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Abstract: Previously, we introduced the use of individual cortical location and orientation constraints
in the spatiotemporal Bayesian dipole analysis setting proposed by Jun et al. ([2005]; Neuroimage
28:84-98). However, the model’s performance was limited by slow convergence and multimodality of
the numerically estimated posterior distribution. In this paper, we present an intuitive way to exploit
functional magnetic resonance imaging (fMRI) data in the Markov chain Monte Carlo sampling -based
inverse estimation of magnetoencephalographic (MEG) data. We used simulated MEG and fMRI data
to show that the convergence and localization accuracy of the method is significantly improved with
the help of fMRI-guided proposal distributions. We further demonstrate, using an identical visual stim-
ulation paradigm in both fMRI and MEG, the usefulness of this type of automated approach when
investigating activation patterns with several spatially close and temporally overlapping sources. Theo-
retically, the MEG inverse estimates are not biased and should yield the same results even without
fMRI information, however, in practice the multimodality of the posterior distribution causes problems
due to the limited mixing properties of the sampler. On this account, the algorithm acts perhaps more
as a stochastic optimizer than enables a full Bayesian posterior analysis. Hum Brain Mapp 30:1087-1099,
2009.  ©2008 Wiley-Liss, Inc.
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INTRODUCTION

Since the development of functional magnetic resonance
imaging (fMRI) the noninvasive study of human visual
processing hierarchy has been of specific interest to
researchers. The experiments range from first seminal
studies demonstrating the feasibility of acquiring magnetic
resonance signals related to increased blood flow and/or
blood oxygenation level dependent (BOLD) contrast [Belli-
veau et al.,, 1991; Kwong et al., 1992; Ogawa et al., 1992] to
more complex mappings of representations of the visual
fields in human cerebral cortex [DeYoe et al., 1996], and to
accurate mappings of borders and sizes of human retino-
topic visual areas—V1, V2, VP, V3, and V4 [ Dougherty
et al, 2003; Sereno et al.,, 1995]. Functional imaging has
also been used to study areas with operational specializa-
tion, such as V5 which is sensitive to visual motion
[Watson et al., 1993]. It is also known that V1 of humans
responds well to patterned flickering stimuli [Engel et al.,
1997] and hence checkerboard stimuli have traditionally
been used to map the borders of the visual areas. In
phase-encoded mapping, slowly changing position of flick-
ering checkerboard stimuli determines the polar angle of
activation on the cortex, whereas a flickering and moving
ring reveals the retinotopic organization with respect to ec-
centricity [Engel et al., 1997; Dougherty et al.,, 2003].
Recently, Vanni et al. [2005] developed a multifocal map-
ping method for fMRI that enables rapid and direct spatial
exploration of multiple local visual field representations
and gives complementary information to phase-encoded
mappings of retinotopic areas.

There is accumulating evidence that the human visual
system is anatomically and functionally organized not only
for bottom-up hierarchical processing but also for top-
down modulation of activity with higher cognitive tasks
[Courtney and Ungerleider, 1997]. Thus, it is crucial that
the analysis methods evolve to the direction of providing
more accurate information of this visual processing net-
work, both in the spatial and temporal domain, the latter
benefiting from data provided by electroencephalography
(EEG) and/or magnetoencephalography (MEG) [see, e.g.,
Hamaladinen et al., 1993; Nunez, 1981, for a review on EEG
and MEG]. Since the MEG/EEG inverse problem is ill-
posed [Sarvas, 1987], spatial fMRI information is poten-
tially useful in resolving the ambiguity. Often, because of
difficulties in the true multimodal integration of MEG/
EEG and fMRI, the suggested solutions have been for
instance direct comparison of the separate results [e.g.,
Ahlfors et al., 1999], using fMRI data as a basis to adjust
the source variance parameters [Dale et al., 2000; Liu et al.,
1998], utilization of the functional results for constraining
the possible source positions [e.g., Korvenoja et al., 1999],
or by directly seeding the fMRI locations and cortical ori-
entations to be optimized with a suitable EEG source
dipole model [Vanni et al., 2004a,b]. Lately, there has been
great interest in Bayesian methods utilizing fMRI prior in-
formation, for instance, with distributed linear solutions of

the MEG/EEG inverse problem [e.g., Dale et al., 2000;
Phillips et al., 2005] and also on determining the relevance
of the fMRI prior information included in the inverse solu-
tion [Daunizeau et al., 2005].

