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Abstract

In this contribution we present a method for solving the
inverse problem in electric impedance tomography with
Bayesian MLP neural network. The problem of recon-
structing the conductivity distribution inside an object
from potential measurements from the surface is known
to be ill-posed, requiring efficient regularization tech-
niques. We decompose the reconstruction problem to
lower dimensional problem by principal component pro-
jection, and use very efficient Bayesian neural network
to solve the reduced problem. This approach contains
double regularization effect, first due to solving the in-
verse problem in the eigenspace, and second due to using
neural networks that learn the distribution of feasible so-
lutions from the training data. We show by simulations,
that the proposed approach leads to rather accurate re-
construction results and facilitates estimation of other
target values, such as the void fraction (the fraction of
gas in liquid), directly without actual image reconstruc-
tion. We also demonstrate that the solutions are very
robust against noise in inputs.

1 Introduction

In electrical impedance tomography, EIT, the aim is to
recover the internal structure of an object from surface
measurements. Number of electrodes are attached to
the surface of the object and current patterns are in-
jected from through the electrodes and the resulting
potentials are measured. The inverse problem in EIT,
estimating the conductivity distribution from the sur-
face potentials, is known to be severely ill-posed, so that
some regularization methods must be used to obtain fea-
sible results [1].

Fig. 1 shows an simulated example of the EIT prob-

lem. The volume bounded by the circles in the image
represent gas bubble floating in liquid. The conduc-
tance of the gas is much lower than that of the liquid,
producing the equipotential curves shown in the figure.
Fig. 2 shows the resulting potential signals, from which
the image is to be recovered.

Typically, the inverse problem in EIT is solved by
assuming the system linear and computing regularized
inverse matrix. This produces fast linear reconstruction
algorithm. However the linear assumption is valid only
if the perturbation from the linearization point is small,
i.e., there are no large areas where conductance differs
much from the background.

Another, more accurate approach for the image re-
construction in EIT is based on iterative inversion of
the forward problem. Numerical minimization method,
such as Newton-Raphson algorithm, is used to search
for a conductance distribution that minimizes the dif-
ference between the measured potentials and those ob-
tained by computing the potentials by, e.g., finite ele-
ment method. This approach leads to computationally
more complex algorithms, but gives much better results
and offers more flexibility for controlling the regulariza-
tion of the inverse, by defining the smoothing priors for
the resulting image [1].

In this contribution we propose a feedforward solu-
tion for the reconstruction problem that can take into
account the nonlinearities in the forward (and inverse)
problems. The approach is based on approximating the
inverse mapping from the eigenspace of the potential sig-
nals to the eigenspace of the conductivity distributions
with a Bayesian neural network. Often the end goal
of using process tomography is not the reconstructed
image, but some index computed from the image, such
as void fraction (proportion of gas in liquid) or mix-
ing index indicating how well two substances have been



Figure 1: Example of the EIT measurement. The sim-
ulated bubble formation is bounded by the circles. The
current is injected from the electrode with the lightest
color and the opposite electrode is grounded. The gray
level and the contour curves show the resulting potential
field.
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Figure 2: Relative changes in potentials compared to
homogeneous background. The eight curves correspond
to injections from eight different electrodes.

mixed. We demonstrate that in such situation it may be
feasible to directly estimate the target variable without
the actual image reconstruction. Estimating the void
fraction, for example, is shown to be much lower dimen-
sional problem than recovering the distribution of the
gas.

There are a few studies on using neural networks in
the EIT problem. In [2] the reconstruction image was di-
rectly estimated by a NN from the potential signals.The
solution was demonstrated to be very robust against
noise in input signals. However, the resolution of the
image in such approach is in practice limited to some
tens or hundreds of pixels, as networks with several hun-
dreds of outputs are rather difficult to use and train, and
often require non-standard regularization to smooth the
results of neighboring pixels.

In [3] linear neural network was used to estimate the
conductance in the triangles of the FEM mesh. As the
used network was linear, the actual advantage over lin-
ear pseudoinverse solutions was due to the iterative es-
timation of the inverse matrix with a gradient method,
which proceeds slowly to the direction of the smallest
eigenvectors of the inverse matrix, yielding natural reg-
ularization for the inverse.

