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Scope of this tutorial

This tutorial is about:
I (Mostly) temporal models
I Various tools in signal

processing
I Pointers to application

areas
I Links to aspects in

statistical ML

This tutorial is not about:
I Audio processing
I Image processing
I Encyclopedic overview
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Goals

I Teach basic principles of direct links between signal
processing and machine learning

I Provide an intuitive hands-on understanding of what
stochastic differential equations are all about

I Show how these methods have real benefits in speeding
up learning, improving inference, and model building
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Disclaimer

I I do not have time to discuss many important and
relevant works

I If you think I should have included some of those, please
send me email and I will try to include it the next time

I The content of the tutorial is based on my own biased
opinion (and expertise)

I Many examples are based on my own work
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Structure

Part I

Tools and
discrete-time

models

Part II

SDEs
(continuous-time

models)

Part III

Gaussian
processes

�
Part IV

Application
examples



Machine learning with signal processing: Part I
Arno Solin

7/21

Outline

Temporal models

Tools for working
with time-series

Spectral methods

State space
models

Filtering and
smoothing

Non-linear
estimation

Sensor fusion
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Motivation: Temporal models

/ One-dimensional problems
(the data has a natural ordering)

/ Spatio-temporal models
(something developing over time)

/ Long / unbounded data
(sensor data streams, daily observations, etc.)

Explaining changes in number of births in the US
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Spatio-temporal modelling of precipitationBrain data (or why not neural networks)
Sensor data modelling
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Machine learning

MLML

Data

Models Algorithms
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Tools for dealing with time-series

I Moment representation
Considering the statistical properties of
the input data jointly over time

I Spectral (Fourier) representation
Analyzing the frequency-space
representation of the problem/data

I State space (path) representation
Description of sample behaviour as a
dynamic system over time
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Spectral (Fourier) representation

I Fourier transform F [·]:

f̃ (ω) =

∫
f (x) exp(−i ωTx)dx

I Analyzing properties of ‘systems’ (input–output mappings)
by transfer functions:

H(s) =
Y (s)
X (s)

=
L[y(t)](s)
L[x(t)](s)

,

where L[·] is the Laplace transform
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Discrete-time state space models
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I A canonical state space model:

Dynamics: xk = f(xk−1,qk ), qk ∼ N(0,Qk ),

Measurement: yk = h(xk , rk ), rk ∼ N(0,Rk )

I The key to efficiency is the directed graph:
The Markov property.
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Kalman filtering and smoothing
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I Closed-form solution to linear-Gaussian filtering problems

xk = A xk−1 + qk , qk ∼ N(0,Qk ),

yk = H xk + rk , rk ∼ N(0,Rk )

I Filtering solution: p(xk | y1:k ) = N(xk | mk |k ,Pk |k )

I Smoothing solution: p(xk | y1:T ) = N(xk | mk |T ,Pk |T )
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Non-linear filtering
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State Gaussian even if dynamics
and measurements non-linear

I Typically xk is assumed Gaussian:

xk = f(xk−1,qk ), qk ∼ N(0,Qk ),

yk = h(xk , rk ), rk ∼ N(0,Rk )

I Filtering solution: p(xk | y1:k ) ' N(xk | mk |k ,Pk |k )

I Smoothing solution: p(xk | y1:T ) ' N(xk | mk |T ,Pk |T )
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Sensor fusion by non-linear Kalman filtering

I Dynamics f(·, ·) governed
by high-frequency
accelerometer and
gyroscope sensor samples
(Newton’s laws)

I Observations yk are
camera frames

I Online learning problem
(sensor noises and biases)

Real-time visual-inertial
motion tracking



Probabilistic inertial-visual odometry
for occlusion-robust navigation (https://youtu.be/_ywmtVzxURk)

https://youtu.be/_ywmtVzxURk
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Non-linear filtering by sequential Monte Carlo
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If a Gaussian approximation is too
restrictive, resort to particle filtering

I Sequential Monte Carlo characterizes the state distribution
with a swarm of ‘particles’ (particle filtering)

I Can deal with multi-modality, severe non-linearities, etc.
I All the usual MC caveats apply
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Sensor fusion by sequential Monte Carlo

I Absolute position tracking of a
smartphone by using the
compass sensor (magnetometer)

I Match observations to a map of
local anomalies of the magnetic
field inside a building

I The ‘anomaly track’ becomes
unique when the phone has
moved a long-enough distance



Terrain matching in the magnetic landscape
by sequential Monte Carlo (https://youtu.be/UuUo9Q0OT1Q)

https://youtu.be/UuUo9Q0OT1Q
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Up next

2
I Going from discrete-time to

continuous-time
I A gentle introduction to stochastic

differential equations (SDEs)
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