The usefulness of Bayesian inference [Bernardo and
Smith, 1994; Gelman et al., 2003] has recently been demon-
strated in localizing electromagnetic brain activity [e.g.,
Baillet and Garnero, 1997; Friston et al., 2002a,b; Phillips
et al., 1997; Schmidt et al., 2000]. A Bayesian solution to
the inverse problem is formally expressed in the form of
posterior probability distribution for the parameters of in-
terest, such as dipole location and amplitude. Particularly,
with electromagnetic inverse estimation problems, the pos-
terior distribution cannot be often obtained in closed form
and one of the many Markov chain Monte Carlo (MCMC)
sampling schemes available [e.g., Gilks et al., 1996] is
employed to numerically perform the high dimensional
integrations involved in the posterior analysis [Auranen
et al., 2005; Bertrand et al., 2001; Jun et al., 2005; Kincses
et al., 2003; Schmidt et al., 1999, 2000].

The efficiency of this so-called MCMC sampling can be
evaluated not only by the physiological meaningfulness of
the localization results, but also by the convergence of the
sampling algorithm, which is characterized, for instance,
by the number of iterations required before the drawn
samples are representatives of the true posterior distribu-
tion. Also, the sampling method might not be optimal for
switching between different solutions modes of a Markov
chain when the posterior distribution is multimodal. If the
sampler does not switch well between modes, it is very
difficult to validly compare the probability mass of the dif-
ferent solution modes (i.e., inverse estimates) as samples
from the different chains are not typically directly compa-
rable. Previously, we implemented cortical orientation and
location constraints to a Bayesian dipole analysis model
introduced by Jun et al. [2005] and showed that it provides
reasonable inverse estimates with little manual interven-
tion [Auranen et al.,, 2007]. However, the convergence of
the Markov chain was rather slow and the sampler did
not switch optimally between different modes, thus ham-
pering full Bayesian posterior analysis.

In this article, we incorporate fMRI data to our cortically
constrained MEG inverse dipole sampling method [Aur-
anen et al., 2007], not by directly seeding the model or by
using strict priors, but by introducing fMRI-based proposal
distributions that are used to suggest MCMC jumps to
more likely activated cortical locations. This yields an
fMRI-guided MEG inverse model, which we first verify by
simulations designed to test the ability of our fMRI-guided
dipole sampling to produce improved localization results
and faster convergence than the model without fMRI-guid-
ance. With an empirical MEG/fMRI dataset, we start by
marking the position of the individual retinotopic areas of
the subjects with fMRI multifocal stimulation and then use
the fMRI data gathered during the presentation of a drift-
ing grating visual stimulus to test our fMRI-guided
MCMC sampling procedure for MEG inverse modeling.
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With the visual areas revealed by fMRI multifocal map-
ping, we are able to make a qualitative assessment of the
drifting grating MEG inverse dipole locations.

As our previous model [Auranen et al., 2007] produces
reasonable estimates with sources far apart from each
other, we wanted to test the model in a particularly diffi-
cult situation, namely to scan the locations of human vis-
ual system, in which the sources are known to be adjacent
[Vanni et al.,, 2004b] making the inverse estimation chal-
lenging. We specifically hypothesize that with simulated
data, the convergence of the sampling procedure is faster
and the results are both qualitatively and quantitatively
improved with the fMRI-guided MEG inverse dipole mod-
eling. With the empirical visual motion data, the number
of iterations required for convergence is slightly smaller
although both methods produce qualitatively similar
results.

MATERIALS AND METHODS

The Experiments

Three male subjects (ages: 33, 27, 29) with normal or cor-
rected-to-normal vision participated in both the multifocal
fMRI experiment and in the drifting grating experiment,
that was performed in both fMRI and MEG. The multifocal
experiment was conducted for localizing the approximate
borders of retinotopic areas for the qualitative evaluation
of the fMRI-guided MEG source localization results on
individual level. The drifting grating experiment was
designed to produce simple, well-localized hierarchical ac-
tivity patterns in the low- and middle-tier (V5/MT) visual
areas of the right hemisphere. In all the experiments, the
subjects were instructed to passively fixate on the fixation
mark at the center of the screen. High-resolution T;-
weighted 3D anatomical MR images were obtained using
3 T scanner (General Electric Signa, Milwaukee, WI;
located at Helsinki University of Technology, Finland) and
1.5 T scanners (Siemens Sonata and Vision, Erlangen, Ger-
many; located at Massachusetts General Hospital, USA
and Helsinki University Central Hospital, Finland, respec-
tively). The anatomical images were used for visualization
and for the source space and boundary-element model
(BEM) surface reconstructions. All functional MRI stacks
were acquired with the GE 3 T scanner.

