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Abstract

Identifying biomarkers with predictive value
for disease risk stratification is an important
task in epidemiology. This paper describes an
application of Bayesian linear survival regres-
sion to model cardiovascular event risk in di-
abetic individuals with measurements avail-
able on 55 candidate biomarkers. We extend
the survival model to include data from a
larger set of non-diabetic individuals in an
effort to increase the predictive performance
for the diabetic subpopulation. We com-
pare the Gaussian, Laplace and horseshoe
shrinkage priors, and find that the last has
the best predictive performance and shrinks
strong predictors less than the others. We
implement the projection predictive covari-
ate selection approach of Dupuis and Robert
(2003) to further search for small sets of pre-
dictive biomarkers that could provide cost-
efficient prediction without significant loss in
performance. In passing, we present a deriva-
tion of the projective covariate selection in
Bayesian decision theoretic framework.

1 INTRODUCTION

Improving disease risk prediction is a major task in
epidemiological research. Non-communicable diseases,
many of which develop and progress slowly, are a ma-
jor cause of morbidity worldwide. Accurate risk pre-
diction could be used to screen individuals for targeted
intervention. Advances in measurement technologies
allow researchers cost-efficient quantification of large
numbers of potentially relevant biomarkers, for exam-
ple, in blood samples. However, often only a few of
such candidate biomarkers could be expected to give
practically relevant gain in risk stratification or could
be realistically used in routine health care setting. The

statistical challenge is then to identify an informative
subset of the biomarkers and estimate its predictive
performance.

Here, we describe an application of linear, hierarchi-
cal Bayesian survival regression to model cardiovascu-
lar event risk in diabetic individuals. The available
data consists of 7932 Finnish individuals in the FIN-
RISK 1997 cohort [1], of whom 401 had diabetes at
the beginning of the study. The covariates consist of
a set of 55 candidate biomarkers measured from blood
samples and 12 established risk factors (e.g., base-
line age, sex, body-mass index, lipoprotein cholesterol
measures, blood pressure and smoking). The length
of the follow-up period was 15 years. We focus on
three key elements in the model construction: 1) using
shrinkage priors to model the assumption of possibly
limited relevance of many biomarkers, 2) utilizing the
large set of non-diabetic individuals in the modelling,
and 3) the selection of a subset of the biomarkers with
predictive value. While the statistical approach is not
limited to this particular application, we use the set-
ting to make the description of the methods concrete.

Shrinkage or sparsity-promoting priors for regression
coefficients are used to shrink the effects of (appar-
ently) irrelevant covariates to zero, while retaining the
effects of relevant covariates. Their use has increased
with the availability of datasets with large numbers of
features, for example, from high-throughput measure-
ment technologies, which often capture a snapshot of
a whole system (e.g., metabolome, genome) instead
of targeted features. The interest has spawned con-
siderable research effort into such priors and multiple
alternatives have been proposed (see, e.g., refs [2–6]).
In this work, we chose to compare three priors: the
Laplace [3], the horseshoe [5] and, as a baseline, a
Gaussian prior. The Laplace prior corresponds to the
popular lasso penalty [7] in non-Bayesian regularized
regression. The horseshoe prior has been shown to
have desirable features in Bayesian analysis [5, 8]. We
briefly review these priors in Section 2.2.



Of the 401 diabetic individuals in the study, 155 ex-
perienced a cardiovascular event within the follow-up
period. This leaves a limited set of informative sam-
ples to perform the model fitting, covariate selection
and predictive performance evaluation with. Although
the risk of cardiovascular events is larger in diabetic
individuals than the general population [9], we would
expect that the risk factors are shared at least to some
extent. Based on this assumption, we incorporate the
non-diabetic individuals (n = 7531, 1031 events) into
the analysis by constructing a hierarchical joint model,
where the submodels for diabetic and non-diabetic in-
dividuals can be correlated (akin to transfer or multi-
task learning [10]). The joint model does not place
hard constraints on the similarity of the submodels,
but allows the models to differ between non-diabetic
and diabetic individuals and also between men and
women. Details are given in Section 2.3.

