model { # Standardise x's and coefficients for (j in 1:p) { b[j] <- beta[j]/sd(x[,j]) ; for (i in 1:N) { z[i,j] <- (x[i,j] - mean(x[,j]))/sd(x[,j]) ; } } # Model for (i in 1:N) { Y[i] ~ dlogis(mu[i],tau); # logistic errors mu[i] <- beta0 + beta[1]*z[i,1]+beta[2]*z[i,2]+beta[3]*z[i,3]; ds[i] <- 4*log(1+exp(tau*(Y[i]-mu[i]))) - 2*log(tau) - 2*tau*(Y[i]-mu[i]); # logistic errors } # Priors beta0 ~ dnorm(0,.00001); for (j in 1:p) { beta[j] ~ dnorm(0,.00001); # coeffs independent } tau ~ dgamma(1.0E-3,1.0E-3); }