Machine Learning with Signal Processing Part III: Three Views into Gaussian Processes

Arno Solin

Assistant Professor in Machine Learning Department of Computer Science Aalto University

ICML 2020 TUTORIAL

Outline

GPs for long (unbounded) data

see Solin et al. NeurIPS 2019. Video: https://youtu.be/myCvUT3XGPc

Three views into GPs

Kernel (moment) representation

 $f(t) \sim \mathsf{GP}(\mu(t), \kappa(t, t')) \quad \text{GP prior}$ $\mathbf{y} \mid \mathbf{f} \sim \prod_{i} p(y_i \mid f(t_i)) \quad \text{likelihood}$

- Let's focus on the GP prior only.
- A temporal Gaussian process (GP) is a random function f(t), such that joint distribution of f(t₁),..., f(t_n) is always Gaussian.
- Mean and covariance functions have the form:

$$\mu(t) = \mathbb{E}[f(t)],$$

$$\kappa(t, t') = \mathbb{E}[(f(t) - \mu(t))(f(t') - \mu(t'))^{\mathsf{T}}].$$

Convenient for model specification, but expanding the kernel to a covariance matrix can be problematic (the notorious O(n³) scaling).

Spectral (Fourier) representation

• The Fourier transform of a function $f(t) : \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{F}[f](\mathsf{i}\,\omega) = \int_{\mathbb{R}} f(t) \, \exp(-\mathsf{i}\,\omega \, t) \, \mathsf{d}t$$

For a stationary GP, the covariance function can be written in terms of the difference between two inputs:

$$\kappa(t,t') \triangleq \kappa(t-t')$$

- Wiener–Khinchin: If f(t) is a stationary Gaussian process with covariance function κ(t), then its spectral density is S(ω) = F[κ].
- Spectral representation of a GP in terms of spectral density function

$$S(\omega) = \mathbb{E}[\tilde{f}(\mathsf{i}\,\omega)\,\tilde{f}^{\mathsf{T}}(-\mathsf{i}\,\omega)]$$

State space (path) representation [1/3]

Path or state space representation as solution to a linear time-invariant (LTI) stochastic differential equation (SDE):

 $d\mathbf{f} = \mathbf{F} \mathbf{f} dt + \mathbf{L} d\boldsymbol{\beta},$

where $\mathbf{f} = (f, df/dt, ...)$ and $\beta(t)$ is a vector of Wiener processes.

Equivalently, but more informally

$$\frac{\mathrm{d}\mathbf{f}(t)}{\mathrm{d}t} = \mathbf{F}\,\mathbf{f}(t) + \mathbf{L}\,\mathbf{w}(t),$$

where $\mathbf{w}(t)$ is white noise.

- ▶ The model now consists of a drift matrix $\mathbf{F} \in \mathbb{R}^{m \times m}$, a diffusion matrix $\mathbf{L} \in \mathbb{R}^{m \times s}$, and the spectral density matrix of the white noise process $\mathbf{Q}_c \in \mathbb{R}^{s \times s}$.
- The scalar-valued GP can be recovered by $f(t) = \mathbf{h}^T \mathbf{f}(t)$.

State space (path) representation [2/3]

 \blacktriangleright The initial state is given by a stationary state $f(0) \sim N({\bm 0}, {\bm P}_\infty)$ which fulfils

$$\mathbf{F} \, \mathbf{P}_{\infty} + \mathbf{P}_{\infty} \, \mathbf{F}^{\mathsf{T}} + \mathbf{L} \, \mathbf{Q}_{\mathsf{c}} \, \mathbf{L}^{\mathsf{T}} = \mathbf{0}$$

The covariance function at the stationary state can be recovered by

$$\kappa(t, t') = \begin{cases} \mathbf{h}^{\mathsf{T}} \mathbf{P}_{\infty} \exp((t' - t)\mathbf{F})^{\mathsf{T}} \mathbf{h}, & t' \ge t \\ \mathbf{h}^{\mathsf{T}} \exp((t' - t)\mathbf{F})\mathbf{P}_{\infty} \mathbf{h}, & t' < t \end{cases}$$

where $exp(\cdot)$ denotes the matrix exponential function.

The spectral density function at the stationary state can be recovered by

$$S(\omega) = \mathbf{h}^{\mathsf{T}} (\mathbf{F} + \mathrm{i}\,\omega\,\mathbf{I})^{-1}\,\mathbf{L}\,\mathbf{Q}_{\mathrm{c}}\,\mathbf{L}^{\mathsf{T}}\,(\mathbf{F} - \mathrm{i}\,\omega\,\mathbf{I})^{-\mathsf{T}}\mathbf{h}$$

State space (path) representation [3/3]

- Similarly as the kernel has to be evaluated into a covariance matrix for computations, the SDE can be solved for discrete time points {t_i}ⁿ_{i=1}.
- The resulting model is a discrete state space model:

$$\mathbf{f}_i = \mathbf{A}_{i-1} \mathbf{f}_{i-1} + \mathbf{q}_{i-1}, \quad \mathbf{q}_i \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}_i),$$

where $\mathbf{f}_i = \mathbf{f}(t_i)$.

