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In this supplementary file, we describe in a detail how to apply the Gaussian processes (GP) in
nonhomogoneus Poisson process survival analysis with interval censored data. This statistical
methodology is applied in the paper “Gastrointestinal stromal tumor: a method for optimizing
the timing of CT scans in the follow-up of cancer patients”.

For the individual i, where i = 1, . . . , n, we have survival time yi (possibly right or interval
censored) with a censoring indicator δi, where δi = 0 if the ith observation is uncensored and
δi = 1 if the observation is right or interval censored. For interval censored survival time, yi
is known to fall into an interval [yi,lo, yi,up]. The traditional approach to analyze continuous
time-to-event data is to assume the Cox proportional hazards function (Cox, 1972)

hi(t) = h0(t) exp(xT
i β), (1)

where h0 is the unspecified baseline hazard rate, xi is the d× 1 vector of covariates for the ith
patient and β is the vector of regression coefficients. The matrix X = [x1, . . . ,xn]T of size
n× d includes all covariate observations.

The Cox model with a linear predictor can be extended to more general form to enable,
for example, additive and non-linear effects of covariates (Kneib, 2006; Martino et al., 2011).
Previously, we (Joensuu et al., 2012) extended the proportional hazards model by

hi(t) = exp(log(h0(t)) + η(xi)), (2)

where the linear predictor was replaced with the nonlinear predictor η depending on the covari-
ates xi. Here, to allow the form of the hazard function to depend on the covariates, we use even
more generic hazard model

hi(t) = exp(η(t,xi)). (3)

A piecewise log-constant hazard in time (Ibrahim et al., 2001) is assumed by partitioning the
time axis into K non-overlapping intervals with equal lengths: 0 = s0 < s1 < s2 < . . . < sK ,
where sK ≥ yi for all i = 1, . . . , n. In the interval k, where k = 1, . . . , K, hazard is assumed
to be constant in time and for the ith individual the hazard rate in the kth time interval is

hi(t) = exp(η(τk,xik)), t ∈ (sk−1, sk], (4)

where τk = (sk−sk−1)/2 is the mean of kth time interval and xik denotes possibly time varying
covariates.

Using the piecewise log-constant assumption for the hazard rate function, the contribution
of the possibly right censored ith observation (yi, δi) for the likelihood is(Martino et al., 2011;
Ibrahim et al., 2001)

li = [exp(ηiKi
)](1−δi) exp

(
−

Ki∑
g=1

(sk − sk−1) exp(ηik)

)
, (5)
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where ηik = η(τk,xik). This can be replaced with likelihood of Ki Poisson distributed data
points for ith person, with means (sk−sk−1) exp(ηik), of whichKi−1 first ones are observed to
be 0, and the last one observed to be 0 or 1 according to whether the survival time t is observed
or censored. Augmented data thus has ñ =

∑n
i=1Ki datapoints. Interval censored survival

times yi can be imputed by sampling from the interval [yi,lo, yi,up] according to conditional
density p(ŷi|hi).

By assuming a Gaussian process prior (Rasmussen and Williams, 2006, e.g.,) over the un-
known function η, smooth nonlinear effects of continuous covariates are possible, and if there
are dependencies between covariates, the GP can model these interactions implicitly. A zero-
mean GP prior is set for η, which results in the zero-mean multivariate Gaussian distribution

p(η|X) = N (0, C(X,X)), (6)

where C(X,X) is the ñ × ñ covariance matrix whose elements are given by the covariance
function of the GP. The covariance function defines the smoothness and scale properties of the
latent function, and we choose a sum of constant and non-stationary neural network covariance
function (Williams, 1998)

c(xi,xj) = σc +
2

π
sin−1

(
2x̃T

i Σx̃j
(1 + 2x̃T

i Σx̃i)(1 + 2x̃T
jΣx̃j)

)
, (7)

where σc is the constant covariance part, x̃ = (1, τ, x1, . . . , xd)
T is an input vector augmented

with 1 and τ , and Σ = diag(σ2
0, σ

2
τ , σ

2
1, . . . , σ

2
d) is a diagonal weight prior, where σ2

0 is a variance
for the bias parameter controlling the functions offset from the origin and σ2

τ , σ
2
1, . . . , σ

2
d are the

variances for the weight parameters. The constant covariance part models the mean hazard
level, and the neural network covariance part models the nonlinear function. A neural network
covariance function was chosen, since it is suitable for modeling non-stationary, saturating and
interaction effects. A half-Gaussian prior with variance 4 was used for the constant covariance
σc, and half-t priors with degrees of freedom 4 and variances 100 and 10 were used for σ0 and
στ , σ1, . . . , σd, respectively, as recommended by Gelman (2006).

By applying the Bayes theorem, the prior information and likelihood contributions are com-
bined to get posterior distribution of the latent variables and the covariance function parameters.
To compute predictions, we integrated over the hyperparameters of the covariance function and
the unknown yi for interval censored observations using Markov chain Monte Carlo sampling.
The covariance function parameters were sampled using hyperrectangle multivariate slice sam-
pling (Neal, 2003) and the conditional distribution p(θ|y,x) where latent variables η were
integrated out using a Gaussian approximation. The posterior distribution of the latent variables
is approximated by doing a second order Taylor expansion of the logarithm of the posterior
around the posterior mode, as presented by Rasmussen and Williams (2006). The unknown
yi for interval censored observations were sampled by first sampling latent values ηik from the
Gaussian approximation of the conditional distribution p(η|θ,y,x), then computing the hazard
h given the latent values, and finally sampling yi from the conditional density p(yi|hi) at interval
[yi,lo, yi,up]. Sampling of θ, η and y was performed alternately for 1000 iterations. Convergence
of the chain was diagnosed using potential scale reduction factor (Brooks and Gelman, 1998).
Geyer’s initial monotonic sequence estimator (Geyer, 1992) was used to assess that length of
the chain is sufficient to get useful efficient sample size. Inference for the model was made
using GPstuff toolbox (Vanhatalo et al., 2013).
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A transformation log(x + 1) was applied to reduce the skewness of mitotic count. For the
posterior inference the time axis was divided in K = 29 3-month intervals. To improve the
accuracy of the computations in the CT scan timing optimization, the hazard was predicted in
K = 85 1-month intervals. Number of CT scans was varied from 4 to 12 and the last CT scan
was fixed at 6 years after the surgery (due to the limited follow-up time in the study, further haz-
ard estimates would be uncertain), and timings were discretized to 3-month accuracy. Criterion
to optimise was expected time from the recurrence to the observation given the recurrent free
state at the previous CT scan. Optimization was made by computing the expected time from the
recurrence to the observation exhaustively for each possible CT scan schedule.
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