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Abstract

In this contribution we present a method for solving the in-
verse problem in electric impedance tomography with neu-
ral networks. The problem of reconstructing the conductiv-
ity distribution inside an object from potential measurements
on the surface is known to be ill-posed, requiring efficient
regularization techniques. We demonstrate that a statistical
inverse solution, where the mean of the inverse mapping is
approximated with a neural network gives promising results.
We study the effect of input and output data representation
by simulations and conclude that projection to principal axis
is feasible data transformation. Also we demonstrate that
Bayesian neural networks, which aim to average over all
network models weighted by the model’s posterior proba-
bility provide the best reconstruction results. With the pre-
sented approach estimation of some target variables, such as
the void fraction (the ratio of gas and liquid), may be appli-
cable directly without the actual image reconstruction. We
also demonstrate that the solutions are very robust against
noise in inputs.

1 Introduction

In electrical impedance tomography (EIT) the aim is to re-
cover the internal structure of an object from surface mea-
surements. Number of electrodes are attached to the surface
of the object and current patterns are injected from through
the electrodes and the resulting potentials are measured. The
inverse problem in EIT, estimating the conductivity distri-
bution from the surface potentials, is known to be severely
ill-posed, so that some regularization methods must be used
to obtain feasible results [8].

Typically, the inverse problem in EIT is solved by assuming
the system linear and computing regularized inverse matrix.
This produces fast linear reconstruction algorithm. However
the linear assumption is valid only if the perturbation from
the linearization point is small, i.e., there are no large areas
where conductance differs much from the background.

Another, more accurate approach for the image reconstruc-
tion in EIT is based on iterative inversion of the forward
problem. Numerical minimization method, such as Newton-
Raphson algorithm, is used to search for a conductance dis-
tribution that minimizes the difference between the mea-
sured potentials and those obtained by computing the poten-
tials by, e.g., finite element method. This approach leads to
computationally more complex algorithms, but gives much
better results and offers more flexibility for controlling the
regularization of the inverse, by defining the smoothing pri-
ors for the resulting image [8].

In this study we consider a simulated EIT problem of de-
tecting gas bubbles in circular water pipe. The bubble for-
mations consist of one to ten random overlapping circular
bubbles, drawn so that the void fraction (area of the bubbles
/ area of the pipe) is roughly Gamma distributed with mean
of 20%. In the following tests we used 500 samples in the
training set and 500 in the test set. Fig. 1 shows an sample
bubble and resulting equipotential curves. The potential sig-
nals from which the image is to be recovered are shown in
Fig. 2.

We present a statistical inverse approach for the EIT prob-
lem, based on approximating the inverse mapping with a
Multi Layer Perceptron (MLP) neural network. Often the
end goal of using process tomography is not the recon-
structed image, but some index computed from the image,
such as void fraction or mixing index indicating how well
two substances have been mixed. We demonstrate that in
such situation it may be feasible to directly estimate the tar-
get variable without the actual image reconstruction.

There are a few studies on using neural networks in the EIT
problem. In [7] the reconstruction image was directly es-
timated by a neural network from the potential signals.The
solution was demonstrated to be very robust against noise
in input signals. However, the resolution of the image in
such approach is in practice limited to some tens or hun-
dreds of pixels, as networks with several hundreds of out-
puts are rather difficult to use and train, and often require
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Figure 1: Example of the EIT problem. The simulated bub-
ble is bounded by the circles. The current is injected from
the electrode with the lightest color and the opposite elec-
trode is grounded. The color and the contour curves show
the resulting potential field.
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Figure 2: Relative changes in potentials compared to homo-
geneous background. The eight curves correspond to injec-
tions from eight different electrodes.

non-standard regularization to smooth the results of neigh-
boring pixels.

In [1] linear neural network was used to estimate the conduc-
tance in the triangles of the FEM mesh. As the used network
was linear, the actual advantage over linear pseudoinverse
solutions was due to the iterative estimation of the inverse
matrix with a gradient method, which proceeds slowly to the
direction of the smallest eigenvectors of the inverse matrix,
yielding natural regularization for the inverse.

In [6] combination of principal component analysis (PCA)
and neural network was used for computing a scalar vari-
able, mixing index, from reconstructed tomographic images.

Our results indicate that direct estimation of the target vari-
ables without the explicit reconstruction may be appropriate
solution, as the reconstruction may be much more complex
problem than the actual end goal.

