Cross-Validation, Information Criteria, Expected Utilities and the Effective Number of Parameters

Aki Vehtari and Jouko Lampinen

HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory of Computational Engineering

Introduction

- Expected utility
 - estimates the predictive performance of the model
 - possible to use application specific utilities
 - useful in both model assessment and comparison
- Estimation of the expected utility
 - cross-validation
 - information criteria, DIC

Expected utility

- Given
 - the training data $D = \{(x^{(i)}, y^{(i)}); i = 1, 2, ..., n\}$
 - a model M
 - a future input $x^{(n+1)}$
 - posterior predictive distribution $p(y^{(n+1)}|x^{(n+1)}, D, M)$

a utility function u compares the predictive distribution to a future observation

- Examples of generic utilities
 - predictive likelihood $u = p(y^{(n+1)}|x^{(n+1)}, D, M)$
 - absolute error $u = abs \left(\hat{y}^{(n+1)} y^{(n+1)} \right)$
- The expected utility is obtained by taking the expectation

$$\bar{u} = E_{(x^{(n+1)}, y^{(n+1)})} \left[u(y^{(n+1)}, x^{(n+1)}, D, M) \right]$$

Estimating expected utility

• The expected utility is obtained by taking the expectation

$$\bar{u} = E_{(x^{(n+1)}, y^{(n+1)})} \left[u(y^{(n+1)}, x^{(n+1)}, D, M) \right]$$

- The distribution of $(x^{(n+1)}, y^{(n+1)})$ is unknown
- Expected utility can be approximated
 - sample re-use \rightarrow cross-validation
 - asymptotic approximations \rightarrow information criteria

Cross-validation

• The expected utility

$$\bar{u} = E_{(x^{(n+1)}, y^{(n+1)})} \left[u(y^{(n+1)}, x^{(n+1)}, D, M) \right]$$

• The distribution of $(x^{(n+1)}, y^{(n+1)})$ is estimated using $(x^{(i)}, y^{(i)})$ and the predictive distribution is replaced with a collection of CV predictive distributions

{
$$p(y^{(i)}|x^{(i)}, D^{(i)}, M); i = 1, 2, ..., n$$
}

where $D^{(i)}$ denotes all the elements of D except $(x^{(i)}, y^{(i)})$

• CV predictive distributions are compared to the actual $y^{(i)}$'s using the utility u, and the expectation is taken over i

$$\bar{u}_{\mathsf{CV}} = E_i \left[u(y^{(i)}, x^{(i)}, D^{(\setminus i)}, M) \right]$$

Information criteria

• The expected utility $\bar{u} = E_{(x^{(n+1)}, y^{(n+1)})} \left[u(y^{(n+1)}, x^{(n+1)}, D, M) \right]$

• The predictive distribution is replaced with a "plug-in" predictive distribution

$$p(y^{(n+1)}|x^{(n+1)},\tilde{\theta},D,M)$$

• Using second order Taylor approximation we obtain

$$\bar{u}_{\text{NIC}} = E_i \left[u(y^{(i)}, x^{(i)}, \tilde{\theta}, D, M) \right] + \text{tr}(KJ^{-1})$$

 $K = \text{Var}[\bar{u}(\tilde{\theta})']$, and $J = \text{E}[\bar{u}(\tilde{\theta})'']$. The $\bar{u}(\tilde{\theta})'$ and $\bar{u}(\tilde{\theta})''$ represent the first and second derivatives with respect to θ .

• DIC Makes Monte Carlo approximation $2(E_{\theta}[\bar{u}(\theta)] - \bar{u}(E_{\theta}[\theta])) \approx tr(KJ^{-1})$

$$\bar{u}_{\mathsf{DIC}} = \bar{u}(E_{\theta}[\theta]) + 2\left(E_{\theta}[\bar{u}(\theta)] - \bar{u}(E_{\theta}[\theta])\right)$$

HELSINKI UNIVERSITY OF TECHNOLOG

The effective number of parameters

- Using log-likelihood utility multiplied by n $L(\tilde{\theta}) = \sum_{i} \log p(y^{(i)}|x^{(i)}, \tilde{\theta}, D, M)$
 - $tr(KJ^{-1}) = p_{eff}$, the effective number of parameters
 - $0 < p_{\text{eff}} \leq p$
- p_{eff} is influenced by
 - the amount of the prior influence
 - dependence between the parameters
 - number of the training samples $(p_{\text{eff}} \leq n)$
 - distribution of the noise in the samples
 - the complexity of the underlying phenomenon to be modeled

The effective number of parameters

- There is no need to estimate p_{eff} in cross-validation approach
- Using log-likelihood utility multiplied by *n*

$$p_{\text{eff,CV}} = \sum_{i} \left[\log p(y^{(i)} | x^{(i)}, D, M) \right] - \sum_{i} \left[\log p(y^{(i)} | x^{(i)}, D^{(\setminus i)}, M) \right]$$
$$= L_{\text{MPO}} - L_{\text{CV}}$$

- Robust regression using the stack loss data
 - 3 predictor variables, 21 cases
 - linear regression with 5 different error distribution models

- Robust regression using the stack loss data
 - DIC slightly underestimates the effective number of parameters
 - DIC slightly underestimates the expected predictive deviance

- Robust regression using the stack loss data
 - DIC gives just point estimates
 - In CV approach it is easy to estimate uncertainty

- Concrete quality prediction
 - 27 predictor variables, 215 cases
 - Gaussian process model with 4 different error distribution models

Dependent data

- Different dependencies
 - Group dependencies
 - Time series
 - Spatial
- DIC assumes independence
- CV can handle some finite range dependencies

Example of group dependencies

- Forest scene classification
 - 18 predictor variables 48x100 cases
 - 20-hidden-unit MLP with the logistic likelihood model

- Forest scene classification
 - DIC assumes independent data points
 - CV can handle group dependencies

- Longitudinal data: the six cities-study
 - 2 predictor variables and 537 children
 - linear model with interaction term, three different link functions and Bernoulli likelihood

Cross-validation vs. Information criteria

Cross-validation	DIC
 uses full predictive distributions 	 uses "plug-in" predictive distributions
 deals directly with predictive distributions 	 parametrization problems
 easy to estimate the uncertainty 	 estimation of the uncertainty under investigation
 can handle certain finite range dependencies 	 assumes independence
 up to 10 x more computation 	 no additional computation after

sampling from posterior

HELSINKI UNIVERSITY OF TECHNOLOGY