While lasso regression in the non-Bayesian context can
perform hard covariate selection by estimating exact
zeroes for regression coefficients, the Bayesian shrink-
age priors do not lead to sparse posterior distributions
as there will remain uncertainty after observing a fi-
nite dataset. However, we are interested in finding
a minimal subset of predictively relevant biomarkers
as discussed above. To this end, we examine the use
of projection predictive covariate selection1, where the
full model, encompassing all the candidate biomarkers
and the uncertainties related to their effects, is taken
as a yardstick for the smaller models. Specifically, the
models with subsets of covariates are found by maxi-
mizing the similarity of their predictions to this refer-
ence as proposed by Dupuis and Robert [12]. Notably,
this approach does not require specifying priors for the
submodels and one can instead focus on building a
good reference model. Dupuis and Robert [12] suggest
choosing the size of the covariate subset based on an
acceptable loss of explanatory power compared to the
reference model. We examine using cross-validation
based estimates of predictive performance as an alter-
native.

The structure of this article is as follows. In Section
2, we describe the survival model, shrinkage priors,
and the hierarchical extension to include data of non-
diabetic individuals. The projection predictive covari-
ate selection is described in Section 3. The results
from the application of the methods for cardiovascular-
event-free survival modelling in diabetic individuals
are presented in Section 4. Finally, Section 5 discusses
the modelling approach.

1A comprehensive review of predictive Bayesian model
selection approaches is given by Vehtari and Ojanen [11].
Our terminology follows theirs.

2 MODEL

We first consider modelling the cardiovascular-event-
free survival in the subset of diabetic individuals only.
The model is then extended to include the data of
non-diabetic individuals, while allowing the covariate
effects and the baseline hazard to differ in these groups
and between men and women.

2.1 OBSERVATION MODEL

Let the observation ti be the event time Ti or
the censoring time Ci since the beginning of the
study for ith individual and vi be the corresponding
event/censoring indicator (1 for observed events, 0 for
censored). All censored cases are right censored (i.e.,
Ti > Ci where only Ci is observed; censoring occurs
in the data mostly because of event-free survival to
the end of the follow-up). Further, let xi be a column
vector of the observed covariate values for the ith sub-
ject. We assume a parametric survival model, where
the observations follow the Weibull model2

p(ti|xi, vi,β, α) = αvit
vi(α−1)
i exp(viβ

Txi−tαi exp(βTxi))

with the shape α and the scale defined through the
linear combination βTxi of the covariates [14]. The
Weibull model is a proportional hazard model with
the hazard function h(Ti) = αTα−1i exp(βTxi).

We include a constant term 1 in the covariates xi
and denote the corresponding regression coefficient β0.
The intercept and the shape are given the diffuse pri-
ors:

β0 ∼ N(0, 102),

logα ∼ N(0, 102).

The covariates are divided into a set of established
risk (or protective) factors and a set of new candidate
biomarkers, which are of more uncertain relevance.
The coefficients of the established predictors, βj for
j = 1, . . . ,mbg, are given the prior [15]:

βj ∼ N(0, σ2
sσ

2
j ), for j = 1, . . . ,mbg,

σ2
j ∼ Inv–χ2(1), for j = 1, . . . ,mbg,

σs ∼ Half–N(0, 102).

Priors for the coefficients of the candidate biomarkers
are considered below.

2The notation for probability distributions follows the
parametrizations given in ref. [13], except for the Weibull
model, which is explicitly written out. Half -distributions
refer to the restriction to the real positive axis.



2.2 PRIORS FOR BIOMARKER
COEFFICIENTS

Based on our prior assumption that only some of the
biomarkers are expected to be practically relevant for
prediction, we consider the use of shrinkage priors for
the biomarker coefficients. As discussed in the intro-
duction, there has been a lot of recent research into
these type of priors and there are multiple proposals.
We restrict our consideration to three alternatives: the
horseshoe prior [5], the Laplace prior [3], and, as a
baseline approach, a Gaussian prior. Each of these
can be expressed as normal scale mixtures

βj ∼ N(0, τ2s τ
2
j ), for j = mbg + 1, . . . ,mbg +mbm,

where τs is a global scale parameter (shared across j)
and τj are local parameters. Ideally, the prior shrinks
the coefficients of irrelevant biomarkers to zero, but
allows large coefficients for relevant biomarkers. In a
sparse situation, with many irrelevant biomarkers and
few relevant, this could be effected by making τs small,
but allowing some τj to take on large values to escape
the shrinkage [16].