2 Bayesian Neural Networks

Traditionally neural networks have been trained by search-
ing for a set of weights that minimize the error between the
target values and network outputs.

In Bayesian learning the objective is to find the predictive
distribution for output y given the input x and training data
D (see [2] and [4] for introduction to Bayesian neural net-
works)

p(y|x,D) =
∫

p(y|x,w, β)
p(D|w)p(w|α)p(α)

p(D)
dwαβ,

where we compute the marginal distribution over all the pa-
rameters w and hyperparameters α, that determine the prior
distributions for parameters, and β, that define the noise
variance. Intuitively, the marginalization is equal to tak-
ing the average prediction of all the models p(y|x,w, β)
weighted by their goodness, which is the posterior proba-
bility of the model given the training data D.

In practice we use Markov Chain Monte Carlo techniques
for approximating the integral by mean of samples drawn
from the posterior distribution of the models [4]. In the fol-
lowing experiments we have used the FBM software pack-
age 1 that implements the methods described in [4]. The
resulting model after the learning is a collection of networks
with different parameters w, such that the average of the out-
puts of the networks approximates the conditional expecta-
tion of the output given the input. In this work we have used
20 samples from the posterior distributions, so that the net-
work model is equal to having a committee of 20 networks.

3 Data Representation

One of the key issues in the approach presented here is trans-
formation of both input and output data by principal compo-
nent projection and application of the neural network in this
lower dimensional eigenspace. This serves for three pur-
poses: first to detach the actual inverse problem from the
data representation of the potential signals and image data,
allowing change of image resolution afterwards by chang-
ing the resolution of the eigen images. Secondly, the recon-
struction of the image as superposition of the eigen images

1<URL:http://www.cs.toronto.edu/˜radford/fbm.
software.html>



makes the inverse more robust against noise, as shown by
the experiments. Thirdly, the dimensionality of the recon-
struction problem is much reduced, and it is matched to the
actual complexity of the bubble distributions (determined by
the eigenvalues of the correlation matrix).

The reconstruction equations are then

up = Vuu

gp = F (p) (1)

g = V T
g gp

where

u is the potential signal,
Vu is the base span by the largest eigenvectors of u (we

used Nu = 20),
up is the projection of u on Vu,
g is the reconstructed image,

Vg is the base of eigenvectors of the autocorrelation matrix
of the images,

gp is the projection of the image g on base Vg , and
F (p) is the non-linear function giving the inverse (the

Bayesian MLP).

Eigenimages could be computed from the training data [3],
but a more principled approach is to construct a model for
the autocorrelation of the conductivity distribution and com-
pute the eigen vectors of the autocorrelation matrix. The au-
tocorrelation model we used consisted of position dependent
variance term S(x, y) and position independent autocorrela-
tion term A(∆x,∆y):

Rxy,x′y′ = A(x − x′, y − y′)S(x, y)S(x′, y′), (2)

where we used rather generic assumptions: autocorre-
lation of pixels decays linearly as function of distance√

∆x2 + ∆y2 and reaches zero correlation at distance 0.5
(half of the radius of the pipe). The variance was modeled
as sum of two Gaussians

S(x, y) =
2∑

k=1

Zk exp
(
−x2 + y2

2σ2
k

)
. (3)

where the parameters σk and Zk were determined by max-
imum likelihood fit to the training data. The resulting base
is shown in Fig. 3. Note that we can control the accuracy
of image representation in different locations of the image
by changing the autocorrelation length. Shorter autocorre-
lation results in more eigenimages coding the location and
vice versa. Eigenimages computed from the autocorrelation
model and those from the training data have been compared
in [3].

Tables 1 and 2 and Fig. 4 show the effect of using the PCA
projection as input or output transformation. The figures are

Figure 3: Eigenimages from the autocorrelation model in (2)
and (3).

computed with a MLP early stopping committee using dif-
ferent data partition for each member, as it is faster method
than the Bayesian MLP. Clearly the best performance is ob-
tained with PCA projection in both ends. Some examples of
the reconstructed images are shown in Fig. 5.

4 Reconstruction results

In this section we present results of Bayesian MLP method
for the EIT problem. We used one hidden layer MLP
with 20 hidden units, per-case normal noise variance model,
vague priors and MCMC-run specifications similar as used
in [4, 5]. We run five long chains and discarded first half
of the each chain. Finally 20 networks from the posterior
distribution of network parameters were used. PCA trans-
formation was used for both potential signals and images.