Multifocal fMRI

The multifocal stimuli (see Fig. 1) consisted of eight
regions of flickering checkerboard stimuli on the horizontal
and vertical meridian with 11 combinations, so that the
stimulus sequences of all regions are orthogonal in the
design matrix of the general linear model [for details of
the multifocal mapping scheme, see, Vanni et al., 2005].
During two separate runs, 244 functional T,*-weighted vol-
umes depicting BOLD contrast were acquired with 24
slices, slice thickness and in-slice resolution of 2.5 mm,

multifocal MR stimuli drifting grating

Figure 1.
Left: Three examples of the fMRI multifocal stimuli. Right: A
snapshot of the drifting grating stimulus (fMRI). The subjects
were fixating on the center of the screen.

aligned perpendicular to the parieto-occipital sulcus in the
sagittal image giving a good sampling over the whole occi-
pital lobe (EPI sequence, TR 1819 ms, TE 30 ms, flip angle
60, FOV 16, matrix size 64 X 64).

Drifting Grating fMRI

Although a patterned flickering stimuli might provide
the best responses in V1, we utilized drifting grating stim-
ulus that might also produce detectable activation higher
in the hierarchy of visual system extending to V5. The
drifting grating covered a 60° polar sector in the middle of
the lower left quadrant of the visual field with 2°-7° eccen-
tricity (see Fig. 1). The spatial frequency at 4.5° eccentricity
(i.e., the mean spatial frequency of the grating) was 1.3
cycles/degree. Drifting speed was 7.4° per second, but
only one cycle was presented with stimulus duration of
107 ms. The experiment was a passive block design with
alternating 50 s rest and stimulation periods. The 107 ms
stimulus (4 images in a row, each 27 ms) was presented
with varying ISI of 0.8-1.2 s. During three separate runs,
308 functional volumes were acquired with 27 slices, slice
thickness and in-slice resolution of 3.0 mm, aligned per-
pendicular to the parieto-occipital sulcus to cover all of the
visual areas (EPI sequence, TR 2,000 ms, TE 30 ms, flip
angle 60, FOV 19, matrix size 64 X 64).

The multifocal fMRI was designed for good resolution
mapping of the retinotopic visual areas, which are local-
ized in the occipital lobes. In the drifting grating experi-
ment, we wanted to detect activation everywhere in the
visually responsive areas covering not only occipital lobe,
but also parietal lobe, and parts of the temporal and fron-
tal lobes. For this, we were obliged to sample a larger
space, affecting the selected parameters (number of slices,
slice thickness, in-slice resolution, FOV, and TR) in com-
parison to the multifocal fMRI experiment.

Drifting Grating MEG

The MEG data were gathered in a magnetically shielded
room with a Vectorview MEG system (Elekta-Neuromag
Oy, Helsinki, Finland) located at Helsinki University of
Technology, Finland. Exactly the same design was used in
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Figure 2.

The averaged MEG evoked fields for all the subjects. Number of
artefact-free trials per subject was over 800. One line in each of
the graphs represents one channel in the MEG sensor array.
Notably, subject P3 had the worst signal to noise ratio. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

fMRI and MEG acquisition resulting in over 800 (electro-
oculogram) artefact-free trials for each subject. The data
were collected with 600 Hz sampling frequency and down-
sampled to 300 Hz, notch filtered for 50-Hz noise, and
high-pass (Butterworth) filtered with corner frequency of
0.2 Hz prior to averaging and further analyses. The aver-
aged MEG evoked fields for the drifting grating experi-
ment are shown in Figure 2. Since the high-pass filter
ensured the chopping of slow drifting effects in the data,
baseline correction was not necessary, and if used, the cor-
rection itself might cause unexpected effects upon the
model. With baseline correction, the relative amplitudes of
the channels at the beginning of a time window would be
pitched to a specific level, which would be inconsistent
with the full spatiotemporal noise structure of the meas-
urements. During MEG measurements the stimulus had
the same size, position, spatial frequency, luminance, and
contrast as the stimulus in the magnet. Because of different
refresh rates with the data projectors, in MEG the stimulus
duration was 134 ms (4 images, each 34 ms) with drifting
speed of 5.9° per second. However, we consider this differ-
ence to be insignificant for this stimulus type.