The priors for τjs, for j = mbg + 1, . . . ,mbg +mbm, for
the three alternatives are

τj ∼ Half–Cauchy(0, 1) for horseshoe,

τ2j ∼ Exponential(0.7) for Laplace,

τj = 1 for the Gaussian.

A comparison of the Laplace and horseshoe prior is
given in ref. [5]: it is noted that the Laplace prior
may overshrink large coefficients in a sparse situation,
while the horseshoe prior is more robust (see also ref.
[16]). Furthermore, van der Pas et al. [8] derive the-
oretical results indicating that the posterior distribu-
tion under the horseshoe prior may be more informa-
tive3 than under the Laplace prior in a sparse normal
means problem. The Gaussian prior does not try to
separate between relevant and irrelevant covariates as
it depends only on the shared scale parameter τs.

The same prior is given for the global scale parameter
in each case:

τs ∼ Half–Cauchy(0, 1),

which has its (bounded) mode at zero, but is only
weakly informative as it also places a substantial
amount of prior mass far from zero (see refs [15–17] for
discussion on priors for global variance parameters).

3That is, the posterior mean estimator attains a min-
imax risk, possibly up to a multiplicative constant, in a
sparse setting and the posterior contracts at a similar rate
(with conditions on τs).

2.3 HIERARCHICAL EXTENSION

Next, we consider extending the approach to jointly
model the event-free survival of non-diabetic men
(NM), non-diabetic women (NW), diabetic men (DM),
and diabetic women (DW). Our aim is to increase the
predictive performance of the model specifically in the
subset of diabetic individuals, but gain power by in-
cluding the larger set of observations for non-diabetic
individuals in the model. To this end, we tie together
the submodels of the four groups using the following
assumptions:

1. The relevance of a biomarker will be similar for
all the submodels.

2. The effect size of a biomarker (or other covari-
ate) and its direction are similar between men and
women, and between diabetic and non-diabetic in-
dividuals.

3. The baseline hazard functions have similar shapes
for men and women, and diabetic and non-
diabetic individuals.

Let βj = [βj,NM βj,NW βj,DM βj,DW ]T be the coef-
ficients for the jth biomarker in the four submodels.
We set

βj ∼ N(0, r2jλΛ−1),

where r2jλΛ−1 is the prior covariance matrix. Here,
rj = τjτs and follows one of the prior specifications
given in the previous section. This encodes the first
assumption above: a single rj parameter defines the
relevance of the jth biomarker in all the four submod-
els.

To encode the second assumption, we specify the struc-
ture of the prior precision matrix as

Λ=


1 + cN + sM −cN −sM 0
−cN 1 + cN + sW 0 −sW
−sM 0 1 + cD + sM −cD

0 −sW −cD 1 + cD + sW

 .
The corresponding graphical structure is illustrated in
Figure 1. As will be made more explicit below, the cN
and cD control the similarity of the submodels of non-
diabetic men and women, and between the submodels
of diabetic men and women, respectively. sM and sW
control the similarity between the submodels of non-
diabetic and diabetic men, and non-diabetic and di-
abetic women, respectively. We further simplify the
model by taking cN = cD = c and sM = sW = s and
constrain c > 0 and s > 0. The precision matrix has
similarity to the one used by Liu et al. [18] to learn de-
pendencies between covariates, but here Λ is restricted
to encode a specific prior structure.
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Figure 1: Prior structure for the regression coefficients
of jth biomarker in the joint model.

We choose λ = (2c+1)(2s+1)(2c+2s+1)
(1+2c+2s+2cs)(c+s+1) as this makes the

diagonal elements of λΛ−1 equal to 1, that is, λΛ−1

becomes a correlation matrix. The relevance of the jth
biomarker is then solely dependent on rj .

For more insight, the prior for βj may be written out
as proportional to

exp

(
− 1

2r2jλ
(S2 + cSc + sSs)

)
,

where S2 = β2
j,NM + β2

j,NW + β2
j,DM + β2

j,DW , Sc =

(βj,NM − βj,NW )2 + (βj,DM − βj,DW )2 and Ss =
(βj,NM − βj,DM )2 + (βj,NW − βj,DW )2. c controls
the penalization in the difference between men and
women, and s controls the penalization in the differ-
ence between non-diabetic and diabetic subjects. Tak-
ing negative logarithm of the prior shows that it corre-
sponds to a specific Bayesian version of the multi-task
graph regularization penalty proposed by Evgeniou
et al. [19] and further studied by Sheldon [20]. The
prior can also be represented in the sparse Bayesian
multi-task learning framework of Archambeau et al.
[21], where a zero-mean matrix-variate Gaussian den-
sity is placed on B = [β1, . . . ,βm] with row covariance
Ω (over the m covariates) and column covariance Σ
(over the tasks). Here, Ω is a diagonal matrix with
elements r2j and Σ = λΛ−1.

