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Introduction - motivation for variable selection

e |n Bayesian inference, it is feasible to keep all the observed input variables in
the model
— Control the effects of variables with priors
— Automatic Relevance Determination (ARD) prior: less relevant variables

have smaller effects



Introduction - motivation for variable selection

e |n Bayesian inference, it is feasible to keep all the observed input variables in
the model
— Control the effects of variables with priors
— Automatic Relevance Determination (ARD) prior: less relevant variables

have smaller effects

HOWEVER:

e |f a smaller set of variables is used in the model
— Model easier to analyse
— Measurement costs lower in the future
— Savings in the computation time

— Knowledge of variable relevances
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Introduction - variable selection

e Model selection where nested models are considered

e A full (encompassing) probability model
— Uses all available input variables

— Assumption: reasonable and sufficient for the modelling problem under

study

e Our goal is to find a submodel having predictive performance as close to the
full model as possible
— Using only a set of the most necessary input variables
— If correlating variables, is there redundancy?

— How to find a useful subset of variables?



Introduction - variable relevances

e The choice of variables based on variable relevances
— Predictive comparison
— Reversible jump Markov chain Monte Carlo (RIMCMC)
— ARD prior?

e Advices from an application specialist?

e Using some relevance measure — proposal for a subset

e Further inference conditioned only on a selected subset?



Introduction - variable relevances

e The choice of variables based on variable relevances
— Predictive comparison

— Reversible jump Markov chain Monte Carlo (RIMCMC)
— ARD prior?

e Advices from an application specialist?
e Using some relevance measure — proposal for a subset

e Further inference conditioned only on a selected subset?

UNFORTUNATELY:

e Omitting a set of variables may introduce a selection bias
— Removal ignores the uncertainty related to the removed parts of data
(using data twice)
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Introduction - avoiding the selection bias

e Further inference conditioned also to the information that a set of variables

are omitted

e Inference via joint distribution
— (Lindley 1968)" presented how to do a choice of variables for Gaussian

linear models by infering via joint distribution of input variables

e [nference via projections
— Here the bias is avoided by doing inference via Kullback-Leibler (KL)
projections introduced in (Goutis et al. 1998)T
— In (Goutis et al. 1998) the projections for GLM, we apply the method for
GP

— We do a small modification in the classification models

* Lindley, D. V.: The choice of variables in multiple regression

TGoutis, C. and Robert, C.P.: Model choice in generalised linear models: A Bayesian approach via KL projections
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Variable selection - definitions

e Training data: D = {(x (@), ());i: 1,2,...,n}

e A matrix X the entire set of observations(n rows, d columns), the targets y

continuous in regression and binary valued in classification
e Model p(y | X)
e Interested in the predictive distribution of y given a new input x (1)
e X the chosen variables, X ; the omitted variables

e Try to find a subset [ that preserves the performance of the submodel

p(y | X7) close to the performance of the full model p(y | X)



Variable selection - inference via joint distribution

e The effect of removed variables X ; in further inference?

e Using the conditional distribution p(X ; | X;) the model can be written

p(y | X;) = /P(Y | X7, X)p(Xy | Xp)d X,
where the uncertainty related to X ; explicitly modelled with the variables X ;

e In (Lindley 1968), the choice of variables analytically for Gaussian linear
models

— suitable assumptions of p(X; | X;) — closed form computations

e Model p(X ;| X;) with Gaussian processes?