Initial Processing of fMRI, MRI, and MEG Data

The fMRI analysis in both experiments was carried out
using FEAT version 5.63 of the FSL software tools [Smith
et al, 2004]. The following prestatistic processing was

used: slice time correction, high-pass temporal filtering,
MCFLIRT [Jenkinson et al., 2002] was applied for motion
correction, and FLIRT [Jenkinson and Smith, 2001; Jenkin-
son et al., 2002] for aligning the functional stacks with
high resolution anatomical images (along with manual
adjustments). Neither intensity normalization nor spatial
smoothing was used in order to maximize the resolution
of the data projection on the cortical surface reconstruc-
tions. On each individual, the first level time-series statisti-
cal analysis was carried out using FILM with local autocor-
relation correction [Woolrich et al., 2001] and the Z statistic
images were thresholded by Z > 5 and a clusterwise sig-
nificance of P = 0.05 [Worsley et al., 1992]. To combine dif-
ferent scanning sessions, higher-level fixed effects analysis
was performed by forcing the random effects variance to
zero in FLAME [Beckmann et al., 2003; Woolrich et al., 2004].

For MEG forward and inverse modeling, the anatomical
MRI data sets were processed with the Freesurfer software
[Dale et al., 1999; Fischl et al., 1999]. The geometry of the
white-gray matter surface was derived with an automatic
segmentation algorithm to yield a triangulated model with
approximate 340,000 vertices [Dale et al., 1999; Fischl et al.,
1999, 2001]. This dense triangulation was decimated to
a grid size of about 35,000 points. Using the MNE software
(http:/ /www.nmr.mgh.harvard.edu/martinos/userInfo/
data/sofMNE.php), we calculated the magnetic field pro-
duced by current dipoles oriented normal to the cortical
mantle at the decimated white-gray matter surface vertex
locations. In the forward calculations, we employed a sin-
gle-compartment BEM [e.g., Mosher et al., 1999]. All MEG
data preprocessing and processing were conducted in
MATLAB (The MathWorks, Natick, MA).

Simulated Data

For simulations, we utilized three source locations on
the right occipital areas of subject P1 (Fig. 3A). The simu-
lated dipolar sources had a 20-nAm strength and different
time courses with realistic measurement noise added
based on empirical data [see, Auranen et al., 2007]. By
slightly varying the location of two sources (2-3 mm along
the cortex) the orientation changed significantly enough to
make some of the sources barely visible in MEG sensors
due to their almost radial orientation (Slr and S2r). This
resulted in four different dipole configurations (I-IV) of
the three sources S1, S2, and S3, so that in the first case (I)
the sources were all well visible on the sensors, in the sec-
ond case (II) one of the sources, S2r, was in practice cov-
ered by measurement noise and source S1, in the third
case (III) source Slr was only somewhat visible due to ori-
entation whereas the last case (IV) had the two previous
cases combined. In the fourth case, practically only source
S3 expressed clearly onto the sensor data producing visible
fields (Fig. 3C).

Simulated fMRI data used to construct the proposal dis-
tributions for the MCMC sampling scheme were produced
by simple extended Gaussian kernels enveloping the actual
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Figure 3.

(A) Simulated source locations and timecourses. The orienta-
tions of the sources simulated using the real 3D white-gray mat-
ter surface are visualized on the inflated cortical surface to
reveal the clear difference in orientation between S1/S2 with
S1r/S2r, respectively. (B) Simulated fMRI data used to generate
different proposal distributions for the fMRI-guided sampler.
(€) The MEG fields produced by four different simulated dipole

dipole locations on the source space surface (Fig. 3B). We
assessed the model with the four abovementioned simu-
lated dipole configurations using five different proposal
distributions: no guidance, correct fMRI-guidance, an extra

configurations. The sensor array consists of two planar gradiom-
eters measuring the magnetic field gradient in two orthogonal
directions on 102 locations around the head. There are clear dif-
ferences in the expression of the sources to the sensors because
of slight orientation differences. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.
com.]

kernel, one of the locations missing, and one of the loca-
tions falsely localized, in order to reveal the differences
with or without the guided sampling procedure and with
small discrepancies in the proposal distribution.
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Model Overview

To avoid shifting the focus from the novel idea of utiliz-
ing fMRI data for guiding the MCMC-based algorithm,
and to keep the manuscript straightforward, we do not
duplicate the model formulation from [Auranen et al,
2007]. Here, the simulated and empirical data were ana-
lyzed with this previously described model with modifica-
tions so that the fMRI-guidance in the form of proposal
distributions in the reversible jump Markov chain Monte
Carlo and Metropolis-Hastings parts of the sampling pro-
cedure could be used [see, next section and Auranen et al.,
2007, for details].