We use the following transformations of c and s: c =
(1− c′)−1 − 1 and s = (1− s′)−1 − 1, where c′ ∈ [0, 1)
and s′ ∈ [0, 1). At c′ = 0, c = 0 and the corresponding
submodels are independent. As c′ → 1, c→∞ and the
corresponding submodels are constrained to identical.
s′ behaves similarly.

We can also examine the implied prior distribution of
the difference between two βX,j coefficients as a func-
tion of c′ and s′. First, note that the distribution of
βX,j − βY,j is N(0, 2r2j (1 − ρ)), where ρ is the corre-
lation coefficient. Specifically, the variance of the dis-
tribution is linearly dependent on ρ and, for ρ ≥ 0,
has the maximum value of 2r2j when ρ = 0 and the
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Figure 2: Contour plots of the correlation coefficient
between βj,NM and βj,DM (left) and βj,NM and βj,DW
(right) as a function of c′ and s′.

minimum value of 0 when ρ = 1. In Figure 2, the im-
plied prior correlation coefficients of some interesting
pairs of βX,js are shown as functions of c′ and s′: s′

controls almost linearly the correlation between βj,NM
and βj,DM , whereas the correlation between βj,NM
and βj,DW is close to bilinear in c′ and s′.

To complete the prior specification c′ and s′ are given
prior distributions. We use different parameters for
biomarkers (c′ and s′), other covariates (c′bg and s′bg)
and the log-scale Weibull shape parameter logα (c′α
and s′α; this encodes the third assumption):

c′ ∼ Beta(ac, bc),

s′ ∼ Beta(as, bs),

c′bg ∼ Beta(ac, bc),

s′bg ∼ Beta(as, bs),

c′α ∼ Beta(ac, bc),

s′α ∼ Beta(as, bs).

Finally, ac, bc, as and bs are given Gamma( 1
2 ,

1
4 ) priors.

We note that the eigendecomposition of Λ = V DV T

is of simple form, with D being a diagonal matrix with
elements 1, 1 + 2c, 1 + 2s, 1 + 2c+ 2s and

V =
1

2


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

 .

This can be useful in reparametrizing the model for
Markov chain Monte Carlo sampling algorithms. It
also shows that the precision matrix is positive defi-
nite.



3 METHODS FOR BIOMARKER
SELECTION AND PREDICTIVE
PERFORMANCE EVALUATION

The approaches used for biomarker selection and eval-
uation of predictive performance are described below.
The model constructed in previous section is used as
the reference model in the biomarker selection.

3.1 PROJECTION PREDICTIVE
COVARIATE SELECTION

Assuming the availability of a reference model, which
is a good representation of the predictive power of the
candidate biomarkers and the related uncertainty, we
seek a subset of the biomarkers, which can be used
for prediction without a large loss in performance rel-
ative to the reference model. Our prior assumption
of sparsity in the biomarker effects implies that this
goal could be achievable. We describe the approach in
two steps: 1) defining a submodel for making predic-
tions with a specific subset of the candidate biomark-
ers, and 2) finding submodels with good predictive per-
formance.

3.1.1 Projective Submodels

We use the projective approach of Dupuis and Robert
[12], Goutis and Robert [22] to find the parameters of
the submodel, but present an alternative derivation in
the Bayesian decision theoretic framework reviewed in
ref. [11]. The projection is posed as a solution to an
optimization problem with regard to a restriction of
the reference model. Let the covariates x be divided
into two parts x = [x⊥,x>] and define a submodel
M⊥ to be restricted to using the covariates in x⊥

4 with
parameters θ⊥ = (β⊥, α⊥) in the Weibull model. We
find the submodel by maximizing the Gibbs reference
utility