The discrete-time model matrices are given by:

$$\begin{split} \mathbf{A}_{i} &= \exp(\mathbf{F}\,\Delta t_{i}), \\ \mathbf{Q}_{i} &= \int_{0}^{\Delta t_{i}} \exp(\mathbf{F}\,(\Delta t_{i} - \tau))\,\mathbf{L}\,\mathbf{Q}_{c}\,\mathbf{L}^{\mathsf{T}}\,\exp(\mathbf{F}\,(\Delta t_{i} - \tau))^{\mathsf{T}}\,\mathsf{d}\tau, \end{split}$$

where $\Delta t_i = t_{i+1} - t_i$

If the model is stationary, Q_i is given by

$$\mathbf{Q}_i = \mathbf{P}_{\infty} - \mathbf{A}_i \, \mathbf{P}_{\infty} \, \mathbf{A}_i^{\mathsf{T}}$$

Three views into GPs

Example: Exponential covariance function

Exponential covariance function (Ornstein-Uhlenbeck process):

$$\kappa(t,t') = \exp(-\lambda |t-t'|)$$

Spectral density function:

$$\mathcal{S}(\omega) = rac{2}{\lambda + \omega^2/\lambda}$$

Path representation: Stochastic differential equation (SDE)

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = -\lambda f(t) + w(t),$$

or using the notation from before: $F = -\lambda$, L = 1, $Q_c = 2$, h = 1, and $P_{\infty} = 1$.

Examples of applicable GP priors

Applicable GP priors

- The covariance function needs to be Markovian (or approximated as such).
- Covers many common stationary and non-stationary models.
- Sums of kernels: $\kappa(t, t') = \kappa_1(t, t') + \kappa_2(t, t')$
 - Stacking of the state spaces
 - State dimension: $m = m_1 + m_2$
- Product of kernels: $\kappa(t, t') = \kappa_1(t, t') \kappa_2(t, t')$
 - Kronecker sum of the models
 - State dimension: $m = m_1 m_2$

Example: GP regression, $O(n^3)$

Example: GP regression, $O(n^3)$

Consider the GP regression problem with input–output training pairs {(t_i, y_i)}ⁿ_{i=1}:

$$\begin{split} f(t) &\sim \mathsf{GP}(0, \kappa(t, t')), \\ y_i &= f(t_i) + \varepsilon_i, \quad \varepsilon_i \sim \mathsf{N}(0, \sigma_\mathsf{n}^2) \end{split}$$

The posterior mean and variance for an unseen test input t_{*} is given by (see previous lectures):

$$\mathbb{E}[f_*] = \mathbf{k}_* \, (\mathbf{K} + \sigma_n^2 \, \mathbf{I})^{-1} \, \mathbf{y},$$
$$\mathbb{V}[f_*] = \mathbf{K}_{**} - \mathbf{k}_* \, (\mathbf{K} + \sigma_n^2 \, \mathbf{I})^{-1} \, \mathbf{k}_*^\mathsf{T}$$

Note the inversion of the $n \times n$ matrix.

Example: GP regression, $O(n^3)$

Example: GP regression, O(n)

- The sequential solution (goes under the name 'Kalman filter') considers one data point at a time, hence the linear time-scaling.
- Start from m₀ = 0 and P₀ = P∞ and for each data point iterate the following steps.
- Kalman prediction:

$$\begin{split} \mathbf{m}_{i|i-1} &= \mathbf{A}_{i-1} \, \mathbf{m}_{i-1|i-1}, \\ \mathbf{P}_{i|i-1} &= \mathbf{A}_{i-1} \, \mathbf{P}_{i-1|i-1} \, \mathbf{A}_{i-1}^{\mathsf{T}} + \mathbf{Q}_{i-1}. \end{split}$$

Kalman update:

$$\mathbf{v}_{i} = \mathbf{y}_{i} - \mathbf{h}^{\mathsf{T}} \mathbf{m}_{i|i-1},$$

$$\mathbf{S}_{i} = \mathbf{h}^{\mathsf{T}} \mathbf{P}_{i|i-1} \mathbf{h} + \sigma_{\mathsf{n}}^{2},$$

$$\mathbf{K}_{i} = \mathbf{P}_{i|i-1} \mathbf{h} \mathbf{S}_{i}^{-1},$$

$$\mathbf{m}_{i|i} = \mathbf{m}_{i|i-1} + \mathbf{K}_{i} \mathbf{v}_{i},$$

$$\mathbf{P}_{i|i} = \mathbf{P}_{i|i-1} - \mathbf{K}_{i} \mathbf{S}_{i} \mathbf{K}_{i}^{\mathsf{T}}.$$