In this article, we employed both our singular value
decomposition (SVD) -based strategy and the speed-up
strategy proposed by Jun et al. [2005], which uses a low-
rank approximation of the temporal current correlation
obtained by eliminating negligible eigenvalues. The SVD
speed-up and regularization reduces the effective number
of MEG measurements by using only the most important
linearly independent channel combinations based on
signal-to-noise ratio (SNR). These two actions help to
accelerate the sampling procedure considerably without sig-
nificantly biasing the results. This is crucial as we are analyz-
ing relatively long segments of empirical data (500 ms) with
a downsampled sampling rate of 300 Hz resulting to about
150 timepoints.

As minor computational upgrades to our previous
model, we adaptively store to memory some of the inter-
mediate computations that need to be calculated several
times during sampling. The actual parametrization of the
dipole location parameters using spherical angles is also
modified in order to enable the use of the discrete fMRI
proposal distributions.

The utilized source space consists of white-gray matter
boundary with sources oriented normal to the surface.
This corresponds to the direction of the net current in the
gray matter. The source space was discretized with ~8,000
points for all the subjects in the inverse estimation.

fMRI-Based Proposal Distribution

The fMRI-guidance is implemented by creating proposal
distributions of probable source locations from the empiri-
cal fMRI data by utilizing the Freesurfer software. In this,
the functional volumes or more exactly, the statistical para-
metric maps are aligned with the anatomical stacks and
the activations are projected and rendered to the source
space of cortical white-gray matter surface. As a result, we
arrive with a vector of values (i.e., the proposal distribu-
tion), each element depicting the Z-score in one vertex
point of the source space. The active surface locations of
the propoal distribution were directly assigned the corre-
sponding Z-score value from the projected statistical para-
metric maps. All the locations that do not contain any
fMRI activation are set to a nonzero constant value, that is,
the lowest Z-score value of the fMRI data in question, after

which the distribution is normalized to sum up to unity.
Normalization and the assignment of the nonzero value
were done similarly to the simulated fMRI activations.

fMRI-Guided Sampling

The modifications to the actual sampling algorithm are
as follows. With the acceptance probability of the Metropolis-
Hastings part of the algorithm (Eq. (14) of [Auranen et al.,
2007]),

min{l XY (X1 X7) }, (1)

(X V)X [Xi)

the dipole location parameter proposal distributions J; now
take into account the asymmetrically proposed jumps to
locations containing fMRI activation. These proposals will
cause more rejections in the sampling scheme, but on the
other hand also better jumps towards the specified target
distribution n(-). The use of proposal distribution does not
bias the obtained samples of the target distribution in any
way, but it is of use in reducing random walk in the sam-
pling procedure. Similarly, with the reversible jumps
between different number of dipoles, the fMRI-based pro-
posal distribution affects the acceptance probability min{1,c,}
of a new state via the proposal distribution, ], for the new
dipole location parameters (Eq. (15) of [Auranen et al,
2007]):

~ (Y| XN+, N*)po(Xn: IN*)n(Xiv, N*) e N (17 [ X+, N*, N)

— p(YIXN, N)po(XulN) (X, N)JnvavT (1 Xn, N, N*)

(‘)hNTN* (XN7 u)
8(XN, u) ’

)

Note that now this proposal distribution | is no longer the
conditional prior for the dipole location parameters (uni-
form in here and in Auranen et al. [2007], thus the accep-
tance ratio remains a bit more complicated because those
terms do not cancel out as previously. The other terms are
described in detail previously with the basic model
description [see, Auranen et al., 2007].

RESULTS
Simulations

For each of the simulated dipole configurations with dif-
ferent fMRI-guidance, 10 MCMC chains of 5,000 iterations
were sampled. In the analysis we utilize only 100 thinned
(every twentieth) samples from the end of the chains,
where convergence was visually verified by monitoring
the energy, log(P), of the posterior distribution, P. Prior to
sampling, we initialized the random seed generator of the
computer so that the starting location (one random dipole)
was the same for all different fMRI-guide types, but
random across different chains and datasets. For speed-up,
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Figure 4.
Above: The true locations of dipoles in four different configurations (I, I, Ill, and 1V) and the cor-
responding mean posterior energies to reveal the differences in the amount of iterations required
for the plausible convergence with the various fMRI-guides. Below: Clustered samples, scaled
between 0 and |, with various types of fMRI guides to reveal the most common source locations
emerging from the sampling. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

the number of utilized orthogonal measurement combina-
tions was determined by using the discrepancy principle
[Auranen et al., 2007; Kaipio and Somersalo, 2005] and for
the four simulated dipole configurations they were 52, 56,
90, and 90, correspondingly. Furthermore, about 70% of
the eigenvalues were removed from the temporal current
correlation matrix.

