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Abstract

Usually in multivariate regression problem it is assumed
that residuals of outputs are independent of each other. In
many applications a more realistic model would allow de-
pendencies between the outputs. In this paper we show
how a Bayesian treatment using Markov Chain Monte Carlo
(MCMC) method can allow for a full covariance matrix with
Multi Layer Perceptron (MLP) neural networks.

1 Introduction

In regression problems, it is generally assumed that the dis-
tribution of target data can be described by a determinis-
tic function of inputs, together with additive Gaussian noise
with a constant covariance. Different parameterizations of
the covariance matrix correspond to different assumptions
about the noise. Usually in the case of multivariate data,
noises of different outputs are assumed independent with
common or independent noise levels. In many applications
it is more realistic to allow dependencies between the out-
puts. This can be achieved with full covariance matrix.

Use of full covariance matrix with maximum a posteri-
ori (MAP) approach has been discussed by Williams [13].
However, MAP gives biased results (e.g., noise variance be-
ing systematically under-estimated) and requires large num-
ber of samples in order to get good results. These limita-
tions can be overcome in a Bayesian treatment. Bayesian
neural networks with independent output noises have been
discussed by MacKay [8] and Neal [9, 10].

Purpose of this paper is to show how this problem can be
solved using full covariance matrix with Bayesian treatment
and Markov Chain Monte Carlo (MCMC) methods. We be-
gin by briefly reviewing the Bayesian neural networks and
MCMC implementation in Sections 2 and 3. In Section 4
we describe the use of full covariance matrix. In Section 5,
we briefly review Bayesian Deviance Information Criterion
used for model comparison. Numerical experiment illustrat-
ing the use of full covariance matrix is provided in Section 6.

2 Bayesian Neural Networks

Consider a multivariate regression problem involving the
prediction of a noisy vector y of target variables given the
value of a vector x of input variables.

The process of Bayesian learning is started by defining a
model, and prior distribution p(θ) for the model parame-
ters. Prior distribution expresses our initial beliefs about pa-
rameter values, before any data has been observed. After
observing new data D = {(x(1),y(1)), . . . , (x(n),y(n))},
prior distribution is updated to the posterior distribution us-
ing Bayes’ rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ L(θ|D)p(θ), (1)

where likelihood function L(θ|D) gives the probability of
the observed data as function of the unknown model param-
eters. In case of independent and exchangeable data points
we get

L(θ|D) =
n∏

i=1

p(y(i)|x(i), θ), (2)

where n is the number of data points.

We consider an MLP network with weights w. MLP takes
the input vector x and generates an output o = f(x,w)
which represents the regression function. In regression
problems, it is generally assumed that the distribution of
target data can be described by a deterministic function of
inputs, corrupted by additive Gaussian noise with a constant
covariance matrix. Probability density for a target y is then

p(y|x,w, Σ) =
(2π)−d/2|Σ|−1/2 exp

(− 1
2 (y − o)T Σ−1(y − o)

)
, (3)

where Σ is a d × d noise covariance matrix.

Using different parameterizations of the covariance matrix,
we make different assumptions about the noise. Parameteri-
zations which have been generally used are constant diago-
nal (σ2I) and diagonal (diag(σ2

1 , . . . , σ2
d)) covariance ma-

trices. These correspond to assuming independent noise



between outputs, with common noise level or independent
noise levels, respectively. Probability densities for a target
y are given respectively by

p(y|x,w, σ2) = (2πσ2)−1/2 exp
(
− 1

2σ2
(y − o)2

)
(4)

p(yj |x,w, σ2
j ) = (2πσ2

j )−1/2 exp

(
− 1

2σ2
j

(yj − oj)2
)

. (5)

Note that the use of constant diagonal covariance with max-
imum likelihood approach corresponds to the minimization
of the sum-of-squares error.

Convenient conjugate prior, which allows us easily to define
our prior knowledge (or ignorance) about noise variance, is
given generally by

p(σ2) = Inv-Gamma(σ2|ν0, σ
2
0) (6)

∝ (σ2)−(ν0/2+1) exp
(− 1

2ν0σ
2
0σ

−2
)
, (7)

where Inv-Gamma is inverse Gamma distribution with ν de-
grees of freedom1. In this way, prior belief about σ is equiv-
alent to ν0 prior measurements having common variance σ0.
Sometimes prior distributions are specified in terms of cor-
responding precisions τ = σ−2, with given Gamma distri-
butions. (Inverse) Gamma distribution in Bayesian analysis
has been discussed, e.g., by Box & Tiao [1] and Gelman
et al. [4]. Gamma distribution in connection with MLPs has
been discussed by Neal [10].