ū(M⊥) =

∫ [∫
u(M⊥,x⊥,θ, T )p(T |θ,x)dT

]
p(θ|D)p(x)d(θ,x)

with respect to the unknown probability densi-
ties f(θ⊥|θ) appearing in the u(M⊥,x⊥,θ, T ) =∫
f(θ⊥|θ) log p(T |θ⊥,x⊥)dθ⊥. Here, p(θ|D) is the

posterior distribution of the reference model given the
observed data D and p(x) is the distribution of the co-
variates. Writing out u and changing the integration

4We assume that the established risk factors are always
included in this set.

order,

ū(M⊥) =

∫ [∫
p(T |θ,x) log p(T |θ⊥,x⊥)dT

]
× f(θ⊥|θ)p(θ|D)p(x)d(θ⊥,θ,x).

Finally, to arrive at the same solution with Dupuis and
Robert [12], f(θ⊥|θ) can be restricted to the Dirac

delta function δ(θ⊥ − θ̂⊥) with an offset θ̂⊥ that de-
pends on θ. That is, the solution to the maximization
of ū is defined pointwise for each θ as the correspond-
ing optimal value of θ̂⊥. The pointwise solution arises
from the dependence of f on θ.

As p(θ|D) is not available analytically and p(x) at all,
the former is approximated with Markov chain Monte
Carlo methods and the latter by using xi samples
available in the data D [12]. The obtained estimate
is

ū(M⊥) ≈ 1

nJ

∑
i,j

[∫
p(T |θ(j),xi) log p(T |θ̂(j)⊥ ,xi,⊥)dT

]
,

where the double sum runs over the n data points and
the J posterior samples. The optimization problems

to find the optimal θ̂
(j)
⊥ s are independent over j. We

solve them using the Newton’s method.

We define the projection predictive distribution for the
submodel M⊥ as

p(T |x⊥,Mref ) =

∫
p(T |x⊥,θ⊥)f(θ⊥|Mref )dθ⊥,

where we explicitly emphasize the dependence on the
reference modelMref and which is approximated using

the projected samples θ̂
(j)
⊥ s. This kind of projected

predictive distribution was also considered by Nott and
Leng [23].

Note that scaling the estimated ū as d(M⊥) =
ū(Mref ) − ū(M⊥) (and minimizing instead of maxi-
mizing) does not change the optimal solution and gives
otherwise the same formula as ū, except the term in
square brackets is replaced with the Kullback–Leibler
divergence between p(T |x,θ) and p(T |x⊥,θ⊥). This
gives the approach further information theoretic justi-
fication and is the basis of the formulation in Dupuis
and Robert [12]. They also suggest defining the rela-
tive explanatory power of the submodel as

relative explanatory power(M⊥) = 1− d(M⊥)

d(M0)
,

where M0 refers to the model without any of the can-
didate biomarkers and which transforms the d(M⊥)
values to between 0 (for M⊥ = M0) and 1 (for M⊥ =
Mref ).



3.1.2 Submodel Search

ū (or equivalently d) is used to compare the submodels
in the search for good subsets of biomarkers. However,
exhaustive search of the model space5 is not feasible,
unless the number of candidate biomarkers is small.
We choose to use the suboptimal forward selection
strategy for its simplicity and its scalability to large
covariate sets:

1. Begin with the submodel M0 (no biomarkers) and
set j to 0.

2. Repeat until all biomarkers have been added:

(a) Find the projections for all submodels that
are obtainable by adding one new biomarker
to Mj . Select the one with largest ū and set
it as Mj+1. Set j to j + 1.

This defines a deterministic6 path of models from M0

to Mmbm
and gives a ranking of the biomarkers ac-

cording to their projection predictive value. Dupuis
and Robert [12] suggest finally choosing the small-
est submodel with an acceptable loss in the explana-
tory power relative to the reference model (and use
a slightly more elaborate search). Alternatively, one
could monitor some other statistic (e.g., predictive per-
formance) along the search path to locate good sub-
models. Computing the full forward selection path
may not be necessary, if a suitable stopping criterion
is used in the step 2 above.

