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Textbooks

Applied
Stochastic
Differential
Equations

Simr ki and

& S. Sarkka and A. Solin (2019). Applied Stochastic Differential
Equations. Cambridge University Press. Cambridge, UK.
Book PDF and codes for replicating examples available online.
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Differential equations model how things change

» Ordinary differential equations (ODES)
(deterministic)

» Stochastic differential equations (SDEs)
(stochastic)
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What is a stochastic differential equation (SDE)?

» Consider an ordinary differential equation (ODE):
dx
FTi f(x, t)

» Then we add white noise to the right hand side:

dx
i f(x,t) + L(x, t)w(t)

> f(x,t) is the drift function and L(x, t) is the dispersion
matrix (diffusion term)

» Now we have a stochastic differential equation (SDE)
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White noise

. W(t) and w(t) are independent if t; # f

. t— w(t) is a Gaussian process with
mean and covariance:

E[w(t)] =0,
E[w(t)w'(s)] = 6(t — s)Q

Q is the spectral density of the process
The sample path ¢ — w(t) is discontinuous almost everywhere

White noise is unbounded and it takes arbitrarily large positive and
negative values at any finite interval
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What does a solution of an SDE look like?

Mean solution

- 95% quantiles
—— Realizations of the SDE

Displacement, x (7)

Solution paths of a stochastic spring model

d?x(t)  dx(t)

iz T at + 2 x(t) = w(t)
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SDEs as white noise—driven differential equations

» Treating SDEs as white noise—driven differential equations
has its limits
dx
P f(x, t) + L(x, t) w(t)
» For linear equations the approach works
» But this interpretation breaks down in the general setting:
» The chain rule of calculus starts giving wrong answers!
» With non-linear differential equations the behaviour
becomes unexpected
> Trying to prove the existence of solutions becomes tricky
» The source of all the problems is the everywhere
discontinuous white noise w(t)

» So how should we really formulate SDEs?
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Equivalent integral equation

» We have a differential equation of the form

dx
FTi f(x, t) + L(x, t) w(t)

» Integrating the differential equation from ty to t gives:

t -t
x(t) = x(fo) = [ f(x(t), t)dt+ [ L(x(t),t)w(t)dt
ty to
» The first integral is just a Riemann/Lebesgue integral

» The second integral is the problematic one due to
the white noise (this is the interesting part!)
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Attempt 1: Riemann integral

In the Riemannian sense the integral would be defined as

t

L(x(t), yw(t)dt = lim ZL (), 8) W) (teyt — ),

b

where fop <ty < ... <th=tand t; € [tk, txy1]

Upper and lower sums are defined as the selections of t;
such that the integrand L(x(#;), t;) w(t;) has its maximum
and minimum values, respectively

The Riemann integral exists if the upper and lower sums

converge to the same value

Because white noise is discontinuous everywhere, the
Riemann integral does not exist
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Attempt 2: Stieltjes integral [1/2]

> A Stieltjes integral is more general and allows for
discontinuous integrands

» We can interpret the increment w(t) dt as increments of
another process 3(t) such that

t t
L(x(t), yw(t)dt = | L(x(t),t)dB(1).
fo fo
> |t turns out that a suitable process for this purpose is
Brownian motion. ..
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Brownian motion

. Gaussian increments: \ .
W“Mm
ABk ~ N(0,QAl),

« AN
where ABy = B(ti+1) — B(l) “MW/M
and Atk = te1 — & W\m
. Non-overlapping increments are \W/”
independent

Q is the diffusion matrix of the Brownian motion.
Brownian motion t — 3(t) has discontinuous derivative everywhere
White noise can be considered the formal derivative of Brownian motion

w(t) = dg(t)/dt
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Attempt 2: Stieltjes integral [2/2]
> Stieltjes integral is defined as a limit of the form

t
L(x(t),t)dB = lim ZL ), 1) [B(ti1) — Bt
)
where fo <ty < ... <tpand t; € [t, tki1]

» The limit f; should be independent of the position on the
interval £ € [tk, tki1]

» For integration with respect to Brownian motion this is not
the case

! Thus, the Stieltjes integral definition does not work either
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Attempt 3: Lebesgue integral

> In a Lebesgue integral we could interpret 3(t) to define a
‘stochastic measure’

> Essentially, this will also lead to the definition
/ Lx(0).098 = fim 3 LK), 6) Bltc) = B0

where fo < ty < ... < tpand t; € [t, k1]

» Again, the limit should be independent of the choice
t; € [tk, tk+1]

> Also our ‘measure’ is not really a sensible measure

The Lebesgue integral does not work either
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Attempt 4: It6 integral

The solution to the problem is the 1t6 stochastic integral

The idea is to fix the choice to #; = f, and define the
integral as

t
L(x(t), t)dB(t) = lim Z'— (t), ) [B(tit1) — B(t)]

fo

This 116 stochastic integral turns out to be a sensible
definition of the integral

However, the resulting integral does not obey the
computational rules of ordinary calculus

Instead of ordinary calculus we have It6 calculus
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Ité stochastic differential equations
» Consider the white noise—driven ODE

dx
g = )+ Lix. w(t)

» This is actually defined as the It0 integral equation

t t
X(t) —x(to) = [ t(x(t),t)dt+ [ L(x(t),t)dB(1),
fo to
which should be true for arbitrary fy and t
» Which can be written (considering the limits ‘small’) as

\ dx = f(x, t)dt + L(x, {)d3 \

» This is the canonical form of an |1t0 SDE
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Connection with white noise-driven ODEs

> Let’'s formally divide by dt, which gives

dx dg
at =f(x, )+ L(x, t) T,

» Thus we can interpret d3/dt as white noise w (not an
entity as such, only the formal derivative)

» Note that we cannot define more general equations

dx(t)
T - f(X(t),W(t), t),

because we cannot re-interpret this as an 1i6 integral

equation

Machine learning with signal processing: Part Il
Arno Solin

17/23



Non-linear SDEs

» There is no general solution method for non-linear SDEs
dx = f(x, t)dt + L(x, t)d3

» However, numerical simulation of solution trajectories is
usually possible (e.g., with stochastic Runge—Kutta)

» The simplest alternative is the Euler—Maruyama method:

X(tiy1) = X(te) + 8(X(tc), i) At + L(X(t), t) 2Bk,

where ABk ~ N(0,QAf)
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Solution concepts in SDEs

—— Sample path of B(7)
Mean

» Path of a Brownian motion which - - - Upper 3 quante
is solution to stochastic
differential equation
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» Strong vs. weak solutions

» Evolution of the probability
density of the solution trajectories
is given by the
Fokker—Planck—Kolmogorov PDE

P(B®)
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Fokker—Planck—-Kolmogorov PDE

The probability density p(x, t) of the solution of the SDE

dx = f(x, t)dt + L(x, t)dg3

solves the Fokker—Planck—Kolmogorov PDE

Z [fxt (x, 1)]

32 L(x, £) QLT (x, )] p(x, t

» In physics literature it is called the Fokker—Planck equation

» In stochastics it is the forward Kolmogorov equation

Machine learning with signal processing: Part Il
Arno Solin

20/23



Summary

Stochastic differential equations (SDE) can be seen as
differential equations with a stochastic driving force

SDEs are typical in physics, engineering, and finance
applications

A heuristic white noise formulation has problems with the
chain rule, non-linearities, and solution existence

Instead, use the [i6 stochastic integral (calculus)

Various solution concepts; in general, non-linear SDEs are
tricky to solve (good schemes for simulation exist though)
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Up next

» Three views into Gaussian processes
> (one of which is in terms of linear SDEs)
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