Figure 5: Examples of the effect of data representation. The coding schemes are from up: direct in - direct out, direct in - PCA
out, PCA in - direct out, PCA in - PCA out. The color in the figures show the probability of the bubble in each pixel. The data
dimensions were: direct in: 256, PCA in: 20, direct out: 88, PCA out: 60.

Table 1: Effect of data coding. Mean relative absolute error
in void fraction, mean(|v̂f − vf |/vf ), %.

Voltage signal coding
Image coding Direct 256 PCA 20
Direct 10x10 40.3 9.4
PCA 60 (41x41) 46.7 8.7

Table 2: Effect of data coding. Reconstruction error, per-
centage of erroneously segmented pixels.

Voltage signal coding
Image coding Direct 256 PCA 20
Direct 10x10 17.5 9.7
PCA 60 (41x41) 14.1 6.7
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Figure 4: Scatter plots of the Void Fraction estimates with
different data codings.



Figure 6: Example of image reconstructions with MLP ESC (upper row) and the Bayesian MLP (lower row)

Table 3: Errors in reconstructing the bubble shape and esti-
mating the void fraction from the reconstructed images. See
text for explanation of the different models.

Method Classifica-
tion errors

%

Relative
error in void
fraction %

MLP ESC 6.7 8.7
Bayesian MLP 5.9 8.1
Bayesian MLP, direct VF 3.4

As baseline result for MLPs we used early stopping commit-
tee of 20 MLP networks (MLP ESC), with different division
of data to training and stopping sets for each member. The
networks were initialized to near zero weights to guarantee
that the mapping is smooth in the beginning. When used
with caution MLP early stopping committee is good base-
line method for neural networks.

Fig. 6 shows examples of the image reconstruction results.
Table 3 shows the quality of the image reconstructions with
models, measured by error in the void fraction and percent-
age of erroneous pixels in the segmentation, over the test
set.

An important goal in the studied process tomography appli-
cation was to estimate the void fraction, which is the pro-
portion of gas and liquid in the image. With the proposed
approach such goal variables can be estimated directly with-
out explicit reconstruction of the image. The bottom row in
Table 3 shows the relative absolute error in estimating the
void fraction directly from the projections of the potential
signals. Note that most of the eigen images in Fig. 3 have
zero mean, so that they only code the shape of the distri-
bution and make no contribution to the void fraction of the
reconstruction. Hence the void fraction is clearly a lower di-
mensional subproblem of the whole reconstruction problem.
Consequently the void fraction can be estimated to higher
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Figure 7: Scatterplot of the void fraction estimate with 10%
and 90% quantiles.

accuracy directly from the measurements (see also [3]).

With Bayesian methods we can easily calculate confidence
intervals for outputs. Fig. 7 shows the scatter plot of the void
fraction versus the estimate by the Bayesian neural network.
The 10% and 90% quantiles are computed directly from the
posterior distribution of the model output.

5 Robustness to Noise

A special virtue of the solution proposed here is very high
robustness to noise. Similar property of the neural network
inverse was also reported in [7]. In the current approach
the PCA projection of the potential signal and images con-
tributes to the suppression of noise effects, as uncorrelated
noise is also largely uncorrelated with the eigenvectors of
the signals.
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Figure 8: Effect of additive Gaussian noise to estimation of
void fraction directly and from the reconstructed image.

Fig. 8 shows the effect of the noise on the inputs to the di-
rect estimation of the void fraction. The noise was additive
Gaussian noise with standard deviation given as percentage
of the maximum amplitude of the potential signal. Fig. 9
shows the effect of noise to the image reconstruction results.
Note that the expected noise level in industrial environment
is about 2–5 %, which should have no significant effect to
the inverse solutions by the proposed techniques.

6 Conclusion

In this contribution we have presented a method for solving
the ill-posed inverse problem in electric impedance tomog-
raphy with Bayesian neural networks.

With the proposed system

• the inverse can be computed in a feedforward manner,
facilitating real-time monitoring of the process

• the image resolution can be chosen independently of
the inverse model

• prior knowledge can be used to build the autocovari-
ance model

• the solution is demonstrated to be highly immune to
noise

• estimation of some target variables, such as the void
fraction, may be applicable directly without the actual
image reconstruction

• we can easily calculate confidence intervals for outputs

• correct model complexity is controlled by the Bayesian
methods

Currently we are preparing tests for the method with real
data in cooperation with the industrial partner of the project.
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Figure 9: Effect of additive Gaussian noise to the recon-
struction of the images.
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