Variable selection - inference via projections

e Variable selection for GP using KL divergences is motivated by a Bayesian
model choice method proposed in (Goutis et al. 1998)

— No need to assume (or know) the conditional model p(X ;| X;)

e The choice of variables is based on the evaluation of the Kullback-Leibler
divergence between the full model and a submodel
— Uncertainty related to the removed variables X ;

— Information from the removed variables

e By considering two distributions fy and f1, the Kullback-Leibler divergence

from fq to f; is given by

fo()

fl(ﬁ)dx

De(follfr) = / fo(x) log



Variable selection - inference via projections

e By writing a general probability model as f(-|0) where # € O, the projection

of the parameter 6 is defined as a point §= in ©,, where
DAFCIOIFCIET) = int Dl F(16)1C160))
is achieved (if nested: Oy C ©)

e Prior only needed for the full model parameters

e Samples from the posterior distribution of &
— For each parameter value, a projection with corresponding minimum
divergence is computed

— Average minimum divergence
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Variable selection - inference via projections

e The choice of variables is then done by finding the most parsimonious

submodel with an acceptable distance from the full model

e \Where to set the acceptable distances?
— Explanatory power of the full model (Dupuis et al. 2003)* — changes the

problem into a more interpretable form

e In (Goutis et al. 1998) and (Dupuis et al. 2003) the projection method is

shown for generalised linear models

e We apply the projection method for models where a Gaussian process (GP)

prior is set for latent function values

* Dupuis, J. A. and Robert, C. P.: Variable selection in qualitative models via an entropic explanatory power
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Gaussian process

e Assuming the full model to be sufficient for modelling practices, a flexible GP
model is a viable choice
— No need to assume any functional forms in advance
— Nonlinear effects

— Implicit interactions between input variables
e The prior is set directly over functions of one or more input variables

e Mean and covariance functions define the nonparametric Gaussian process

completely

e Given the training input points X and the targets y, we associate latent

values f = [f(x1),..., f(x,)]' for each case
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Gaussian process

e A zero-mean Gaussian process: a finite set of latent variables have the
multivariate Gaussian distribution p(f|X, 8) = N (f]|0, K) as a prior

e The elements of a size n by n covariance matrix K are given by a
covariance function
— Covariances depend on the values of X

— The parameters @ are hyperparameters of the GP model

e \We use e.g. a squared exponential covariance function

d
Covlf(x;), f(xi)) = Kjp = P exp | = Y pP(a —alP)? ),
=1

where highly correlated outputs are resulted if the input space distances

between two cases are close (gives smooth solutions)
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Gaussian process regression

e The marginal likelihood is given by the integral
py1X.0) = [ ply . 0)p(FIX. 6)df

e With Gaussian likelihood p(y | f,0) = N (y | f, o*I) an analytic solution is
found: p(y | X, 0) = N(y |0, K +0*I) where 8 = (1*, p, 0*)

e The values of hyperparameters?
— A point estimate
— Integration numerically over the distribution with hybrid Monte Carlo
(HMC) simulation (uses gradient information and a momentum parameter

to avoid random walk behaviour)

e The predictive distribution for a new target y(”“) IS also Gaussian
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KL projections for GP regression
e Latent variables can be integrated out analytically — the marginal model

p(y|X,0) =N(y|0,K+05°T)

e We use Gaussian processes — all the KL divergences needed in projections

are between multivariate Gaussian distributions

e Denote the full marginal model as Nry = N (0, C) where

Cru = Ky +021, and respectively the marginal submodel as

J\/;ub — N(Oa Csub)

e The KL divergence between two models simplifies to

1 Ciu _
DKL('/\/}UHH'/\/‘SUb) — 5 <loge (|‘Cf E;) + tr( sulb Cfull) - n)
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Gaussian process binary classification

e [nference with Gaussian processes becomes analytically intractable when

likelihood is non-Gaussian

e \We use a probit likelihood in binary classification — approximations
— Markov chain Monte Carlo (MCMC) sampling

— Analytic approximations: Laplace or Expectation Propagation (EP)

e EP is used to approximate the distribution of latent values
— Better than the Laplace’s approximation

