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calculus

Solution
concepts

Fokker–Planck–
Kolmogorov

Summary



Machine learning with signal processing: Part II
Arno Solin

3/23

� S. Särkkä and A. Solin (2019). Applied Stochastic Differential
Equations. Cambridge University Press. Cambridge, UK.
Book PDF and codes for replicating examples available online.
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Differential equations model how things change

I Ordinary differential equations (ODEs)
(deterministic)

I Stochastic differential equations (SDEs)
(stochastic)

van der Pol oscillatorStochastic van der Pol oscillator
Ornstein–Uhlenbeck processes
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What is a stochastic differential equation (SDE)?

I Consider an ordinary differential equation (ODE):

dx
dt

= f(x, t)

I Then we add white noise to the right hand side:

dx
dt

= f(x, t) + L(x, t) w(t)

I f(x, t) is the drift function and L(x, t) is the dispersion
matrix (diffusion term)

I Now we have a stochastic differential equation (SDE)
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White noise

1. w(t1) and w(t2) are independent if t1 6= t2
2. t 7→ w(t) is a Gaussian process with

mean and covariance:

E[w(t)] = 0,

E[w(t) wT(s)] = δ(t − s) Q

I Q is the spectral density of the process
I The sample path t 7→ w(t) is discontinuous almost everywhere
I White noise is unbounded and it takes arbitrarily large positive and

negative values at any finite interval
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What does a solution of an SDE look like?

Solution paths of a stochastic spring model

d2x(t)
dt2 + γ

dx(t)
dt

+ ν2 x(t) = w(t)
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SDEs as white noise–driven differential equations
I Treating SDEs as white noise–driven differential equations

has its limits

dx
dt

= f(x, t) + L(x, t) w(t)

I For linear equations the approach works
I But this interpretation breaks down in the general setting:

I The chain rule of calculus starts giving wrong answers!
I With non-linear differential equations the behaviour

becomes unexpected
I Trying to prove the existence of solutions becomes tricky

I The source of all the problems is the everywhere
discontinuous white noise w(t)

I So how should we really formulate SDEs?
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Equivalent integral equation

I We have a differential equation of the form

dx
dt

= f(x, t) + L(x, t) w(t)

I Integrating the differential equation from t0 to t gives:

x(t)− x(t0) =

∫ t

t0
f(x(t), t) dt +

∫ t

t0
L(x(t), t) w(t) dt

I The first integral is just a Riemann/Lebesgue integral
I The second integral is the problematic one due to

the white noise (this is the interesting part!)
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Attempt 1: Riemann integral
I In the Riemannian sense the integral would be defined as∫ t

t0
L(x(t), t) w(t) dt = lim

n→∞

∑
k

L(x(t∗k ), t∗k ) w(t∗k ) (tk+1 − tk ),

where t0 < t1 < . . . < tn = t and t∗k ∈ [tk , tk+1]

I Upper and lower sums are defined as the selections of t∗k
such that the integrand L(x(t∗k ), t∗k ) w(t∗k ) has its maximum
and minimum values, respectively

I The Riemann integral exists if the upper and lower sums
converge to the same value

U Because white noise is discontinuous everywhere, the
Riemann integral does not exist
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Attempt 2: Stieltjes integral [1/2]

I A Stieltjes integral is more general and allows for
discontinuous integrands

I We can interpret the increment w(t) dt as increments of
another process β(t) such that∫ t

t0
L(x(t), t) w(t) dt =

∫ t

t0
L(x(t), t) dβ(t).

I It turns out that a suitable process for this purpose is
Brownian motion. . .
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Brownian motion

1. Gaussian increments:

∆βk ∼ N(0,Q ∆tk ),

where ∆βk = β(tk+1)− β(tk )
and ∆tk = tk+1 − tk

2. Non-overlapping increments are
independent

I Q is the diffusion matrix of the Brownian motion.
I Brownian motion t 7→ β(t) has discontinuous derivative everywhere
I White noise can be considered the formal derivative of Brownian motion

w(t) = dβ(t)/dt
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Attempt 2: Stieltjes integral [2/2]

I Stieltjes integral is defined as a limit of the form∫ t

t0
L(x(t), t) dβ = lim

n→∞

∑
k

L(x(t∗k ), t∗k ) [β(tk+1)− β(tk )],

where t0 < t1 < . . . < tn and t∗k ∈ [tk , tk+1]