In [4] combination of principal component analysis
(PCA) and neural network was used for computing a
scalar variable, mixing index, from reconstructed tomo-
graphic images. Our results indicate that direct esti-
mation of the target variables without the explicit re-
construction may be appropriate solution, as the recon-
struction may be much more complex problem than the
actual end goal.

2 Simulated EIT Problem

In this study we have considered a simulated EIT prob-
lem. The aim is to recover the shape of a gas bubble
in liquid flowing in a circular pipe. The conductivity of
the gas was much lower (1/100) than that of the liquid
and the size of the bubble was large (upto 50% of the
area) so that linear reconstruction was not applicable.
In addition to the reconstruction of the bubble shape,
an important goal in the process tomography applica-
tion we are studying is to estimate the void fraction,
which is the relative area of the gas bubble compared to
the area of the pipe.

We produced the data by defining a Gamma-
distribution for the void fraction with mean at about
20 % and range in about 5 % to 50 %. Then we draw
void fraction values and overlaid random circular bub-
bles with radius r ∼ Uniform(0.05, 0.35) on the image,
until the drawn void fraction was complete. The bub-
ble formations contained 1 to 10 circles with average
of 4 circles in each image. The simulation of the for-
ward problem was computed with FEM (Finite Element
Method) using Matlab PDE-toolbox.

The training data for the neural network contained
500 samples of the bubbles and the test data another
500 samples. All the results reported are computed from
the test data that has not been used in any way during
the building of the model.

3 Eigenimage decomposition

In the proposed approach we apply the neural network
in a low dimensional eigenspace, where linear depen-



Figure 3: Eigenimages of the simulation data Figure 4: Eigenimages from the autocorrelation model
in Eqs. 2 and 3.

dencies from the input and output variables have been
removed. This serves for three purposes: first to detach
the actual inverse problem from the data representation
of the potential signals and image data, allowing change
of image resolution afterwards by chanding the resolu-
tion of the eigen images. Secondly, the reconstruction
of the image as superposition of the eigen images of true
bubble shapes makes the inverse robust against noise, as
shown by the experiments. Thirdly, the dimensionality
of the reconstruction problem is much reduced, and it is
matched to the actual complexity of the bubble distribu-
tions (determined by the eigenvalues of the correlation
matrix). Direct reconstruction of each pixel separately
would by more prone to get overfitted to the training
data, and would require additional non-standard reg-
ularization to smooth the result betweeen neighboring
pixels, just as in iterative inverse methods.

The reconstruction equations are then

up = Vuu

gp = F (p) (1)

g = V T
g gp

where
u is the potential signal,

Vu is the base span by the largest eigenvectors of u (we
used Nu = 20),

up is the projection of u on Vu,
g is the reconstructed image,
Vg is the base of eigenvectors of the autocorrelation

matrix of the images,
gp is the projection of the image g on base Vg, and
F (p) is the non-linear function giving the inverse (the

Bayesian MLP).



The base images given by the PCA depend only on
the autocorrelation of the images, as the base consists of
the eigenvectors of the autocorrelation matrix. Thus we
can construct the base directly by making assumption
for the autocorrelation of the bubbles. Then the base
images are not computed from the training data, making
the base more general and less tuned to the particular
set of training images.

The autocorrelation model for the bubbles consisted
of position dependent variance term S(x, y) and position
independent autocorrelation term A(∆x,∆y):

Rxy,x′y′ = A(x − x′, y − y′)S(x, y)S(x′, y′), (2)

where we used rather generic assumptions: autocorre-
lation of pixels decays linearly as function of distance
√

∆x2 + ∆y2 and reaches zero correlation at distance
0.5 (half of the radius of the pipe). The variance was
modeled as sum of two Gaussians

S(x, y) =
2

∑

k=1

Zk exp

(

−
x2 + y2

2σ2

k

)

. (3)

where the parameters σk and Zk were determined by
maximum likelihood fit to the training data. The val-
ues were Z1 = 1.07, Z2 = −0.58, σ1 = 0.31, σ2 = 0.06.
Note that we can control the accuracy of image represen-
tation by this base in different location of the image by
changing the autocorrelation length. Smaller autocor-
relation results in more eigenimages coding the location
and vice versa.

