model { # Standardise x's and coefficients for (j in 1:p) { b[j] <- beta[j]/sd(x[,j]) ; for (i in 1:N) { z[i,j] <- (x[i,j] - mean(x[,j]))/sd(x[,j]) ; } } # Model PI <- 3.141593; d <- 4; # degrees of freedom for t d2 <- d/2; # half of that for (i in 1:N) { prec[i] <- w[i]*tau; # t_d errors via normal scale mixture Y[i] ~ dnorm(mu[i],prec[i]); w[i] ~ dgamma(d2,d2); mu[i] <- beta0 + beta[1]*z[i,1]+beta[2]*z[i,2]+beta[3]*z[i,3]; ds[i] <- w[i]*tau*pow((Y[i]-mu[i]),2) - log((w[i]*tau)/(2*PI)); # t_d errors via normal scale mixture } # Priors beta0 ~ dnorm(0,.00001); for (j in 1:p) { beta[j] ~ dnorm(0,.00001); # coeffs independent } tau ~ dgamma(1.0E-3,1.0E-3); }