Pareto- \hat{k} as practical pre-asymptotic diagnostic of Monte Carlo estimates

Aki Vehtari

Aalto University A! Finnish Center for Artificial Intelligence FCAI Stan G ArviZ ArviZ

with Andersen, Bürkner, Catalina, Dhaka, Gabry, Gelman, Huggins, Magnusson, Paananen, Piironen, Simpson, Welandawe & Yao

Relevance of this talk

- Practical diagnostic tool
 - Monte Carlo, MCMC, quasi MC, importance sampling, particle filtering
 - stochastic optimization, stochastic variational inference
 - estimating divergences
 - assessing distributional approximations

(Markov chain) Monte Carlo

$$egin{aligned} & heta^{(s)} \sim p(heta) \ & ext{E}_{p}[h(heta)] pprox rac{1}{S} \sum_{s=1}^{S} h(heta^{(s)}) \end{aligned}$$

- Consistent and unbiased (MCMC asymptotically)
- If variance is finite \rightarrow central limit theorem (CLT)

 $Var[E(h(\theta))] \approx Var[h(\theta)]/S$

(Markov chain) Monte Carlo

$$egin{aligned} & heta^{(s)} \sim p(heta) \ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

- Consistent and unbiased (MCMC asymptotically)
- If variance is finite \rightarrow central limit theorem (CLT)

 $Var[E(h(\theta))] \approx Var[h(\theta)]/S$

In case of MCMC effective sample size (ESS) takes into account the within and between chain dependencies (see, e.g. Vehtari et al., 2021)

(Self-normalized) Importance sampling

$$egin{aligned} & \theta^{(s)} \sim g(heta) \ & & ext{E}_{
ho}[h(heta)] pprox rac{1}{S} \sum_{s=1}^{S} h(heta^{(s)}) w^{(s)}, & ext{where} \quad w^{(s)} = rac{p(heta^{(s)})}{g(heta^{(s)})} \end{aligned}$$

IS estimate is consistent and unbiased

(Self-normalized) Importance sampling

$$egin{aligned} & \theta^{(s)} \sim g(heta) \ & & ext{E}_{eta}[h(heta)] pprox rac{1}{S} \sum_{s=1}^{S} h(heta^{(s)}) w^{(s)}, & ext{where} \quad w^{(s)} = rac{p(heta^{(s)})}{g(heta^{(s)})} \end{aligned}$$

IS estimate is consistent and unbiased

Self-normalized

$$\mathbf{E}_{p}[h(\theta)] \approx \frac{\sum_{s=1}^{S} h(\theta^{(s)}) w^{(s)}}{\sum_{s=1}^{S} w^{(s)}}$$

Self-normalized IS estimate is consistent with bias O(1/S)

(Self-normalized) Importance sampling

$$egin{aligned} & \theta^{(s)} \sim g(heta) \ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

IS estimate is consistent and unbiased

Self-normalized

$$\mathbf{E}_{p}[h(\theta)] \approx \frac{\sum_{s=1}^{S} h(\theta^{(s)}) w^{(s)}}{\sum_{s=1}^{S} w^{(s)}}$$

- Self-normalized IS estimate is consistent with bias O(1/S)
- If $h(\theta)w$ and w have finite variance \rightarrow CLT
 - variance goes down as 1/S
 - ESS takes into account the variability in the weights

Some uses of importance sampling

- Fast leave-one-out cross-validation
- Fast bootstrapping
- Fast prior and likelihood sensitivity analysis
- Particle filtering
- Improving distributional approximation (e.g VI)

Estimating divergences

f-divergences can be presented as expectations of the density ratio *w*(θ)

$$\mathcal{L}_f(p \parallel g) := \mathbb{E}_{\theta \sim g}[f(w(\theta))] \approx \frac{1}{S} \sum_{s=1}^S f(w^{(s)})$$

Estimating divergences

f-divergences can be presented as expectations of the density ratio *w*(θ)

$$\mathcal{L}_f(p \parallel g) \coloneqq \mathbb{E}_{\theta \sim g}[f(w(\theta))] pprox rac{1}{S} \sum_{s=1}^S f(w^{(s)})$$

Objective	<i>f</i> (<i>w</i>)
Exclusive KL Inclusive KL χ^2 α -divergence	$\log(w) \ w \log(w) \ (w^2 - w)/2 \ (w^{lpha} - w)/(lpha(lpha - 1))$

Estimating divergences

f-divergences can be presented as expectations of the density ratio *w*(θ)

$$\mathcal{L}_f(p \parallel g) \coloneqq \mathbb{E}_{\theta \sim g}[f(w(\theta))] \approx \frac{1}{S} \sum_{s=1}^S f(w^{(s)})$$

