
RSS Conference, 3 September 2008

Variable selection for Gaussian processes using
Kullback-Leibler projections

Jaakko Riihimäki∗ and Aki Vehtari

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Biomedical Engineering and Computational Science

∗mailto: jaakko.riihimaki@tkk.fi

1



Outline

• Introduction

• Variable selection

– Kullback-Leibler projections

• Gaussian process regression

– Projections in regression

• Gaussian process binary classification and Expectation Propagation

– Projections in classification

• Experiments

• Conclusions and future work

2



Introduction - motivation for variable selection

• In Bayesian inference, it is feasible to keep all the observed input variables in

the model

– Control the effects of variables with priors

– Automatic Relevance Determination (ARD) prior: less relevant variables

have smaller effects
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Introduction - motivation for variable selection

• In Bayesian inference, it is feasible to keep all the observed input variables in

the model

– Control the effects of variables with priors

– Automatic Relevance Determination (ARD) prior: less relevant variables

have smaller effects

HOWEVER:

• If a smaller set of variables is used in the model

– Model easier to analyse

– Measurement costs lower in the future

– Savings in the computation time

– Knowledge of variable relevances

3-a



Introduction - variable selection

• Model selection where nested models are considered

• A full (encompassing) probability model

– Uses all available input variables

– Assumption: reasonable and sufficient for the modelling problem under

study

• Our goal is to find a submodel having predictive performance as close to the

full model as possible

– Using only a set of the most necessary input variables

– If correlating variables, is there redundancy?

– How to find a useful subset of variables?
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Introduction - variable relevances

• The choice of variables based on variable relevances

– Predictive comparison

– Reversible jump Markov chain Monte Carlo (RJMCMC)

– ARD prior?

• Advices from an application specialist?

• Using some relevance measure → proposal for a subset

• Further inference conditioned only on a selected subset?
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Introduction - variable relevances

• The choice of variables based on variable relevances

– Predictive comparison

– Reversible jump Markov chain Monte Carlo (RJMCMC)

– ARD prior?

• Advices from an application specialist?

• Using some relevance measure → proposal for a subset

• Further inference conditioned only on a selected subset?

UNFORTUNATELY:

• Omitting a set of variables may introduce a selection bias

– Removal ignores the uncertainty related to the removed parts of data

(using data twice)
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Introduction - avoiding the selection bias

• Further inference conditioned also to the information that a set of variables

are omitted

• Inference via joint distribution

– (Lindley 1968)∗ presented how to do a choice of variables for Gaussian

linear models by infering via joint distribution of input variables

• Inference via projections

– Here the bias is avoided by doing inference via Kullback-Leibler (KL)

projections introduced in (Goutis et al. 1998)†

– In (Goutis et al. 1998) the projections for GLM, we apply the method for

GP

– We do a small modification in the classification models

∗Lindley, D. V.: The choice of variables in multiple regression
†Goutis, C. and Robert, C.P.: Model choice in generalised linear models: A Bayesian approach via KL projections
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Variable selection - definitions

• Training data: D = {(x(i), y(i)); i = 1, 2, . . . , n}

• A matrix X the entire set of observations(n rows, d columns), the targets y

continuous in regression and binary valued in classification

• Model p(y |X)

• Interested in the predictive distribution of y given a new input x(n+1)

• XI the chosen variables, XJ the omitted variables

• Try to find a subset I that preserves the performance of the submodel

p(y |XI) close to the performance of the full model p(y |X)
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Variable selection - inference via joint distribution

• The effect of removed variables XJ in further inference?

• Using the conditional distribution p(XJ |XI) the model can be written

p(y |XI) =

∫

p(y |XI ,XJ)p(XJ |XI)dXJ ,

where the uncertainty related to XJ explicitly modelled with the variables XI

• In (Lindley 1968), the choice of variables analytically for Gaussian linear

models

– suitable assumptions of p(XJ |XI) → closed form computations

• Model p(XJ |XI) with Gaussian processes?
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Variable selection - inference via projections

• Variable selection for GP using KL divergences is motivated by a Bayesian

model choice method proposed in (Goutis et al. 1998)

– No need to assume (or know) the conditional model p(XJ |XI)

