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INTRODUCTION

» Cancer patients are frequently followed up longitudinally with computed
tomography (CT), which involves radiation hazards, and the optimal follow-up
schedules are often unknown

» We developed a method that adjusts the timing of CT scans with the hazard of
cancer recurrence in time

MATERIAL

» The clinical data generated in the phase |l Scandinavian Sarcoma Group
XVIII/ Arbeitsgemeinschaft Internistische Onkologie trial that compares 1-year
to 3-year duration of adjuvant imatinib (medicine taken orally) in the treatment
of patients with gastrointestinal stromal tumour (GIST)

» For the individual /, where i =1, ..., n, we have survival time y; with a
censoring indicator ¢;, where ¢; = 0 if the /ith observation is uncensored and
oj = 1 if the observation is right or interval censored. For interval censored
survival time, y; is known to fall into an interval [y; o, Vi up|-

» Three time-associated covariates were the time from the date of
randomisation, the time from the date of completion of adjuvant imatinib
(considered to be 0 before completion of adjuvant therapy), and an indicator
variable for adjuvant imatinib (considered to be 1 before completion of adjuvant
imatinib, and 0 after its completion)

» Two covariates observed at the time of the study entry were tumour mitotic
count and tumour location (gastric vs. non-gastric).

METHODS

» We present a Gaussian processes model for inhomogoneus Poisson process
survival analysis with interval censored data.

» The benefit of Gaussian process model is that time dependent and baseline
covariates may have full interactions.

» To allow the form of the hazard function to depend on the covariates, we use a
generic hazard model

hi(t) = exp(n(t, x;)), (1)
Xx;is the d x 1 vector of covariates for the ith patient, and » is nonlinear
function depending on time t and the covariates x;.

» We assume a piecewise log-constant hazard in time. The time axis Is
partitioned into K non-overlapping intervals with equal lengths:

0=5<81 <8 <...<8k,Where sk > yjforalli=1,... n.Intheinterval k,
where k =1,..., K, hazard is assumed to be constant in time and for the ith
Individual the hazard rate in the kth time interval is

hi(t) = exp(n(7k, Xix)), t € (Sk—1, Sk, (2)

where 7« = (Sk — Sk_1)/2 is the mean of kth time interval and x; denotes
possibly time varying covariates.

» Using the piecewise log-constant assumption for the hazard rate function, the
contribution of the possibly right censored ith observation (y;, 9;) for the
likelihood is

Ki
i = [exp(nik)|" " exp [ = (sk — Sk—1) exp(ni) | , (3)
k=1
where ni = n(7«, Xix) and K; is such that sx_1 < y; < sk.

» This likelihood is equivalent to the likelihood of K; Poisson distributed data
points, with means (sx — Sx_1) exp(nik), of which K; — 1 first ones are observed
to be 0, and the last one observed to be 0 or 1 according to whether the
survival time y; is observed or censored.

» A zero-mean Gaussian process (GP) prior is set for n. The covariance function
of GP defines the smoothness and scale properties of the latent function. We
use a sum of constant and non-stationary neural network covariance
functions. A neural network covariance function was chosen, since it is
suitable for modeling non-stationary, saturating and interaction effects.

» Weakly informative priors were chosen for covariance function parameters.

» The conditional distribution p(6|y, x) was obtained by marginalising over the
latent variables n using a Gaussian approximation.

» The covariance function parameters were sampled from the conditional
distribution p(0|y, x) using hyperrectangle multivariate slice sampling.

» The unknown y; for interval censored observations were sampled by first
sampling latent values 7 from the Gaussian approximation of the conditional
distribution p(n|0, y, x), then computing the hazard h given the latent values,
and finally sampling y; from the conditional density p(y;|h;) at interval [y; o, Vi up]-

» Inference for the model was made using GPstuff toolbox

http://becs.aalto.fi/~ave/

RESULTS

» The model was used to find the optimal points in time for performing each C
scan by minimizing the expected time between the observed date of tumour
recurrence and the model-predicted date of recurrence for six prototype
patients treated for 36 months with adjuvant imatinib

» Shape of the individual hazard function depends on the surgery time
covariates and time dependent covariates
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Left: Individual patient hazard functions for GIST recurrence. Right: The hazard of GIST

recurrence with time for six prototype patients treated with three years of adjuvant imatinib based

on tumour site and mitotic count. The hazard is low during adjuvant imatinib, but higher after
completion of adjuvant treatment.

» Predicted hazard functions for new patients can be used to optimize timing of
computed tomography examinations to reduce the time from recurrence to
observation without increasing the radiation dose and imaging costs
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Left: Timing of CT scans according to the National Comprehensive Cancer Network of the US
guideline recommendations5 (red diamonds, CT carried out at 6 or 3 month intervals for 3 or 5
years) and optimised timing of CT scans according to the model (blue circles). Right: The
estimated time intervals between the date of GIST recurrence and its detection by CT with
different imaging schedules.

CONCLUSION

» The numbers of CT scans can be reduced approximately 30% during the first
six years of follow-up since initiation of treatment compared with the current
follow-up recommendations without jeopardizing early detection of recurrence

» The method may be applicable to the follow-up of other types of human cancer
to facilitate early detection of recurrence or to reduce the radiation hazards
associated with CT scans
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