Objective	<i>f</i> (<i>w</i>)
Exclusive KL Inclusive KL χ^2 α -divergence	$\log(w) \ w \log(w) \ (w^2 - w)/2 \ (w^{lpha} - w)/(lpha(lpha - 1))$

- Basis of stochastic variational inference
 - $w(\theta)$ connects IS and SVI

Central limit theorem

- We would like to have finite variance and CLT
 - sometimes these can be guaranteed by construction, e.g., by choosing $g(\theta)$ so that $w(\theta)$ is bounded
 - generally not trivial

Central limit theorem

- We would like to have finite variance and CLT
 - sometimes these can be guaranteed by construction, e.g., by choosing $g(\theta)$ so that $w(\theta)$ is bounded
 - generally not trivial
- If variance is infinite, but mean is finite
 - \rightarrow generalized CLT and asymptotic consistency

Central limit theorem

- We would like to have finite variance and CLT
 - sometimes these can be guaranteed by construction, e.g., by choosing $g(\theta)$ so that $w(\theta)$ is bounded
 - generally not trivial
- If variance is infinite, but mean is finite

 → generalized CLT and asymptotic consistency
- Pre-asymptotic and asymptotic behavior can be really different!

Simple example: $x \sim N$, t_4 , t_2 , t_1 , $t_{1/2}$

- N has all moments finite
- t_{ν} has less than ν fractional moments

Simple example: $x \sim N$

Simple example: $x \sim N$

Aki.Vehtari@aalto.fi - @avehtari

Aki.Vehtari@aalto.fi - @avehtari

Simple example: $x \sim t_4$, t_2 , t_1

Aki.Vehtari@aalto.fi - @avehtari

Simple example: $x \sim t_4$, t_2 , t_1

Aki.Vehtari@aalto.fi - @avehtari

Simple example:

 $t_2, t_1, t_{1/2}$

Aki.Vehtari@aalto.fi - @avehtari

GPD has a shape parameter k, and 1/k finite fractional moments

Pareto- \hat{k} diagnostic: $x \sim N$

Aki.Vehtari@aalto.fi – @avehtari

Pareto- \hat{k} diagnostic: $x \sim t_4$

Pareto- \hat{k} diagnostic: $x \sim t_2$

Pareto- \hat{k} diagnostic: $x \sim t_1$

Pareto- \hat{k} diagnostic: $x \sim t_{1/2}$

Pareto- \hat{k} diagnostic is pre-asymptotic diagnostic

We can make estimates only based on what we have observed

Pareto- \hat{k} diagnostic: thick-tailed bounded distribution

Thick-tailed bounded distributions in practice

- Thick-tailed distributions are common in importance sampling and divergence estimation
 - if $g(\theta)$ has thinner tails than $p(\theta)$ $\rightarrow w(\theta)$ is likely to have thick tails
 - if $g(\theta)$ has thicker tails than $p(\theta) \rightarrow w(\theta)$ is bounded, but that bound can be far

Aki.Vehtari@aalto.fi - @avehtari

Concentration of measure and typical sets

Example continued: $p(\theta) = N$ (blue), $g(\theta) = t_7$ (red) with equal variance and thicker tails, and thus importance ratios are bounded. $S = 10^5$, D = 512.

Concentration of measure and typical sets

Example continued: $p(\theta) = N$ (blue), $g(\theta) = t_7$ (red) with equal variance and thicker tails, and thus importance ratios are bounded. $S = 10^5$, D = 512.

Aki.Vehtari@aalto.fi - @avehtari

Concentration of measure and typical sets

Example continued: $p(\theta) = N$ (blue), $g(\theta) = t_7$ (red) with equal variance and thicker tails, and thus importance ratios are bounded. $S = 10^5$, D = 512.

Aki.Vehtari@aalto.fi - @avehtari

 $p(\theta) = N$, $g(\theta) = t_7$ which has thicker tails than normal, and thus ratios $w(\theta)$ are bounded. $S = 10^5$. *D* varies.

Aki.Vehtari@aalto.fi - @avehtari

• CLT says that to half the MCSE, need 4 times bigger S

- CLT says that to half the MCSE, need 4 times bigger S
- If Pareto- $\hat{k} \approx$ 0.7, to half the MCSE, need 10 times bigger S

- CLT says that to half the MCSE, need 4 times bigger S
- If Pareto- $\hat{k} \approx$ 0.7, to half the MCSE, need 10 times bigger S
- If Pareto- $\hat{k} > 1$, to half the MCSE, nothing helps

Pareto smoothed importance sampling (PSIS)

- Replace the largest observed ratios with expected ordered statistics of the fitted Pareto distribution
 - corresponds to modeling of the tail, and as usual, modeling reduces the noise

How many fractional moments are needed?