• The choice of variables is based on the evaluation of the Kullback-Leibler

divergence between the full model and a submodel

– Uncertainty related to the removed variables XJ

– Information from the removed variables

• By considering two distributions f0 and f1, the Kullback-Leibler divergence

from f0 to f1 is given by

DKL(f0‖f1) =

∫

f0(x) log
f0(x)

f1(x)
dx
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Variable selection - inference via projections

• By writing a general probability model as f(·|θ) where θ ∈ Θ, the projection

of the parameter θ is defined as a point θ⊥ in Θ0, where

DKL{f(·|θ)‖f(·|θ⊥)} = inf
θ0∈Θ0

DKL{f(·|θ)‖f(·|θ0)}

is achieved (if nested: Θ0 ⊂ Θ)

• Prior only needed for the full model parameters

• Samples from the posterior distribution of θ

– For each parameter value, a projection with corresponding minimum

divergence is computed

– Average minimum divergence
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Variable selection - inference via projections

• The choice of variables is then done by finding the most parsimonious

submodel with an acceptable distance from the full model

• Where to set the acceptable distances?

– Explanatory power of the full model (Dupuis et al. 2003)∗ → changes the

problem into a more interpretable form

• In (Goutis et al. 1998) and (Dupuis et al. 2003) the projection method is

shown for generalised linear models

• We apply the projection method for models where a Gaussian process (GP)

prior is set for latent function values

∗Dupuis, J. A. and Robert, C. P.: Variable selection in qualitative models via an entropic explanatory power
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Gaussian process

• Assuming the full model to be sufficient for modelling practices, a flexible GP

model is a viable choice

– No need to assume any functional forms in advance

– Nonlinear effects

– Implicit interactions between input variables

• The prior is set directly over functions of one or more input variables

• Mean and covariance functions define the nonparametric Gaussian process

completely

• Given the training input points X and the targets y, we associate latent

values f = [f(x1), . . . , f(xn)]⊤ for each case
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Gaussian process

• A zero-mean Gaussian process: a finite set of latent variables have the

multivariate Gaussian distribution p(f |X,θ) = N (f |0,K) as a prior

• The elements of a size n by n covariance matrix K are given by a

covariance function

– Covariances depend on the values of X

– The parameters θ are hyperparameters of the GP model

• We use e.g. a squared exponential covariance function

Cov[f(xj), f(xk)] = Kjk = η2 exp

(

−
d
∑

i=1

ρ2
i (x

(j)
i − x

(k)
i )2

)

,

where highly correlated outputs are resulted if the input space distances

between two cases are close (gives smooth solutions)
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Gaussian process regression

• The marginal likelihood is given by the integral

p(y |X,θ) =

∫

p(y | f ,θ)p(f |X,θ)df

• With Gaussian likelihood p(y | f ,θ) = N (y | f , σ2I) an analytic solution is

found: p(y |X,θ) = N (y |0,K+σ2I) where θ = (η2,ρ, σ2)

• The values of hyperparameters?

– A point estimate

– Integration numerically over the distribution with hybrid Monte Carlo

(HMC) simulation (uses gradient information and a momentum parameter

to avoid random walk behaviour)

• The predictive distribution for a new target y(n+1) is also Gaussian
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KL projections for GP regression

• Latent variables can be integrated out analytically → the marginal model

p(y |X,θ) = N (y |0,K+σ2I)

• We use Gaussian processes → all the KL divergences needed in projections

are between multivariate Gaussian distributions

• Denote the full marginal model as Nfull = N (0,Cfull) where

Cfull = Kfull +σ2I, and respectively the marginal submodel as

Nsub = N (0,Csub)

• The KL divergence between two models simplifies to

DKL(Nfull‖Nsub) =
1

2

(

loge

(

|Csub|

|Cfull|

)

+ tr(C−1
sub Cfull) − n

)
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Gaussian process binary classification

• Inference with Gaussian processes becomes analytically intractable when

likelihood is non-Gaussian

• We use a probit likelihood in binary classification → approximations

– Markov chain Monte Carlo (MCMC) sampling

– Analytic approximations: Laplace or Expectation Propagation (EP)

• EP is used to approximate the distribution of latent values

– Better than the Laplace’s approximation

– Solution close to the accuracy of MCMC integration
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GP binary classification - Expectation Propagation