I The limit t∗k should be independent of the position on the
interval t∗k ∈ [tk , tk+1]

I For integration with respect to Brownian motion this is not
the case

U Thus, the Stieltjes integral definition does not work either
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Attempt 3: Lebesgue integral

I In a Lebesgue integral we could interpret β(t) to define a
‘stochastic measure’

I Essentially, this will also lead to the definition∫ t

t0
L(x(t), t) dβ = lim

n→∞

∑
k

L(x(t∗k ), t∗k ) [β(tk+1)− β(tk )],

where t0 < t1 < . . . < tn and t∗k ∈ [tk , tk+1].
I Again, the limit should be independent of the choice

t∗k ∈ [tk , tk+1]

I Also our ‘measure’ is not really a sensible measure

U The Lebesgue integral does not work either
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Attempt 4: Itô integral

I The solution to the problem is the Itô stochastic integral
I The idea is to fix the choice to t∗k = tk , and define the

integral as∫ t

t0
L(x(t), t) dβ(t) = lim

n→∞

∑
k

L(x(tk ), tk ) [β(tk+1)− β(tk )]

I This Itô stochastic integral turns out to be a sensible
definition of the integral

I However, the resulting integral does not obey the
computational rules of ordinary calculus

I Instead of ordinary calculus we have Itô calculus
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Itô stochastic differential equations
I Consider the white noise–driven ODE

dx
dt

= f(x, t) + L(x, t) w(t)

I This is actually defined as the Itô integral equation

x(t)− x(t0) =

∫ t

t0
f(x(t), t) dt +

∫ t

t0
L(x(t), t) dβ(t),

which should be true for arbitrary t0 and t
I Which can be written (considering the limits ‘small’) as

dx = f(x, t) dt + L(x, t) dβ

I This is the canonical form of an Itô SDE
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Connection with white noise–driven ODEs

I Let’s formally divide by dt , which gives

dx
dt

= f(x, t) + L(x, t)
dβ
dt

I Thus we can interpret dβ/dt as white noise w (not an
entity as such, only the formal derivative)

I Note that we cannot define more general equations

dx(t)
dt

= f(x(t),w(t), t),

because we cannot re-interpret this as an Itô integral
equation
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Non-linear SDEs

I There is no general solution method for non-linear SDEs

dx = f(x, t) dt + L(x, t) dβ

I However, numerical simulation of solution trajectories is
usually possible (e.g., with stochastic Runge–Kutta)

I The simplest alternative is the Euler–Maruyama method:

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk ) ∆t + L(x̂(tk ), tk ) ∆βk ,

where ∆βk ∼ N(0,Q ∆t)
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Solution concepts in SDEs

I Path of a Brownian motion which
is solution to stochastic
differential equation

dx
dt

= w(t)

I Strong vs. weak solutions
I Evolution of the probability

density of the solution trajectories
is given by the
Fokker–Planck–Kolmogorov PDE
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Fokker–Planck–Kolmogorov PDE

The probability density p(x, t) of the solution of the SDE

dx = f(x, t) dt + L(x, t) dβ

solves the Fokker–Planck–Kolmogorov PDE

∂p(x, t)
∂t

= −
∑

i

∂

∂xi
[fi(x , t) p(x, t)]

+
1
2

∑
ij

∂2

∂xi ∂xj

{
[L(x, t) Q LT(x, t)]ij p(x, t)

}

I In physics literature it is called the Fokker–Planck equation
I In stochastics it is the forward Kolmogorov equation
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Summary

I Stochastic differential equations (SDE) can be seen as
differential equations with a stochastic driving force

I SDEs are typical in physics, engineering, and finance
applications

I A heuristic white noise formulation has problems with the
chain rule, non-linearities, and solution existence

I Instead, use the Itô stochastic integral (calculus)
I Various solution concepts; in general, non-linear SDEs are

tricky to solve (good schemes for simulation exist though)
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Up next

3 I Three views into Gaussian processes
I (one of which is in terms of linear SDEs)



Machine learning with signal processing: Part II
Arno Solin

23/23

Bibliography

These references are sources for finding a more detailed overview on the
topics of this part:
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