3.2 PREDICTIVE PERFORMANCE
EVALUATION

Given a model M with posterior predictive distribu-
tion p(T∗|x∗, D), where D is the observed data, we
evaluate its predictive performance using the loga-
rithm of the predictive density (LPD) at an actual ob-
servation (t∗, v∗,x∗). This scoring rule is proper and
measures the calibration and sharpness of the predic-
tive distribution simultaneously [24]. As the predictive
densities are not available analytically for the models
considered here, we estimate the LPD score from the
Markov chain Monte Carlo samples of the posterior
distribution:

LPD∗(M) ≈ log
1

J

J∑
j

p(t∗|x∗, v∗,β(j), α(j)),

where (β(j), α(j)) are J posterior samples of the model
given the data D.

5The number of subsets for mbm covariates is 2mbm .
6Given the stochastic samples from the posterior distri-

bution of the reference model.

Stratified ten-fold cross-validation [25] is used to ob-
tain estimates of the generalization performance: The
full dataset is divided randomly into ten disjoint sub-
sets (folds), while balancing the sets to have approxi-
mately similar age distributions and proportions of di-
abetic and non-diabetic individuals, men and women,
and cases of cardiovascular events. Predictions for
each fold are obtained using a posterior distribution
based on training data, where the particular fold has
been left out. Given predictions obtained this way,
the predictive performance is summarized by the mean
LPD over the full set of n data points (MLPD).

To reduce variance and gauge uncertainty in model
comparisons, we compute Bayesian bootstrap [26]
samples of the MLDP difference (∆MLPD) between
model Ma and model Mb by

∆MLPD(j)(Ma,Mb) =

n∑
i=1

w
(j)
i [LPDi(Ma)−LPDi(Mb)],

where w
(j)
i , i = 1, . . . , n, are the bootstrap weights

(
∑
i w

(j)
i = 1) for the jth bootstrap sample generated

using the Dirichlet distribution with parameters set to
1 [11]. The comparison is summarized by the q-value7:

q(Ma,Mb) =
1

J

J∑
j=1

I(∆MLPD(j) ≥ 0),

where I(·) = 1 if the given condition holds and 0 oth-
erwise, and which is interpreted as the Bayesian pos-
terior probability (under the Dirichlet model) of Ma

performing better than Mb [11].

4 RESULTS

Missing values in the covariate data were multiply im-
puted using chained linear regressions with in-house
scripts based on ref. [27]. The candidate biomarkers
were log-transformed and scaled to have zero mean and
unit variance. The No-U-Turn variant of the Hamil-
tonian Monte Carlo algorithm [28], as implemented
in Stan software [29], was used to sample from the
posterior distributions of the full models. The sam-
pling was done independently for 5 imputed datasets
(4 chains of 1000 samples after burn-in for each). The
samples were then concatenated. The sampling pro-
cess was further performed independently for each of
the 10 cross-validation training sets. All shown esti-
mates of predictive performance were computed using
cross-validation (Section 3.2).

7We use q instead of p to avoid confusion with the fre-
quentist p-value.



Table 1: Model comparisons on cross-validation predictions. MLPDs and q-values (Section 3.2) are shown for
predictions only on diabetic women, only on diabetic men or both. q-values are calculated against the joint
horseshoe model; color scale 0.0 ���������� 1.0.

women men women & men
model MLPD q-value MLPD q-value MLPD q-value
joint horseshoe -0.581 NA -0.716 NA -0.652 NA
joint Laplace -0.582 0.27 � -0.720 0.10 � -0.656 0.08 �
joint Gaussian -0.585 0.22 � -0.727 0.05 � -0.660 0.04 �
joint no-biomarkers -0.594 0.18 � -0.758 0.03 � -0.681 0.01 �
diab women&men horseshoe -0.606 0.03 � -0.719 0.44 � -0.666 0.13 �
diab women/men horseshoe -0.610 0.03 � -0.721 0.45 � -0.669 0.15 �
diab women/men no-biomarkers -0.613 0.05 � -0.765 0.04 � -0.694 0.01 �

1 10 20 30 40 50 55
−0.2

0

0.2

0.4

biomarker

β

horseshoe

Laplace

Gaussian

Figure 3: Biomarker regression coefficients β for the submodel of diabetic men in the joint models with the
horseshoe, Laplace and Gaussian priors (full dataset). Dot is the mean and vertical line shows the 95% credible
interval. Biomarkers are ordered according to the mean coefficients of the horseshoe model.

