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Introduction

• Expected utility

- estimates the predictive performance of the model

- possible to use application specific utilities

- useful in both model assessment and comparison

• Estimation of the expected utility

- cross-validation

- information criteria, DIC
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Expected utility

• Given

- the training data D = {(x (i), y(i)); i = 1, 2, . . . , n}
- a model M

- a future input x (n+1)

- posterior predictive distribution p(y(n+1)|x (n+1), D, M)

a utility function u compares the predictive distribution to a future observation

• Examples of generic utilities

- predictive likelihood u = p(y(n+1)|x (n+1), D, M)

- absolute error u = abs
(
ŷ(n+1) − y(n+1)

)

• The expected utility is obtained by taking the expectation

ū = E(x (n+1),y(n+1))

[
u(y(n+1), x (n+1), D, M)

]
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Estimating expected utility

• The expected utility is obtained by taking the expectation

ū = E(x (n+1),y(n+1))

[
u(y(n+1), x (n+1), D, M)

]

• The distribution of (x (n+1), y(n+1)) is unknown

• Expected utility can be approximated

- sample re-use → cross-validation

- asymptotic approximations → information criteria
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Cross-validation

• The expected utility

ū = E(x (n+1),y(n+1))

[
u(y(n+1), x (n+1), D, M)

]

• The distribution of (x (n+1), y(n+1)) is estimated using (x (i), y(i)) and the

predictive distribution is replaced with a collection of CV predictive distributions

{p(y(i)|x (i), D(\i), M); i = 1, 2, . . . , n}
where D(\i) denotes all the elements of D except (x (i), y(i))

• CV predictive distributions are compared to the actual y(i)’s using the utility u,

and the expectation is taken over i

ūCV = Ei

[
u(y(i), x (i), D(\i), M)

]
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Information criteria

• The expected utility ū = E(x (n+1),y(n+1))

[
u(y(n+1), x (n+1), D, M)

]

• The predictive distribution is replaced with a “plug-in” predictive distribution

p(y(n+1)|x (n+1), θ̃ , D, M)

• Using second order Taylor approximation we obtain

ūNIC = Ei

[
u(y(i), x (i), θ̃ , D, M)

]
+ tr(K J−1)

K = Var[ū(θ̃)′], and J = E[ū(θ̃)′′]. The ū(θ̃)′ and ū(θ̃)′′ represent the first

and second derivatives with respect to θ .

• DIC Makes Monte Carlo approximation

2 (Eθ [ū(θ)] − ū(Eθ [θ])) ≈ tr(K J−1)

ūDIC = ū(Eθ [θ]) + 2 (Eθ [ū(θ)] − ū(Eθ [θ]))
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The effective number of parameters

• Using log-likelihood utility multiplied by n
L(θ̃) = ∑

i log p(y(i)|x (i), θ̃ , D, M)

- tr(K J−1) = peff, the effective number of parameters

- 0 < peff ≤ p

• peff is influenced by

- the amount of the prior influence

- dependence between the parameters

- number of the training samples (peff ≤ n)

- distribution of the noise in the samples

- the complexity of the underlying phenomenon to be modeled
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The effective number of parameters

• There is no need to estimate peff in cross-validation approach

• Using log-likelihood utility multiplied by n

peff,CV =
∑

i

[
log p(y(i)|x (i), D, M)

]
−

∑
i

[
log p(y(i)|x (i), D(\i), M)

]

= LMPO − LCV
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Example

• Robust regression using the stack loss data

- 3 predictor variables, 21 cases

- linear regression with 5 different error distribution models

110 115 120 125 130

1) normal

2) double exp.

3) logistic

4) t
4

5) t
4
 as scale mixt.

Expected predictive deviance

CV
DIC
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Example

• Robust regression using the stack loss data

- DIC slightly underestimates the effective number of parameters

- DIC slightly underestimates the expected predictive deviance

110 115 120 125 130

1) normal

2) double exp.

3) logistic

4) t
4

5) t
4
 as scale mixt.

Expected predictive deviance

CV
DIC

4 6 8 10

1) normal

2) double exp.

3) logistic

4) t
4

5) t
4
 as scale mixt.

Effective number of parameters

1) normal

2) double exp.

3) logistic

4) t
4

5) t
4
 as scale mixt.

CV
DIC
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Example

• Robust regression using the stack loss data

- DIC gives just point estimates

- In CV approach it is easy to estimate uncertainty

110 115 120 125 130

1) normal

2) double exp.

3) logistic

4) t
4

5) t
4
 as scale mixt.

Expected predictive deviance

CV
DIC

−10 −5 0 5 10
Pairwise comparison of t

4
 scale mixture to others

1) normal
2) double exp.
3) logistic
4) t

4
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Example

• Concrete quality prediction

- 27 predictor variables, 215 cases

- Gaussian process model with 4 different error distribution models

0.8 0.9 1 1.1 1.2

1) N

2) tν

3) in.dep.−N

4) in.dep.−tν

Expected mean predictive likelihood

CV
DIC

0.7 0.8 0.9 1 1.1 1.2 1.3
Pairwise comparison of 4) in.dep.−tν to others

1) N
2) tν
3) in.dep.−N
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Dependent data

• Different dependencies

- Group dependencies

- Time series

- Spatial

• DIC assumes independence

• CV can handle some finite range dependencies
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Example of group dependencies

• Forest scene classification

- 18 predictor variables 48x100 cases

- 20-hidden-unit MLP with the logistic likelihood model

86 88 90 92 94
Expected classification accuracy−%

Group CV
Random CV
DIC
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Example

• Forest scene classification

- DIC assumes independent data points

- CV can handle group dependencies

86 88 90 92 94
Expected classification accuracy−%

Group CV
Random CV
DIC

200 300 400 500 600 700
Effective number of parameters

Group CV
Random CV
DIC
Number of parameters in model
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Example

• Longitudinal data: the six cities-study

- 2 predictor variables and 537 children

- linear model with interaction term, three different link functions and Bernoulli

likelihood

Wheezing status

at age of

Mother

smoking

7 8 9 10

Child 1 0 0 0 0 0

Child 2 0 0 1 0 0

Child 3 0 1 0 1 1

.

.

.

Child n 1 1 1 1 1

1250 1500 1750

1) logit

2) probit

3) cloglog

Expected predictive deviance

CV
DIC canonical
DIC mean
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Cross-validation vs. Information criteria

Cross-validation DIC

• uses full predictive distributions • uses “plug-in” predictive distributions

• deals directly with predictive
distributions

• parametrization problems

• easy to estimate the uncertainty • estimation of the uncertainty under
investigation

• can handle certain finite range
dependencies

• assumes independence

• up to 10 x more computation • no additional computation after
sampling from posterior
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