Following [10] we use four independent Gaussian prior dis-
tributions for different weight groups in MLP. Gaussians
have fixed zero mean and variable variances with vague in-
verse Gamma distributions as hyperpriors.

To predict the new output yn+1 for new input xn+1, predic-
tive distribution is obtained by integrating the predictions of
the model with respect to the posterior distribution of the
model parameters

p(y(n+1)|x(n+1), D) =∫
p(y(n+1)|x(n+1), θ)p(θ|D) dθ. (8)

Expectations can be evaluated with respect to the posterior
distribution for parameters, for example for a y (n+1)

ŷ(n+1) =
∫

f(x(n+1),w)p(θ|D) dθ. (9)

3 Markov Chain Monte Carlo

The posterior distributions in case of MLPs are typically
very complex and above integrals are very difficult to evalu-

1Note that different references have different parameterizations of the
(inverse) Gamma distribution.

ate. Neal [9, 10] has introduced Markov Chain Monte Carlo
(MCMC) implementation of Bayesian learning for neural
networks. In MCMC the integrations required by Bayesian
approach are approximated numerically using a sample of
values drawn from the posterior distribution of parameters.
For example (9) is approximated by

ŷ(n+1) ≈ 1
N

N∑
t=1

f(x(n+1),w(t)), (10)

where w(t) are samples of weights. In MCMC, samples are
generated using a Markov chain that has the desired poste-
rior distribution as its equilibrium distribution.

Neal has used the hybrid Monte Carlo (HMC) algorithm [2]
for parameters and Gibbs sampling [5, 3, 7] for hyperpa-
rameters. HMC is an elaborate Metropolis-Hastings Monte
Carlo method, which makes efficient use of gradient infor-
mation to reduce random walk behavior. The gradient in-
dicates in which direction one should go to find states with
high probability. Gibbs sampling is perhaps the simplest
MCMC method. In a single iteration, Gibbs sampling in-
volves sampling one parameter at time from full conditional
distribution given all other parameters. Use of Gibbs sam-
pling for hyperparameters helps to minimize the amount of
tuning that is needed to obtain good performance in HMC.

With conjugate priors above the full conditional distribu-
tions needed here by Gibbs sampling have the same form
as the conjugate priors. In general, σ2 specifies the vari-
ances for the independent Gaussian distributions of n lower
level quantities zi. In this situation, it can be shown that full
conditional distribution p(σ2|{zi}) is inverse gamma distri-
bution with parameters

νn = ν0 + n (11)

σ2
n = (ν0σ

2
0 +

∑
i

z2
i )/(ν0 + n) (12)

Many software packages generate gamma random variables
directly. See, e.g., [6] for the algorithms.

4 Full covariance

Neal discusses and demonstrates his methods using diago-
nal covariance matrix. Datasets used in [10, 11] do not have
multivariate targets or they are artificial data with indepen-
dent noises. We show how full covariance matrix can be
used with Bayesian neural networks described above.

Using full covariance matrix Σ in (4) assumes that each out-
put has independent noise level and noises between outputs
may have linear dependencies.



Convenient conjugate prior for full covariance matrix is
given by inverse Wishart distribution

p(Σ) = Inv-Wishart(Σ|ν0, Σ0) (13)

∝ |Σ|−(ν0+d+1)/2 exp
(− 1

2ν0tr(Σ0Σ−1)
)
, (14)

where tr(·) denotes the trace of a matrix argument23. In-
verse Wishart is a multivariate generalization of the inverse
Gamma distribution. The prior distribution could be spec-
ified in terms of the corresponding precision matrix T =
Σ−1, with given Wishart distribution. (Inverse) Wishart dis-
tribution generally in Bayesian analysis has been discussed,
e.g., in [1, 4].