In Figure 4, we present the clustered locations of the
dipoles from the samples for the different dipole configu-
rations and fMRI-guidance types. In general, the clusters
are more disperse with no fMRI-guidance, although for
example S1 is rather difficult to localize (dipole configura-
tion I) with all the different guidance types when there is
a strongly visible nearby source S2 present. If source S2 is
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Figure 5.
A zoom in for the simulated results of configuration lll with and
without fMRI-guidance. Note that fMRI-guide helps to better
localize source Slr and S3 in comparison to the nonguided
analysis. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

oriented to produce practically no visible fields S2r (II),
then also S1 is very well localized with the fMRI-guided
methods in comparison to no fMRI-guidance. Notably,
with dipole configuration III, even though the fMRI-guid-
ance kernel for 52 was missing, S2 is still localized rather
well (Fig. 4, second row from the bottom). Also, source Slr
seems to be better localized with fMRI-guided versions of
the model when it produces only weak magnetic fields
(Figs. 4 and 5). This suggests that slightly incorrect fMRI
activations will not jeopardize the localization as long as
the source is clearly expressed onto the MEG sensors and
some coarse fMRI information that does not need to be
exactly correct helps to guide the automatic sampling pro-
cedure. With the fourth configuration (IV), the localization
results of all the fMRI-guidance types and no guidance are
similar (S1r and S3 well localized), which is expected as
sources Slr and S3 are far apart from each other and Slr is
expressed more clearly on the sensors than S2r.

To evaluate the average number of iterations required
for convergence for each method with different fMRI-gui-
dances, we computed the mean of the posterior energies of
the different chains for each situation (see Fig. 4). On the
basis of this, it is clear that the methods with any type of
fMRI-guidance converge faster as their mean posterior
energies reach a plateau earlier than the non-guided case,
the correct fMRI-guide providing the fastest convergence.

For quantitative verification of our simulation results,
we defined and propose two error metrics computed for
the clustered dipole locations (see Fig. 6). The mean scatter
error takes into account the spurious cluster locations and
computes the mean error of each cluster location to the
closest real source weighted by the importance of the spe-
cific cluster. The importance of the cluster in here means
the percentage of the clustered samples containing a dipole
in that specific cortical location, with “1” indicating that
every single sample contained a dipole in that location.
The mean location error describes the mean error of the
closest (in mm) cluster location to the actual dipoles. In
case of no fMRI-guidance, the mean scatter error is clearly
larger for all simulated datasets supporting the visual
appearance of the clustered dipole locations. The mean
location errors are small for all dipole configurations
excluding II and IV, in which the error is large due to the
fact that the practically invisible source S2r cannot be suffi-
ciently localized. By careful comparison of different dipole
configurations in Figure 3C, it is evident that this source
does not really produce any detectable magnetic fields
over the measurement noise level.

Empirical Data

Figure 7 shows the approximate locations of individual
visual areas (see also, Fig. 8) mapped with the multifocal
fMRI experiment visualized on the inflated cortical surface
and colorcoded according to the presented stimuli. Statisti-
cal parametric maps (cluster, Z > 5, P = 0.05) of the fMRI
drifting grating experiment are shown in the lower half of
the same figure. While there are some variations across the
subjects (P1, P2, and P3) the drifting grating stimulus
seemed to activate the primary visual areas (V1, V2, V3,
and V3a) and also the motion sensitive area V5. Note that
location of the drifting grating response is concordant with
the multifocal mapping. The statistical parametric (Z)
maps of the drifting grating experiment were used for pro-

"
ra

-]

Mean scatter error {mm)
.

0

(=]

nothing correct  exira missing  false

nothing correct  extra missing falss
Utilized IMRI-guide

Figure 6.
Mean scatter error and mean location error in the simulations.
The relatively large location error of dipole configurations Il and
IV is due to the almost undetectable source S2r. [Color figure
can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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Figure 7.

Above: The multifocal fMRI results for subjects PI-P3. Localized
retinotopic areas are illustrated on the inflated cortical surfaces.
The small insert portrays the color-coded locations of each
stimulated region of the visual field, the white sector depicting
the drifting grating stimulus. Below: The statistical parametric
maps of the drifting grating fMRI experiment, projected on the
individual brain surfaces together with the borders of the visual
areas. The schematic representation of the color-coded borders
of the areas is shown in Figure 8. As the final projection of sta-
tistical parametric maps onto the cortical surface involves
smoothing that diminishes the Z-scores, the threshold was
adjusted for these visualizations. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

ducing the fMRI-based proposal distribution for the empir-
ical MEG inverse estimation.

