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Scope of this tutorial

This tutorial is about: This tutorial is not about:
» (Mostly) temporal models > Audio processing
» Various tools in signal » Image processing
processing » Encyclopedic overview
» Pointers to application
areas

» Links to aspects in
statistical ML
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Goals

» Teach basic principles of direct links between signal
processing and machine learning

» Provide an intuitive hands-on understanding of what
stochastic differential equations are all about

» Show how these methods have real benefits in speeding
up learning, improving inference, and model building
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Disclaimer

| do not have time to discuss many important and
relevant works

If you think | should have included some of those, please
send me email and | will try to include it the next time

The content of the tutorial is based on my own biased
opinion (and expertise)

Many examples are based on my own work
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Part |

Tools and
discrete-time
models

Structure

Part Il

SDEs
(continuous-time
models)

Part Il Part IV
Gaussian Application
processes examples
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Outline

Temporal models

Sensor fusion

Filtering and

Tools for working smoothing

with time-series

Non-linear
estimation

State space
models
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Motivation: Temporal models

® One-dimensional problems
(the data has a natural ordering)

© Spatio-temporal models
(something developing over time)

® Long/ unbounded data
(sensor data streams, daily observations, efc.)
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Machine learning

Models
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Tools for dealing with time-series

» Moment representation
Considering the statistical properties of
the input data jointly over time

» Spectral (Fourier) representation
Analyzing the frequency-space
representation of the problem/data

» State space (path) representation
Description of sample behaviour as a
dynamic system over time

k(t,t)
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Spectral (Fourier) representation

VA VA VEAVEVAVEAVEVAVEAWV,

» Fourier transform F[-]:
flw) = / f(x) exp(—i wx)dx

» Analyzing properties of ‘systems’ (input—output mappings)
by transfer functions:

Y(s) _ LIy(DI(s)
X(s)  Lx®](s)

H(s) =

where L[] is the Laplace transform
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Discrete-time state space models
O-99POOC
OROXOXORO,

> A canonical state space model:

Dynamics: Xk = f(Xk_1,0x), Ak ~ N(0,Qx),
Measurement: Vi = h(Xg, rg), rx ~ N(0,Rg)
» The key to efficiency is the directed graph:
The Markov property.
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Kalman filtering and smoothing

» Closed-form solution to linear-Gaussian filtering problems

Xy = Axk—1 + Ak, qx ~ N(O,Qk),
Vi = HXy + 1y, re ~ N(0, Rg)

> Filtering solution: p(Xx | Y1.k) = N(Xk | Mgk, Pyix)
» Smoothing solution: p(Xx | Y1.7) = N(Xx | Mk 7, Px7)
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Non-linear filtering

()

State Gaussian even if dynamics
and measurements non-linear

» Typically xx is assumed Gaussian:

Xy = f(xk—17qk)a Ak ~ N(07Qk)7
Yk = h(Xg, rg), rk ~ N(0, Ry)

> Filtering solution: p(Xx | Y1.x) =~ N(Xk | Mgk, Pyix)
» Smoothing solution: p(Xx | Y1.7) ~ N(Xx | My 7, Py 1)
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Sensor fusion by non-linear Kalman filtering

» Dynamics f(-,-) governed
by high-frequency
accelerometer and
gyroscope sensor samples
(Newton’s laws)

» Observations yi are
camera frames

» Online learning problem
(sensor noises and biases)

Real-time visual-inertial
motion tracking
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Probabilistic inertial-visual odometry
for occlusion-robust navigation (https://youtu.be/_ywmtVzxURk)


https://youtu.be/_ywmtVzxURk

Non-linear filtering by sequential Monte Carlo

()

If a Gaussian approximation is too
restrictive, resort to particle filtering

» Sequential Monte Carlo characterizes the state distribution
with a swarm of ‘particles’ (particle filtering)

» Can deal with multi-modality, severe non-linearities, etc.
> All the usual MC caveats apply
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Sensor fusion by sequential Monte Carlo

—20
uT

» Absolute position tracking of a
smartphone by using the
compass sensor (magnetometer)

—40

» Match observations to a map of
local anomalies of the magnetic
field inside a building

uT

» The ‘anomaly track’ becomes
unique when the phone has
moved a long-enough distance

—40
uT
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Terrain matching in the magnetic landscape

by sequential Monte Carlo (https://youtu.be/Uulo9Q00T1Q)



https://youtu.be/UuUo9Q0OT1Q

Up next

» Going from discrete-time to
continuous-time

> A gentle introduction to stochastic
differential equations (SDESs)
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