— Solution close to the accuracy of MCMC integration
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GP binary classification - Expectation Propagation

e An iterative algorithm for approximative inference

e Approximates the intractable posterior p(f | y, X, @) by a Gaussian
distribution ¢(f | v, X, @) — analytic treatment of the latent variables

e The posterior is approximated by

1 A
=1

where fz(fz\ZL, [Li, 07) = Z./\f(fzmz, 57) are local likelihood

approximations whose parameters Z;, [i; and 63 are site parameters
e The site parameters are successively updated until convergence
e An approximation for the marginal likelihood is given by EP

— Hyperparameters for the full model (a point estimate/integration)
17



KL projections for GP binary classification

e The observations y are assumed to come from a latent phenomenon for

which a Gaussian process prior is placed

e The distribution for latents given by the EP is ¢(f |y, X, 0) = N (, X)
where p = 22_1[1, and ¥ = (K™ 2_1)_1

e /1 and 3 are local likelihood approximation terms (site parameters)

e The KL divergence needed in projection is computed in latent space between

the full model and the submodel assumed for the latent function values f

e The KL divergence again is between two Gaussian distributions
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KL projections for GP binary classification

e |n order to allow an increase in uncertainty, an additional noise parameter for

the GP classification model is introduced

e \We assume an independent noise model between the latent variables in the
submodel

— To assure we do not underestimate the uncertainty caused by the removal
e One model for classification, another for uncertainty

e |n regression there is a noise parameter in the submodel that allows an
Increase in uncertainty between latent variables

— The noise term we use in classification corresponds this
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Sparse approximation for large data sets

e The computation time with GP scales as (O(n”) (due to inversion)

e Approximate sparse GP method based on pseudo-inputs

— the Fully Independent Conditional (FIC) approximation

e Based on a small set of additional latent variables u that induce the

dependencies between all the other latent values

e The approximate prior becomes
QFIC(f ‘ Xua X7 9) — N(()) Qf,f + A)7

where A = diag(Ks s — Qs ¢) and Q¢ = Ky KJ}J Kot

e |n variable selection using projections, the FIC approximation changes the

matrices K in the prior distributions
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Searching input combinations

e How many input variables are chosen in the submodel?

e We do downward excursion starting from the full model
— Remove one covariate at a time

— The one that increases the divergence measured from the full model least

e The algorithm may produce a suboptimal solution
— Try upward steps?
— Use stochastic search?

— 'Branch and bound’ algorithm

e The computation time vs. accuracy
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Experiments - regression problem

e Friedman regression problem*

® Inputvariables x{,...,ZT9 ~ U(O, 1), and targets are generated according

to

1\ 2
y = 10sin(mx1x9) + 20 (xg — 5) + 10xy4 + D25 + €
where e ~ N (0, 1)
e Only variables x1, ..., x5 are relevant

e We use 300 training points

*
Friedman, J. H.: Multivariate adaptive regression splines
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Experiments - regression problem

The result of the downward excursion (grey: chosen, white: removed)
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Experiments - regression problem

Kullback-Leibler divergences measured from the full model
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Experiments - regression problem

Predictive densities for a test data set
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Experiments - classification problem

e Wisconsin Diagnostic Breast Cancer*

KL divergence measured from the full model

— 569 observations, 30 input features, diagnosis: benign or malignant
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Predictive densities

Covariates | Projected | Submodel
23 0.929 0.929
13 0.926 0.930
3 0.918 0.903

Predictive density for the full model: 0.930

k
Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of

California, School of Information and Computer Science.
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Conclusions and future work

e Preliminary experiments seem promising

— Need to do more experiments with various data sets

e \What is the practical significance of results?

e How to finally choose the number of input variables?

e |n the projection method we need to form the full model

— Problematic if large number of input variables
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Conclusions and future work

e Preliminary experiments seem promising

— Need to do more experiments with various data sets

e \What is the practical significance of results?

e How to finally choose the number of input variables?

e |n the projection method we need to form the full model

— Problematic if large number of input variables

HOWEVER:

e |f at all possible use all available variables in the model and control the

effects of them with priors!
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