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Gaussian processes ♥ SDEs

GPs under the kernel formalism

f (t) ∼ GP(0, κ(t , t ′))

y | f ∼
∏

i

p(yi | f (ti))

Stochastic differential equations

df(t) = F f(t) + L dβ(t)

yi ∼ p(yi | hTf(ti))

Flexible model
specification

Inference /
First-principles
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Non-Gaussian likelihoods

I The observation model might not be Gaussian

f (t) ∼ GP(0, κ(t , t ′))

y | f ∼
∏

i

p(yi | f (ti))

I There exists a multitude of great methods to tackle general
likelihoods with approximations of the form

Q(f | D) = N(f | m + Kα, (K−1 + W)−1)

I Use those methods, but deal with the latent using state
space models
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Inference

I Laplace approximation

I Variational Bayes

I Direct KL minimization

I EP or Assumed density filtering (Single-sweep EP)

I Can be evaluated in terms of a (Kalman) filter forward and
backward pass, or by iterating them
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Example

I Commercial aircraft accidents 1919–2017
I Log-Gaussian Cox process (Poisson likelihood) by ADF/EP
I Daily binning, n = 35,959
I GP prior with a covariance function:

κ(t , t ′) = κ
ν=3/2
Mat. (t , t ′) + κyear

Per. (t , t
′)κ

ν=3/2
Mat. (t , t ′) + κweek

Per. (t , t
′)κ

ν=3/2
Mat. (t , t ′)

I Learn hyperparameters by optimizing the marginal
likelihood

Nickisch et al. (2018). ICML.
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Spatio-temporal GPs

f (r) ∼ GP(0, κ(r, r′))

y | f ∼
∏

i

p(yi | f (ri))

f (x, t) ∼ GP(0, κ(x, t ;x′, t ′))

y | f ∼
∏

i

p(yi | f (xi , ti))
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Spatio-temporal Gaussian processes

GPs under the kernel formalism

f (x, t) ∼ GP(0, k(x, t ; x′, t ′))

yi = f (xi , ti) + εi

Stochastic partial differential equations

∂f(x, t)
∂t

= F f(x, t) +Lw(x, t)

yi = Hi f(x, t) + εi

Location
(x) Ti

m
e
(t
)

f
(x

,
t)

Covariance
k(x, t; x′, t′)

Location
(x) Ti

m
e
(t
)

f
(x

,
t)

The state at time t
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Spatio-temporal GP regression

Särkkä et al. (2013). IEEE Signal Processing Magazine.
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Spatio-temporal GP regression

Särkkä et al. (2013). IEEE Signal Processing Magazine.
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Spatio-temporal GP classification

Wilkinson et al. (2020). ICML.
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Multi-view stereo as a temporal fusion problem
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I Inputs: Frame pairs and relative
camera poses

I Encoder–decoder network for
depth estimation

I Treat the encoder as a feature
extractor, and do GP regression
in the latent space

I The GP prior encodes the
similarity of the camera views

Hou et al. (2019). ICCV.
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Multi-view stereo as a temporal fusion problem

Hou et al. (2019). ICCV. Video: https://youtu.be/iellGrlNW7k

https://youtu.be/iellGrlNW7k
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Sequential priors in GAN latent space

interpolate

Hou et al. Submitted.
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Latent differential equations

I Define an implicit prior over
functions through dynamics

I Define observation likelihoods.
Anything differentiable w.r.t.
latent state (e.g. text models!)

I Train everything jointly with
automatic differentiation +
variational inference

Adopted form David Duvenaud.
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Latent ODEs

I Learning low-rank latent representations of possibly high-dimensional
sequential data trajectories

I Combination of variational auto-encoders (VAEs) with sequential data
with a latent space governed by a continuous-time ODE

Yildiz et al. (2019). NeurIPS.
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In SDEs: Need to store noise

I Infinite reparameterization trick: Use same Brownian
motion sample on forward and reverse passes

Li et al. (2020). AISTATS.
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Latent SDE models

Ornstein–Uhlenbeck prior
Laplace likelihood

MOCAP example
50D data, 6D latent space,

11000 params

Li et al. (2020). AISTATS.
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Langevin dynamics

I Molecular simulation

I Sampling and parameter
inference
(e.g., Metropolis-adjusted
Langevin algorithm)

I Diffusion models
(even for images!)

Langevin’s model for brownian motion

Denoising diffusion probabilistic model
with Langevin dynamics

Ho et al. Submitted.
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Summary

Part I

Tools and
discrete-time

models

Part II

SDEs
(continuous-time

models)

Part III

Gaussian
processes

�
Part IV

Application
examples
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� Särkkä, S., Solin, A., and Hartikainen, J. (2013). Spatio-temporal learning via
infinite-dimensional Bayesian filtering and smoothing.
IEEE Signal Processing Magazine, 30(4):51–61.
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