Example: GP regression, O(n)

To condition all time-marginals on all data, run a backward sweep (Rauch-Tung-Striebel smoother):

$$\begin{split} \mathbf{m}_{i+1|i} &= \mathbf{A}_{i} \, \mathbf{m}_{i|i}, \\ \mathbf{P}_{i+1|i} &= \mathbf{A}_{i} \, \mathbf{P}_{i|i} \, \mathbf{A}_{i}^{\mathsf{T}} + \mathbf{Q}_{i}, \\ \mathbf{G}_{i} &= \mathbf{P}_{i|i} \, \mathbf{A}_{i}^{\mathsf{T}} \, \mathbf{P}_{i+1|i}^{-1}, \\ \mathbf{m}_{i|n} &= \mathbf{m}_{i|i} + \mathbf{G}_{i} \, (\mathbf{m}_{i+1|n} - \mathbf{m}_{i+1|i}), \\ \mathbf{P}_{i|n} &= \mathbf{P}_{i|i} + \mathbf{G}_{i} \left(\mathbf{P}_{i+1|n} - \mathbf{P}_{i+1|i} \right) \mathbf{G}_{i}^{\mathsf{T}}, \end{split}$$

The marginal mean and variance can be recovered by:

$$\mathbb{E}[f_i] = \mathbf{h}^{\mathsf{T}} \mathbf{m}_{i|n},$$
$$\mathbb{V}[f_i] = \mathbf{h}^{\mathsf{T}} \mathbf{P}_{i|n} \mathbf{h}$$

The log marginal likelihood can be evaluated as a by-product of the Kalman update:

$$\log p(\mathbf{y}) = -\frac{1}{2} \sum_{i=1}^{n} \log |2\pi S_i| + v_i^{\mathsf{T}} S_i^{-1} v_i$$

Example: GP regression, O(n)

Basic regression example

- Number of births in the US (from BDA3 by Gelman et al.)
- ▶ Daily data between 1969–1988 (*n* = 7305)
- GP regression with a prior covariance function:

$$\begin{split} \kappa(t,t') &= \kappa_{\text{Mat.}}^{\nu=5/2}(t,t') + \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') \\ &+ \kappa_{\text{Per.}}^{\text{year}}(t,t') \, \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') + \kappa_{\text{Per.}}^{\text{week}}(t,t') \, \kappa_{\text{Mat.}}^{\nu=3/2}(t,t') \end{split}$$

 Learn hyperparameters by optimizing the marginal likelihood

1

Basic regression example

Explaining changes in number of births in the US

Connection to banded precision matrices

Precision matrices

For Markovian models the precision is sparse! (block tri-diagonal)

see Durrande et al. AISTATS 2019.

Constructing the precision matrix

The full precision matrix can be constructed from the state space model matrices:

$$\hat{K}^{-1} = \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ -\mathbf{A}_1 & \mathbf{I} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & -\mathbf{A}_2 & \mathbf{I} & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \dots & -\mathbf{A}_n & \mathbf{I} \end{pmatrix}^{-T} \begin{pmatrix} \mathbf{P}_0 & \mathbf{0} & \dots & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_1 & \mathbf{0} & \dots & \mathbf{0} \\ \vdots & \mathbf{0} & \mathbf{Q}_2 & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \dots & \mathbf{Q}_n \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ -\mathbf{A}_1 & \mathbf{I} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & -\mathbf{A}_2 & \mathbf{I} & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \dots & -\mathbf{A}_n & \mathbf{I} \end{pmatrix}^{-1}$$

Discarding the other model states by passing through the measurement model:

$$\mathbf{K}^{-1} = (\mathbf{I}_n \otimes \mathbf{h}) \, \hat{\mathbf{K}}^{-1} \, (\mathbf{I}_n \otimes \mathbf{h})^{\mathsf{T}}$$

Summary

- Gaussian processes have different representations:
 - Covariance function Spectral density State space
- Temporal (single-input) Gaussian processes
 stochastic differential equations (SDEs)
- Conversions between the representations can make model building easier
- (Exact) inference of the latent functions, can be done in O(n) time and memory complexity by Kalman filtering

Up next

Bibliography

These references are sources for finding a more detailed overview on the topics of this part :

- C. E. Rasmussen and C. K. I. Williams (2006). Gaussian Processes for Machine Learning. MIT Press.
- S. Särkkä and A. Solin (2019). Applied Stochastic Differential Equations. Cambridge University Press. Cambridge, UK.