Figs. 3 and 4 show the eigenvectors of the simulated
bubbles and those from the autocorrelation model. The
resolution of the images is 41× 41 pixels, which is prob-
ably more than needed in most applications.

Most of the eigenimages in Fig. 4 code only the shape
of the bubble and have zero mean. Consequently, only
very few eigenimages contribute to the void fraction.
This can be seen from Fig. 5, which shows the relative
error in the void fraction, when the bubble image is
projected to the subspace of the eigenimages and then
reconstructed from the projection. The flat areas cor-
respond to zero mean eigenvectors. Note that the error
shown in Fig. 5 is the residual error that would be left
even if the inverse were exact in the eigenspace.

4 Bayesian Neural Networks

Traditionally neural networks have been trained by
searching for a set of weights that minimize the error
between the target values and network outputs.

In Bayesian learning the objective is to find the pre-
dictive distribution for output y given the input x and
training data D (see [5] and [6] for introduction to
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Figure 5: Relative error in void fraction due to the PCA
projection as function of the base dimension.

Bayesian neural networks)

p(y|x,D) =

∫

p(y|x,w, β)
p(D|w)p(w|α)p(α)

p(D)
dw, α, β

(4)

where we compute the marginal distribution over all
the parameters w and hyperparameters α, that deter-
mine the prior distributions for parameters, and β, that
define the noise variance. Intuitively, the marginaliza-
tion is equal to taking the average prediction of all the
models p(y|x,w, β) weighted by their goodness, which is
the posterior probability of the model given the training
data D. In practice we use Markov Chain Monte Carlo
techniques for approximating the integral by mean of
samples drawn from the posterior distribution of the
models [6]. In the following experiments we have used
the FBM software package 1 that implements the meth-
ods described in [6]. The resulting model after the learn-
ing is a collection of networks with different parameters
w, such that the average of the outputs of the networks
approximates the conditional expectation of the output
given the input. In this work we have used 20 samples
from the posterior distributions (sampled sparsely from
the end of long MCMC runs), so that the network model
is equal to having a committee of 20 networks.

Advantages of Bayesian MLP networks

• Bayesian learning provides automatic complexity
control: by integrating over the hyperparameters
that determine the model complexity, all the mod-
els with different effective complexity are weighted
in the result by their posterior probability given the
data.

1<URL:http://www.cs.toronto.edu/~radford/fbm.software.

html>



Figure 6: Examples of reconstructed bubble formations. The white blobs show the actual simulated bubbles and
the black lines show the contours of the reconstructed bubbles. All the bubbles are from the test set that has not
been used in the training in any way.

• We can use large networks with small risk of over-
fitting, and there is no need to find the minimum
sufficient number of weights in the model.

• The model gives the predictive distribution for the
outputs, providing confidence interval for the esti-
mates.

• Possibility to use various types of prior information
and hierarchical models for hyperparameters.

5 Simulation Results

5.1 Image Reconstruction

In this contribution we report only results on using
Bayesian MLP model for the inverse problem. For com-
parison with other training methods see [7].

The goodness of the reconstructed images was evalu-
ated both visually and using a quantitative error crite-
rion. The error was defined as the percentage of pixels
in the image whose classification to gas bubble/liquid

was erroneous.

In the following experiments we used Ng = 30 eigen-
images to reconstruct the image. Fig. 6 shows some sam-
ple reconstructions from the test set. The actual output
of the network committee is the conditional mean of the
image given the potential signals, which is equal to the
conditional probability of a pixel being in a bubble with
the used coding of bubble as 1 and background as 0.
Then the void fraction, i.e., the total amount of gas,
is obtained by computing the total probability mass of
bubbles over the image. The images were segmented to
gas and background as follows (see Fig. 8 for examples):

1. The void fraction is estimated as the sum of bubble
probability over the image.

2. Segmentation threshold is selected so that the void
fraction is preserved (i.e., the size of the segmented
bubble is equal to the void fraction.)