• An iterative algorithm for approximative inference

• Approximates the intractable posterior p(f |y,X,θ) by a Gaussian

distribution q(f |y,X,θ) → analytic treatment of the latent variables

• The posterior is approximated by

q(f |y,X,θ) =
1

ZEP

p(f |X,θ)
n
∏

i=1

t̃i(fi|Z̃i, µ̃i, σ̃
2
i ),

where t̃i(fi|Z̃i, µ̃i, σ̃
2
i ) = Z̃iN (fi|µ̃i, σ̃

2
i ) are local likelihood

approximations whose parameters Z̃i, µ̃i and σ̃2
i are site parameters

• The site parameters are successively updated until convergence

• An approximation for the marginal likelihood is given by EP

– Hyperparameters for the full model (a point estimate/integration)
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KL projections for GP binary classification

• The observations y are assumed to come from a latent phenomenon for

which a Gaussian process prior is placed

• The distribution for latents given by the EP is q(f |y,X,θ) = N (µ,Σ)

where µ = ΣΣ̃
−1

µ̃ and Σ = (K−1 Σ̃
−1

)−1

• µ̃ and Σ̃ are local likelihood approximation terms (site parameters)

• The KL divergence needed in projection is computed in latent space between

the full model and the submodel assumed for the latent function values f

• The KL divergence again is between two Gaussian distributions
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KL projections for GP binary classification

• In order to allow an increase in uncertainty, an additional noise parameter for

the GP classification model is introduced

• We assume an independent noise model between the latent variables in the

submodel

– To assure we do not underestimate the uncertainty caused by the removal

• One model for classification, another for uncertainty

• In regression there is a noise parameter in the submodel that allows an

increase in uncertainty between latent variables

– The noise term we use in classification corresponds this
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Sparse approximation for large data sets

• The computation time with GP scales as O(n3) (due to inversion)

• Approximate sparse GP method based on pseudo-inputs

– the Fully Independent Conditional (FIC) approximation

• Based on a small set of additional latent variables u that induce the

dependencies between all the other latent values

• The approximate prior becomes

qFIC(f |Xu,X,θ) = N (0,Qf,f +Λ),

where Λ = diag(Kf,f −Qf,f) and Qf,f = Kf,u K−1
u,u Ku,f

• In variable selection using projections, the FIC approximation changes the

matrices K in the prior distributions
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Searching input combinations

• How many input variables are chosen in the submodel?

• We do downward excursion starting from the full model

– Remove one covariate at a time

– The one that increases the divergence measured from the full model least

• The algorithm may produce a suboptimal solution

– Try upward steps?

– Use stochastic search?

– ’Branch and bound’ algorithm

• The computation time vs. accuracy
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Experiments - regression problem

• Friedman regression problem∗

• Input variables x1, . . . , x10 ∼ U(0, 1), and targets are generated according

to

y = 10 sin(πx1x2) + 20

(

x3 −
1

2

)2

+ 10x4 + 5x5 + ε

where ε ∼ N (0, 1)

• Only variables x1, . . . , x5 are relevant

• We use 300 training points

∗
Friedman, J. H.: Multivariate adaptive regression splines
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Experiments - regression problem

The result of the downward excursion (grey: chosen, white: removed)
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Experiments - regression problem

Kullback-Leibler divergences measured from the full model
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Experiments - regression problem

Predictive densities for a test data set
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Experiments - classification problem

• Wisconsin Diagnostic Breast Cancer∗

– 569 observations, 30 input features, diagnosis: benign or malignant
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Predictive densities

Covariates Projected Submodel

23 0.929 0.929

13 0.926 0.930

3 0.918 0.903

Predictive density for the full model: 0.930

∗
Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of

California, School of Information and Computer Science.
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Conclusions and future work

• Preliminary experiments seem promising

– Need to do more experiments with various data sets

• What is the practical significance of results?

• How to finally choose the number of input variables?

• In the projection method we need to form the full model

– Problematic if large number of input variables
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Conclusions and future work

• Preliminary experiments seem promising

– Need to do more experiments with various data sets

• What is the practical significance of results?

• How to finally choose the number of input variables?

• In the projection method we need to form the full model

– Problematic if large number of input variables

HOWEVER:

• If at all possible use all available variables in the model and control the

effects of them with priors!
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