4.1 MODEL COMPARISONS

Table 1 presents results on comparing the mean log
predictive densities (MLPD) of the following com-
binations of models: joint for the joint model of
non-diabetic and diabetic individuals (Section 2.3),
diab women&men for a joint model of diabetic men
and women (two-group version of Section 2.3), diab
women/men for separate models of diabetic men and
women (without the extension of Section 2.3), and
using the horseshoe, Laplace or Gaussian priors on
the biomarker effects, or using only the established
risk factors (no-biomarkers). The MLPDs and q-
values were computed separately for the predictions
for women and men, and for pooled predictions, and,
importantly, in each case only for the predictions on
the diabetic subpopulation.

The results show that there is an increase in the pre-
dictive performance when supplanting the established
risk factors with the candidate biomarkers. The in-
crease holds both when using the joint models or us-

ing only the data of diabetic individuals and seems to
be greater in men. This indicates that the candidate
biomarkers contain relevant information for predicting
cardiovascular event risk.

Including the data of the non-diabetic individuals in
the model seems to increase the predictive perfor-
mance for the diabetic subpopulation, especially for
women. The covariate effects in the joint models are
very similar across the diabetic and non-diabetic sub-
models: posterior mean of s′ is 0.96 for the horseshoe
model. This implies that the risk factors behave sim-
ilarly in both groups, but it is also possible that the
dataset has limited information to distinguish between
them and that larger datasets could uncover more dif-
ferences.

Finally, it seems that the horseshoe prior performs bet-
ter than the Laplace, and that the Gaussian is the
worst of the three for this data. Figure 3 shows a
comparison of the biomarker regression coefficients un-
der these priors. The Laplace and the Gaussian priors



shrink the largest coefficient more than the horseshoe
as would be expected in a sparse setting [5, 16]. Fur-
thermore, the horseshoe seems to shrink coefficients
near zero more strongly than the Laplace making the
credible intervals around zero narrower.

4.2 BIOMARKER SELECTION AND
SUBMODEL PREDICTIVE
PERFORMANCE

We applied the projection predictive covariate selec-
tion (Section 3.1) with the joint horseshoe model as
the reference. The forward selection was run using
only the part of the model concerning diabetic individ-
uals. We run the forward selection jointly for women
and men to get an overall biomarker ranking for the di-
abetic subpopulation. The forward selection was run
also for each cross-validation training set separately
(using the reference model fitted on the corresponding
training data).

Figure 4 shows the relative explanatory power curves
along the forward selection path. In the full dataset,
the best candidate biomarker attains 61% explanatory
power relative to the reference model, five best reach
over 80% and ten biomarkers are needed to reach over
90%. The growth in the explanatory power slows with
more biomarkers, indicating diminishing gains from
adding more candidate biomarkers (22 are needed to
reach 95% and the remaining 33 account for the last
5%).

However, choosing an acceptable loss in the explana-
tory power to select an appropriate minimal subset of
the biomarkers for use in prediction tasks seems diffi-
cult. In Figure 5, we show MLPDs (normalized to the
reference model) obtained using the projection pre-
dictive covariate selection approach within the cross-
validation. Top panel shows the ∆MLPD along the
forward selection path and the bottom panel by the
obtained relative explanatory power (e.g., at 0.6, the
predictions in each cross-validation fold was made with
the smallest submodel reaching 60% power in that
fold). These show a mode at 2 biomarkers and at
around 0.65 relative explanatory power (which corre-
sponds to choosing two, three or four biomarkers de-
pending on the fold). A second peak can be seen at
10 biomarkers or correspondingly at 0.91 power (10–16
biomarkers).

Unfortunately, the variance in the cross-validation es-
timates is quite large for making a definite choice based
on them. Figure 6 shows the full set of pairwise com-
parisons between the submodels along the forward se-
lection path (by number of biomarkers; same as in Fig-
ure 5 top panel). This indicates that two biomarkers
is overall the best choice, but the difference to the 10
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Figure 4: Relative explanatory powers along the for-
ward selection path.
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with regard to MLPD (Section 3.2; M·s refer to the
submodels along the forward selection path).

biomarker selection is not large (q-value = 0.52). How-
ever, on comparing these to the full model or generally
models with 11 or more biomarkers, the 10 biomarker
selection is more confidently better (q-values mostly
> 0.9) than the 2 biomarker selection (q-values mostly
within 0.7–0.8).

