP−k HT

k )
−1Hkm−k . (A.29)
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The next trick is to use the identity

I = (Rk +HkP−k HT
k )
−1(Rk +HkP−k HT

k ) (A.30)

to simplify the coefficient of yk to get

xk = P−k HT
k [(Rk +HkP−k HT

k )
−1(Rk +HkP−k HT

k ) (A.31)

− (Rk +HkP−k HT
k )
−1HkP−k HT

k ]R−1
k yk (A.32)

+m−k − P−k HT
k (Rk +HkP−k HT

k )
−1Hkm−k (A.33)

= P−k HT
k

[
(Rk +HkP−k HT

k )
−1Rk

]
R−1

k yk (A.34)

+m−k − P−k HT
k (Rk +HkP−k HT

k )
−1Hkm−k (A.35)

= m−k + P−k HT
k (Rk +HkP−k HT

k )
−1
[
yk −Hkm−k

]
. (A.36)

We may conclude that mean of distribution in Equation (A.20) is

mk = m−k +Kk

[
yk −Hkm−k

]
, (A.37)

where
Kk = P−k HT

k (Rk +HkP−k HT
k )
−1. (A.38)

The covariance of distribution in Equation (A.20) can be calculated from the in-
verse Hessian of energy function in Equation (A.22). The Hessian is

∂2 E(xk)

∂x2
k

= HT
k R−1

k Hk + (P−k )−1, (A.39)

Using the matrix inversion lemma we get

(
∂2 E(xk)

∂x2
k

)−1

= (HT
k R−1

k Hk + (P−k )−1
)−1

(A.40)

= P−k − P−k HT
k (Rk +HkP−k HT

k )
−1HkP−k (A.41)

= P−k −KkHkP−k . (A.42)

If we define innovation mean and covariance as

vk = yk −Hkm−k (A.43)

Sk = Rk +HkP−k HT
k , (A.44)

we get alternative form

(
∂2 E(xk)

∂x2
k

)−1

= P−k −KkSkKT
k , (A.45)
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which is numerically more stable, because of the explicit symmetry. Thus, the
resulting equations for posterior distribution parameters are

vk = yk −Hkm−k (A.46)

Sk = Rk +HkP−k HT
k (A.47)

Kk = P−k HT
k S−1

k (A.48)

mk = m−k +Kkvk (A.49)

Pk = P−k −KkSkKT
k . (A.50)

A.2 Propagation Equations for Linear Langevin Equa-
tions

Linear stochastic differential equation is a special case of Langevin Equation
(4.1):

ẋ = F(t)x+ L(t)w(t), (A.51)

where w(t) is a Gaussian white noise process with zero mean and spectral density
Qc(t). This model can be written using Einstein’s summation convention as

ẋi = Fi j (t)x j + L ik(t)wk(t). (A.52)

The Gaussian noise process w(t)i has moments

E[wi (t)] = 0

E[wi(t)wj (t
′)] = qi j (t)δ(t − t ′),

(A.53)

where qi j = qj i . We would like to find the solution to this equation using the
Fokker-Planck-Kolmogorov equations. We first determine the diffusion coeffi-
cients

D(1)
i (x, t) = Fi j (t)x j (A.54)

D(2)
i j (x, t) = L ik(t)Qc,kk(t)L jk(t), (A.55)

which can be written in vector form as

D(1)(x, t) = F(t)x (A.56)

D(2)(x, t) = L(t)Qc(t)L(t)T . (A.57)

The corresponding Fokker-Planck-Kolmogorov equation has now form

∂p

∂t
= − ∂

∂xi

(
Fi j x j p

)+ 1

2
L ik Qc,kk L jk

∂2 p

∂xi∂x j
, (A.58)
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where we have dropped the time dependency from F’s and L’s for notational
convenience. Time dependency is still there.

Taking Fourier transformations of both sides with respect to x we get (all
∂/∂xi ’s are replaced with iωi and xi ’s with i∂/∂ωi ):

∂ p̃

∂t
= ωi Fi j

∂ p̃

∂ωj
− 1

2
L ik Qc,kk L jkωiωj p̃. (A.59)

Fourier transformation p̃(ω) of (one dimensional) probability distribution is also
called the characteristic function of probability distribution p(x). This is because
the moments of distribution are given by derivatives of Fourier transformation as

E[xn] = 1

in
d p̃(ω)

dω

∣∣∣∣
ω=0

. (A.60)

For multidimensional distributions the moments are much more complex, but sim-
ilarly gradient gives the mean value E[x] and Hessian gives the non-centered co-
variance E[xxT ].