3. The pixels are segmented to either gas or back-
ground class, as shown in Figs. 6 and 8.

The mean error in the test set was 3.96 %.



5.2 Estimation of the Void Fraction

The most important end variable in the studied applica-
tion was the void fraction. As shown in previous chap-
ter, in the eigenspace of the bubble images the problem
of reconstructing the void fraction has only very low
complexity compared to that of recovering the shape of
the gas distribution. Thus it is reasonable to estimate
the void fraction directly without first reconstructing
the image.

Fig. 7 shows the scatter plot of estimating the void
fraction directly and reconstructing the image first and
computing the void fraction from the image. The good-
ness of the estimate was measured by the mean relative
absolute error, E = 1/N

∑

n |vn − v̂n|/vn, where vn is
the actual void fraction and v̂n the estimate for bubble
sample n. The errors were 3.15 % and 5.96 % for direct
estimation of the void fraction and estimation of the void
fraction from the reconstructed image, respectively.
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Figure 7: Scatter plot of the void fraction estimates from
the reconstructed image and directly from the potential
signals.

5.3 Robustness to Noise

A special virtue of the solution proposed here is very
high robustness to noise. Similar property of the NN
inverse was also reported in [2]. In the current approach
the PCA projection of the potential signal and images
contributes to the suppression of noise effects, as uncor-
related noise is also largely uncorrelated with the eigen-
vectors of the signals. The NN solution to the inverse,
so called direct inverse, is based on estimating the con-
ditional expectation of the image given the potentials.

The network approximates the inverse mapping with a
continuous function, whose smoothness is determined
from the training data by the Bayesian estimation pro-
cedure. When the inverse is not stable, so that small
changes in the potentials cause large changes in the im-
ages, the training data for the network contains different
output images for nearly equal inputs, which is statit-
ically the same as having noise in the outputs. Thus
the instability of the inverse causes the estimate of the
noise variance to increase and consequently the poste-
rior distribution to become broader. This causes the
approximation to become smoother when more varying
models are summed in Eq. 4.

Fig. 9 shows the effect of noise on the inputs to the
direct estimation of the void fraction. The noise was ad-
ditive Gaussian noise with standard deviation given as
percentage of the maximum amplitude of the potential
signal. Fig. 10 shows the effect of noise to the image
reconstruction results. The error is computed as per-
centage of pixels that are erroneously segmented to be-
long to the bubble or background by the network. Note
that the expected noise level in industrial environment
is about 2-5 %, which should have no significant effect to
the inverse solutions by the proposed techniques. Fig. 8
shows examples of the reconstructed images from the
noisy potential measurements.

6 Conclusion

In this contribution we have demonstrated that
Bayesian neural network can be used for solving the ill-
posed inverse problem in electrical impedance tomogra-
phy. With Bayesian neural network we can use large
number of free parameters in the model with no fear of
overfitting (given that our prior distributions and noise
models are feasible). With the proposed system the in-
verse can be computed in a feedforward manner, facil-
itating real-time monitoring of the process. Also the
solution is demonstrated to be highly immune to noise.

Often one of the end goals in the process tomography
is to compute some performance index variables from
the reconstructed image. We demonstrate that it may
be feasible to recover such variables directly from the
measurements without solving the actual tomographic
reconstruction problem. For example, estimating the
void fraction (proportion of gas in liquid) is shown to be
a lower dimensional subproblem of the image reconstruc-
tion. Consequently, the void fraction can be estimated
to higher accuracy directly from the measurements.

Currently we are running experiments to compare this
approach to state-of-the-art iterative methods. Also we
will test the method with real data in cooperation with
the industrial partner of the project.
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Figure 8: Example of the effect of additive Gaussian noise in inputs to reconstruction result. The gray scale shows
the posterior probability of bubble in each pixel. The actual bubble is shown by the white circles and the segmented
bubble by the black line.
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Figure 9: Effect of additive Gaussian noise to the direct
estimation of the void fraction and estimation of void
fraction from the reconstructed image.
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Figure 10: Effect of additive Gaussian noise to the
reconstruction of the images. The dashed line corre-
sponds to guessing the mean of training bubbles inde-
pendent of the input potential.
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