Nevertheless, the analysis seems to support two clearly
predictively relevant biomarkers for the cardiovascular
risk prediction, with further 8 possibly interesting can-
didate biomarkers, but with some uncertainty about
their relevance. Figure 3 also supports this conclusion
with two of the biomarkers having clearly non-zero ef-
fects.

5 DISCUSSION

This paper presented a Bayesian analysis of
cardiovascular-event-free survival in diabetic individ-
uals, with the aim of identifying biomarkers with pre-
dictive value. We presented a comparison of the horse-
shoe, Laplace and Gaussian priors on the candidate
biomarker effects and demonstrated empirically an ex-
pected [5, 16] difference in their behaviour. We further
extended the model hierarchically to include data of
non-diabetic individuals and examined the use of pro-
jection predictive covariate selection to find biomarker
subsets with good predictive performance.

We could also hope that the predictive biomarkers cap-
ture some part of the state of the underlying disease
process and as such could be used to speculate about
causal disease pathways and to prioritize biomarkers
for further study. However, the analysis approach does

not warrant any formal causal inferences. Moreover,
the inclusion of the data of non-diabetic individuals
may bias the inferences on the diabetic subpopulation
towards the general population, when the dataset has
limited information to distinguish them. Nevertheless,
the presented predictive comparisons, being indepen-
dent of the model assumptions, justify studying the
joint model.

The submodels in projection predictive covariate se-
lection depend on the observed data only through the
reference model. Thus, finding the submodel param-
eters and the covariate selection itself do not cause
further fitting to the data, but rely on the information
provided by the reference model [11]. The projected
submodels may also be able to retain some predictive
features of the reference model that would not be avail-
able, if the submodels were independently fitted to the
data [11]: importantly, from Bayesian point of view,
the submodel may be able to account for uncertainty
due to the omission of some covariates.

However, selecting a single submodel for future pre-
diction tasks may be difficult. We examined using the
projection approach within cross-validation to obtain
estimates of the submodel predictive performances. A
disadvantage of this procedure is that the performance
estimates are for the selection process and not for some
particular combination of selected biomarkers. Fur-
thermore, if selection is based on these estimates, the
performance estimate for the chosen submodel will not
anymore be unbiased for out-of-sample prediction un-
less nested cross-validation is used [11].
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vall, Pekka Jousilahti, Veikko Salomaa, Liisa Val-
sta, and Pekka Puska. Thirty-five-year trends
in cardiovascular risk factors in Finland. Inter-
national Journal of Epidemiology, 39(2):504–518,
2010.

[2] T. J. Mitchell and J. J. Beauchamp. Bayesian
variable selection in linear regression. Journal
of the American Statistical Association, 83(404):
1023–1032, 1988.

[3] Trevor Park and George Casella. The Bayesian
lasso. Journal of the American Statistical Associ-
ation, 103(482):681–686, 2008.

[4] Jim E. Griffin and Philip J. Brown. Inference



with normal-gamma prior distributions in regres-
sion problems. Bayesian Analysis, 5(1):171–188,
2010.

[5] Carlos M. Carvalho, Nicholas G. Polson, and
James G. Scott. The horseshoe estimator for
sparse signals. Biometrika, 97(2):465–480, 2010.

[6] Zhihua Zhang, Shusen Wang, Dehua Liu, and
Michael I. Jordan. EP-GIG priors and applica-
tions in Bayesian sparse learning. The Journal
of Machine Learning Research, 13(1):2031–2061,
2012.

[7] Robert Tibshirani. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 58(1):
267–288, 1996.

[8] S. L. van der Pas, B. J. K. Kleijn, and A. W.
van der Vaart. The horseshoe estimator: Pos-
terior concentration around nearly black vectors.
arXiv preprint arXiv:1404.0202, 2014.

[9] Emerging Risk Factors Collaboration. Diabetes
mellitus, fasting blood glucose concentration, and
risk of vascular disease: a collaborative meta-
analysis of 102 prospective studies. The Lancet,
375(9733):2215–2222, 2010.

[10] Sinno Jialin Pan and Qiang Yang. A survey on
transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering, 22(10):1345–1359,
2010.

[11] Aki Vehtari and Janne Ojanen. A survey of
Bayesian predictive methods for model assess-
ment, selection and comparison. Statistics Sur-
veys, 6:142–228, 2012.
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