Taking derivatives with respect to ωα in Equation (A.59), we get

∂2 p̃

∂t∂ωα
= δiαFi j

∂ p̃

∂ωj
+ ωi Fi j

∂2 p̃

∂ωj∂ωα
− 1

2
L ik Qc,kk L jkδiαωj p̃

− 1

2
L ik Qc,kk L jkωiδjα p̃ − 1

2
L ik Qc,kk L jkωiωj

∂ p̃

∂ωα

= Fα j
∂ p̃

∂ωj
+ ωi Fi j

∂2 p̃

∂ωj∂ωα
− 1

2
Lαk Qc,kk L jkωj p̃ (A.61)

− 1

2
L ik Qc,kk Lαkωi p̃ − 1

2
L ik Qc,kk L jkωiωj

∂ p̃

∂ωα

= Fα j
∂ p̃

∂ωj
+ ωi Fi j

∂2 p̃

∂ωj∂ωα
− Lαk Qc,kk L jkωj p̃

− 1

2
L ik Qc,kk L jkωiωj

∂ p̃

∂ωα
.

In the limit ω→ 0 all terms with multiplying ω’s will vanish, which includes all
but the first term on the right hand side. Thus, we get differential equation for the
first moment as

∂2 p̃

∂t∂ωα
= Fα j

∂ p̃

∂ωj

∂

∂t

1

i

∂ p̃

∂ωα
= Fα j

1

i

∂ p̃

∂ωj

ṁα = Fα j m j , (A.62)
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where we have used notation

E[xα] = mα. (A.63)

If we write the Equation (A.62) in vector form, we get

ṁ = Fm. (A.64)

Taking derivative of (A.61) with respect to ωβ , we get

∂3 p̃

∂t∂ωα∂ωβ
= Fα j

∂2 p̃

∂ωj∂ωβ
+ δiβFi j

∂2 p̃

∂ωj∂ωα
− ωi Fi j

∂3 p̃

∂ωj∂ωα∂ωβ

− Lαk Qc,kk L jkδjβ p̃ − Lαk Qc,kk L jkωj
∂ p̃

∂ωβ
+ o(ω)

= Fα j
∂2 p̃

∂ωj∂ωβ
+ Fβ j

∂2 p̃

∂ωj∂ωα
− Lαk Qc,kk Lβk p̃ + o(ω).

In the limit ω→ 0 we get

∂3 p̃

∂t∂ωα∂ωβ
= Fα j

∂2 p̃

∂ωj∂ωβ
+ Fβ j

∂2 p̃

∂ωj∂ωα
− Lαk Qc,kk Lβk p̃

1

i2
∂3 p̃

∂t∂ωα∂ωβ
= Fα j

1

i2
∂2 p̃

∂ωj∂ωβ
+ Fβ j

1

i2
∂2 p̃

∂ωj∂ωα
− 1

i2
Lαk Qc,kk Lβk p̃

Ṡαβ = Fα j Sjβ + Sα j Fβ j + Lαk Qc,kk Lβk . (A.65)

If we write the Equation (A.65) for covariance in vector form, we get

Ṡ = FS+ SFT + LQcLT . (A.66)

The relationship between non-center covariance

S = E[xxT ] (A.67)

and actual covariance
P = E[(x−m)(x−m)T ] (A.68)

is
S = P+mmT . (A.69)

Taking derivatives with respect to time and taking into account that ṁ = Fm, we
get

Ṡ = Ṗ+ ṁmT +mṁT = Ṗ+ FmmT +mmT FT . (A.70)
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Inserting this into Equation (A.66) gives

Ṡ = FS+ SFT + LQcLT

Ṗ+ FmmT +mmT FT = F(P+mmT )+ (P+mmT )FT + LQcLT

Ṗ = FP+ PFT + LQcLT . (A.71)

Thus, in this case the actual (centralized) covariance P has the same differential
equation as non-centralized covariance S. From this derivation we get the general
mean and covariance propagation equations

ṁ = F(t)m (A.72)

Ṗ = F(t)P+ PFT (t)+ L(t)Qc(t)LT (t). (A.73)

Given two first moments (m(0),P(0)) of initial distribution p(x, 0), the equations
above define the evolution of the first two moments in time. Derivation of these
same equations and derivation of more general moment propagation equations can
be found in the book of Jazwinski (1970).
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