Full conditional distribution p(Σ|{zi}) is inverse Wishart
distribution with parameters

νn = ν0 + n (15)

Σn = (ν0Σ0 +
∑

i

zizT
i )/(ν0 + n). (16)

When ν ≥ d and ν is integer, sampling from the
Wishart distribution can be easily accomplished by sim-
ulating α1, . . . , αν , ν independent samples from a d-
dimensional multivariate N(0, Σn) distribution, and let Σ =
1
ν

∑ν
i=1 αiα

T
i [4]. A general algorithm handling also ν < d

or non-integer ν is described in [6].

5 Deviance Information Criterion

To compare different noise models we calculate mean
square error (MSE) of the test data and Bayesian Deviance
Information Criterion (DIC). DIC has been recently pro-
posed by Spiegelhalter et al. [12] for comparison of arbitrar-
ily complex Bayesian models. DIC has been shown to have
several theoretical justifications, but Spiegelhalter et al. em-
phasize that DIC is not recommended to be used as a strict
criterion for model choice.

DIC is based on comparisons on the posterior distributions
of the deviance

D(θ) = −2 log p(y|θ) + 2 log f(y), (17)

where y is observed data and θ are the lowest-level parame-
ters directly influencing the fit. A standardizing term f(y) is
a function of the data alone and hence does not affect model
comparison. The fit of a model is summarized by the poste-
rior expectation of the deviance

D̄ = Eθ|y[D]. (18)

2Here E(Σ) = ν0
ν0−k−1

Σ0.
3Note that different references have different parameterizations of the

Wishart distribution.

The model complexity is measured by the effective number
of parameters pD, defined as

pD = Eθ|y[D] − D(Eθ|y[θ]) (19)

= D̄ − D(θ̄). (20)

The fit and complexity are then added to form a Deviance
Information Criterion

DIC = D̄ + pD (21)

= D(θ̄) + 2pD. (22)

Above quantities can be easily obtained from the MCMC
analysis.

6 Numerical experiment

As an illustration of different covariance matrix parameteri-
zations we consider a toy problem involving one input x and
two outputs y1 = x2, y2 = 0.5 − 0.5x. Noise with differ-
ent covariances (see Fig. 1) were added to the targets. Since
the estimated quantities are noisy, due to the finite data sets,
we repeated every experiment 10 times and averaged the re-
sults. For each different noise covariance we generated 10
independent data sets with 8 to 20 (see Fig. 1) data points
for training. For the testing we generated one data set with
1000 data points.

We used one hidden layer MLP with 10 hidden units and
vague priors for weights. We used HMC with persistent
momentum and heuristic choice of stepsizes as described in
[10]. Hyperparameters for priors of noise covariance matri-
ces were ν0 = 1, σ2

0 = 0.02, σj,0 = 0.02, and Σ = 0.02×I .
1000 HMC chains of length 50 were simulated. Hyper-
parameters were sampled with Gibbs sampling after each
chain, except for the first 20 chains they were fixed to prior
mean values. Samples were collected after each chain and
latter half of samples were used for prediction and calculat-
ing DIC values.

Fig. 1 shows that when the outputs do not correlate (top row
left) different covariance matrix parameterizations produce
similar test MSEs. When the correlation increases (from left
to right) full covariance matrix produces increasingly better
results.

In all test cases where output noises correlate, DIC values
(Fig. 1, bottom row) implies correctly that full covariance
model is best. When output noises do not correlate (first
column), full and diagonal covariance matrices are equally
good. As the amount of training data increases, test MSE
of all models seems to decrease to almost the same value.
This shows that if we are only interested in the expectation
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Figure 1: Averaged over 10 runs, test MSE (top row) and DIC (bottom row), for different noise covariances Σ and training
data sizes with different noise covariance matrix parameterizations: dotted) constant diagonal, dashed) diagonal, solid) full.
Note that DIC values with different number of training points are not directly comparable.

of the model output and we have enough data, we can get
good results with approximative noise models. If we are
interested in predicting noise covariance, we may use DIC
to point out the best model. Also note that DIC can be used
when separate test data is not available and we do not want
to use resampling methods like cross validation to estimate
test error.

7 Conclusions

We have shown how MLP neural networks with full covari-
ance matrix can be treated in Bayesian way using MCMC
methods. Using inverse Wishart prior distribution, full co-
variance model is easy to include in Bayesian neural net-
work framework developed by Neal [10].
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