For the drifting grating MEG inverse analysis, 10
MCMC chains of 7,500 samples were obtained with the
number of utilized measurement combinations for the data
being 46, 27, and 37, for subjects P1, P2, and P3, respec-
tively. For clustering the samples, we only used the last
100 samples of the thinned chains although in some situa-
tions the convergence of the chains was uncertain. Espe-
cially with empirical data, the slow convergence, relating

to the multimodality of the posterior distribution [Auranen
et al., 2007], was prominent. Similarly to the simulated
analyses, we computed the mean posterior energies and
clustered dipole locations for both the fMRI-guided case
and the case with no fMRI-guidance (see Fig. 9).

The presented empirical results reveal more of the con-
vergence properties of the sampler as well. Specifically, the
convergence of the algorithm for subject P3, who clearly
had the best SNR in the fMRI data, showed improvement
in speed. Notably, the results for subject P2 are indecisive
possibly due to poorer fMRI SNR and difficulties in the
source space surface reconstruction related to acquiring
the anatomical raw data with a 3 T magnet. With P1, the
overall superb quality of his anatomical MRIs and good
MEG SNR rendered the observed effect of improved con-
vergence. On the basis of these observations it is presuma-
ble that the convergence is better for the fMRI-guided case
also with empirical data.

The relative occurences of number of dipoles in the clus-
tered samples is similar in both cases. Regardless of clus-
tered solution locations being quantitatively similar in both
cases, the nonguided clustered locations are slightly more
disperse, favoring the fMRI-guided analysis. For example,
with all the subjects (especially P2 and P3) the fMRI-guide

Figure 8.
Schematic representation of the borders of the individual visual
areas on the right hemisphere. The borders are shown based on
this color-coded system in Figures 7, 9, and 10 in order to
reveal the approximate locations of the specified visual areas.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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helped to get rid of some spurious dipole locations appear-
ing on the left hemisphere without the fMRI-guidance.
Despite being diffuse, the MEG inverse locations and
different solution modes obtained with this approach coin-
cide with the individual primary visual areas mapped
with multifocal fMRI. Few example modes (i.e., solution
estimates) of subjects P1 and P2 fMRI-guided chains are
displayed (see Fig. 10). Note that the estimation of the
probability mass between the modes in here is impossible
because the modes are from different chains and the sam-
pler still has limited mixing properties between modes.
Thus, one must rely on human expertise on interpreting
which of the modes is the best given the underlying exper-
imental task. For example, with subject P1 (chain 2), there
is an early active dipole around 100 ms in V1 and later
emerging dipoles close to V3/V3a of that individual. This
is inline with the hypothesized activation pattern related
to the drifting grating stimulus. Only in some of the chains

nathing
—— WAI-guid e

Figure 9.

Left: Clustered locations of the
chains from the drifting grating
MEG experiment in subjects
PI-P3 with and without fMRI-
guidance. Right: Mean posterior
energies and number of sources
in the clustered samples with
and without fMRI-guidance.
[Color figure can be viewed in
the online issue, which is avail-
able at www.interscience.wiley.
com.]

—— mathing
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Mumber of dipoles

such modes were visited that contained later emerging
dipoles active in areas close to V5/MT. However, these
dipoles were not shown in all the modes at the same loca-
tion and did not show strong consistency. Along with the
illustrated locations and latencies of the dipoles, a scatter-
plot depicting the datafit between forward calculated fields
with original fields is shown. Just as in our previous study,
the data fits are in general reasonable and equally good
for different solution modes. The resulting solution modes
of especially subjects P2 and P3 are not throughout as con-
gruent with each other as is the case with the ones pre-
sented for subject P1.

DISCUSSION

Despite of many practical MEG inverse localization
methods utilizing fMRI information are being available,
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F1, chain 2

Figure 10.
Representative example modes
from four MCMC chains with
fMRI-guide are portrayed by
estimated source locations, time
courses, and datafit scatterplot
of the forward calculated fields
with respect to measured fields.
[Color figure can be viewed in
the online issue, which is avail-
able at www.interscience.wiley.
com.]

the true nature of the coupling between the haemody-
namic responses and electromagnetic measurements has
not yet been revealed. In this study, we proposed a novel
enhancement to a Bayesian, MCMC-based, MEG inverse
method in which fMRI data is used to construct a dipole
location proposal distribution that guides the sampling
algorithm. We validated the hypothesized improvements
in the sampling efficiency by simulations and also tested
the method with an empirical visual motion stimulus data-
set, yielding a very complex inverse problem especially for
an automated algorithm.