For finite variance

Objective	f(w)	Moments of w needed
IS normalization	W	2
Exclusive KL	$\log(W)$	δ
Inclusive KL	$W\log(W)$	$2+\delta$
χ^2	(<i>w</i> ² - <i>w</i>)/2	4
α -divergence	$(w^{lpha} - w)/(lpha(lpha - 1))$	2 lpha

How many fractional moments are needed?

For finite variance

Objective	f(w)	Moments of w needed
IS normalization	W	2
Exclusive KL	$\log(W)$	δ
Inclusive KL	$w \log(w)$	$2+\delta$
χ^2	(<i>w</i> ² - <i>w</i>)/2	4
α -divergence	$(w^{lpha} - w)/(lpha(lpha - 1))$	2α

For small error with practical sample sizes and Pareto smoothing

Objective	<i>f</i> (<i>w</i>)	Moments of w needed
IS normalization	W	1.4
Exclusive KL	$\log(W)$	δ
Inclusive KL	$W\log(W)$	$1.4 + \delta$
χ^2	$(w^2 - w)/2$	2.8
α -divergence	$(w^{\alpha} - w)/(\alpha(\alpha - 1))$	1.4 $lpha$

Aki.Vehtari@aalto.fi - @avehtari

Estimating Pareto- \hat{k}

- Fast empirical profile Bayes quadrature estimate by Zhang and Stephens (2009)
 - excellent accuracy compared to exact Bayesian inference
 - see more in Vehtari, Simpson, Gelman, Yao & Gabry (2019)

Pareto- \hat{k} diagnostic use cases

- Importance sampling
 - leave-one-out cross-validation (Vehtari et al., 2016, 2017; Bürkner at al, 2020)
 - Bayesian stacking (Yao et al., 2018, 2021, 2022)
 - leave-future-out cross-validation (Bürkner et al., 2020)
 - Bayesian bootstrap (Paananen et al, 2021, online appendix)
 - prior and likelihood sensitivity analysis (Kallioinen et al., 2021)
 - improving distributional approximations (Yao et al., 2018; Zhang et al., 2021; Dhaka et al., 2021)
 - implicitly adaptive importance sampling (Paananen et al., 2021)
- Stochastic optimization (Dhaka et al., 2020)
- Divergences and gradients in VI (Dhaka et al., 2021)
- MCMC (Paananen et al., 2021)

Co-authors and references

The main reference

• Vehtari, Simpson, Gelman, Yao, and Gabry (2019). Pareto smoothed importance sampling. *arXiv:1507.02646v6*.

Use cases

- Bürkner, Gabry & Vehtari (2020). Approximate leave-future-out cross-validation for time series models. J Stat Comp and Simul, 90(14):2499–2523.
- Dhaka, Catalina, Andersen, Magnusson, Huggins & Vehtari (2020). Robust, accurate stochastic optimization for variational inference. *NeurIPS 2020*, 33:10961–10973.
- Dhaka, Catalina, Welandawe, Andersen, Huggins & Vehtari (2021). Challenges and opportunities in high-dimensional variational inference. *NeurIPS 2021*, to appear.
- Kallionen, Paananen, Bürkner & Vehtari (2021). Detecting and diagnosing prior and likelihood sensitivity with power-scaling. *arXiv preprint arXiv:2107.14054*
- Paananen, Piironen, Bürkner, and Vehtari (2021). Implicitly adaptive importance sampling. Statistics and Computing, 31, 16.

- Vehtari, Gelman, and Gabry (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5):1413–1432.
- Yao, Vehtari, Simpson, and Gelman (2018).
 Yes, but Did It Work?: Evaluating Variational Inference. 35th ICML, PMLR, 80:5577–5586.
- Yao, Vehtari, Simpson & Gelman (2018). Using stacking to average Bayesian predictive distributions (with discussion). *Bayesian Analysis*, 13(3):917-1003,
- Yao, Pirš, Vehtari & Gelman (2021). Bayesian hierarchical stacking: Some models are (somewhere) useful. Bayesian Analysis, doi:10.1214/21-BA1287.
- Yao, Vehtari & Gelman (2022). Stacking for non-mixing Bayesian computations: The curse and blessing of multimodal posteriors. *JMLR*, accepted for publication.

Pareto smoothed importance sampling (PSIS)

Empirical comparison to the theory

black line = RMSE, red dashed line = MCSE estimate

Aki.Vehtari@aalto.fi – @avehtari

Variance of the estimate goes down as $S^{-\alpha}$, where α is convergence rate

Aki.Vehtari@aalto.fi - @avehtari