The simulation results suggest that the number of itera-
tions required for plausible convergence with the fMRI-
guided sampler is smaller, if only clearly present in the
simulated case (order of 3-5). Unfortunately, in the analy-
ses of empirical data even the fMRI-guided sampler seems
to be hampered by poor mixing properties recognized al-
ready in our previous study without the fMRI information.
However, the simulation results are encouraging and sug-
gest that the localization accuracy and the dispersion of
the dipole locations across different chains and modes are
better with the fMRI-guided method. Similar tendencies
especially with the convergence properties of the sampler
are observed also with the empirical results. Nonetheless,
the multimodality makes it very difficult to properly
obtain samples from the full posterior distribution and for
the time being one must rely on, for instance, the clustered
solutions presented in this study and to exemplars of rep-
resentative solution modes. It is important to recall that
one of the fundamental ideas in Bayesian MCMC-based
approaches is to aim at charting the whole distribution of
possible solutions rather than one single estimate. In
theory, this enables the researcher to commit himself on

P1, chain 3

F1, chain 9

relating the experimental task with the activations rather
than considering the confidence limits of the single point
estimate first.

From the simulations, it seems evident that small errors
in the fMRI-guide (type I or II errors) do not seriously mis-
lead the approach as long as the source is clearly detecta-
ble in MEG, that is the SNR is adequate. Conversely, the
simulations suggest that in case of MEG source with low
SNR, correct fMRI-guidance is helpful. In fact, with the
prevailing multimodality of the posterior distribution and
deficiencies in the mixing capabilities of the sampler, the
fMRI-guide serves as a sort of implicit prior for the MEG
inverse analysis although it is only used as a proposal dis-
tribution for the MCMC procedure. Importantly, this does
not bias the results asymptotically even though the pro-
posal distribution might not be accurate. This is desirable,
since any suitable proposal distribution can then be used
without invalidating the method. For instance, user
defined seeding proposal distributions could be used, or
even, in the absence of fMRI data, a beamformer style
derived simple proposals from the MEG data alone. Such
well-grounded data-driven MCMC methods have been
used for example in image segmentation [Clark and
Quinn, 1999; Tu and Zhu, 2002].

Another important virtue of our method is that with the
two speed-up strategies used [Auranen et al, 2007; Jun
et al., 2005], the analysis of relatively long data segments
(500 ms corresponding to roughly 150 timepoints) can be
analyzed in a manageable time with current desktop com-
puters. It is noteworthy, that with 204 MEG sensors and
100 timepoints, the required analysis time (for several
MCMC chains) without the speed-ups is in practice infea-
sible.
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With experiments probing more complex aspects of, e.g.,
the visual or auditory system, it is convenient if the whole
time course of the signal rather than just the peaks can be
automatically analyzed. However, our approach still suf-
fers from an obvious problem: the number of sources and
their locations are required to stay fixed over the whole
analysis period. Recently, Jun et al. [2006] presented an
interesting modification to their original spatiotemporal
dipole model which allows the source constellation to
change over time. In their approach, activation starting
and ending timepoints for each candidate source are
added as additional unknown parameters in the analysis.
These additional parameters are sampled as well and thus
more realistic modeling of longer data sets is conceivable.

Although the inspection of the presented empirical data
indicates that more accurate dipole fitting results might be
achieved with traditional approaches, often requiring man-
ual intervention and heuristic choices, the algorithm pre-
sented here serves as an alternative for fully automatic
inverse analysis combining MEG/EEG and fMRL. It is pos-
sible that some preprocessing errors, such as imperfect cor-
egistration of MEG and fMRI data, epi distortion, or noise
in either data sets, reduce the efficiency of the experimen-
tal analyses. In spite of the multimodality of the posterior
causing the sampler to operate perhaps more as a stochas-
tic optimizer rather than an efficient sampler, there are
clear advantages. The fMRI-guided sampler can handle
relatively large datasets, converges faster, is basically auto-
matic, and, according to our simulations, yields better
localization results than an approach based on MEG alone.

In conclusion, we demonstrated the benefits and possi-
bilities of an automated fMRI-guided MCMC-based MEG
inverse dipole localization method in a very challenging
MEG inverse problem, which consisted of simulations and
empirical MEG/fMRI data acquired during a presentation
of a visual motion stimulus. In simulations, both the quan-
titative and qualitative localization accuracies are
improved in comparison to the previous method without
fMRI-guidance for the MCMC sampler. With the empirical
data, the dipoles are located at plausible sites in the low-
order visual areas and to some extent also at areas
covering higher hierarchy in the human visual system
indicating that these kind of methods can be utilized in
evaluating the locations, latencies, and amplitudes of the
combined fMRI and MEG brain activity.
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