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Abstract

This technical note presents the idea and methods behind the winning solution
for the MLSP 2014 Schizophrenia Classification Challenge organized on Kaggle.
This challenge took place between June 5 and July 20, 2014, and 341 teams sub-
mitted solutions. The winning model ‘Solution Draft’ was based on a Bayesian
machine learning paradigm known as Gaussian process (GP) classification.

1 Summary

The goal of the competition [1] was to automatically diagnose subjects with schizophrenia based
on multimodal features derived from their magnetic resonance imaging (MRI) brain scans. The
winning proposition was based on a Gaussian process (GP, [2]) classifier, where the observations
are considered to be drawn from a Bernoulli distribution. The probability is related to the latent
function via a sigmoid function that transforms it to a unit interval. A GP prior with a covariance
function as a sum of a constant, linear, and Matérn kernel was placed over the latent functions. The
model was trained by sampling using the GPSTUFF toolbox [3].

2 Data and preprocessing

Data collection (partially described in [4]) was performed at the Mind Research Network, and funded
by a Center of Biomedical Research Excellence (COBRE) grant SP20RR021938/P20GM 103472
from the NIH to Dr. Vince Calhoun. Both the training and test data are available on Kaggle [1].

The data consist of two sets of information collected by different imaging modalities: Functional
Network Connectivity (FNC, [5]) and Source-Based Morphometry (SBM, [6]) loadings. The FNC
were derived form functional magnetic resonance imaging (fMRI) scans, and can be seen as a func-
tional modality feature describing the subject’s overall level of ‘synchronicity’ between brain areas.
SBM loadings are derived from structural MRI scans, and they indicate the concentration of grey
matter in different regions of the subject’s brain.

We denote the training data as D = {(x;,y;)}"_;. The training data consist of n = 86 subjects,
where x; € R*10 (378 from the FNC and 32 from the SBM, ignoring the constant first terms). The
test data D, = {(Xx4, Y«,i) };1, consists of n, = 119,748 rows (subjects) with unknown labels ..
As a preprocessing step, we normalize each dimension in the inputs x; and x, ; by dividing them by
the standard deviations from training inputs. The labels were transformed to y; € {—1, 1}.

3 Modeling techniques and training

The winning model was based on Gaussian process classification [2], where the latent functions are
assumed to be realizations of a Gaussian process prior. In binary GP classification with observations,
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y; € {—1,1},i = 1,...,n, associated with inputs {x}?_,, the observations are considered to be
drawn from a Bernoulli distribution with a success probability p(y; = 1 | x;). The probability is
related to the latent function via a sigmoid function that transforms it to a unit interval. We use a
probit transformation that defines the likelihood model

yif(x:)
P | F(x0)) = By f(xs)) = / N(z10,1)dz, )
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where ®(-) is the Gaussian cumulative distribution function. We use a Gaussian process prior to
define a prior distribution over the latent functions

f ~ gP(O7 ]{Z(X, X/))' 2

The latent Gaussian process model is characterized by its covariance function (kernel) k(-,-). We
want to account for any linear structure plus some additional short-scale non-linearities in the la-
tent space. Therefore we set up the covariance function as a linear combination of three separate
covariance functions:
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where the individual covariance functions were defined as (see [2] for a similar parametrization):
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where r = ||x — x'||. The Matérn class has previously turned out to be suitable for spatio-temporal
GP modeling in fMRI applications (see, e.g., [7-9]).

The hyperparameters 8 = {61, 65,03,04} of the model were given the following hyper-priors:
01,052,053 ~ Log-Uniform, and 64 ~ ¢4(0,1). The hyperparameters were initialized as 6 =
{1,1,1,0.01}.

The training was started by running a Laplace approximation scheme on the model until convergence
(see the codes), and then the final training was performed by sampling (1000 samples, 91 after
removing burn-in and thinning). We used elliptical slice sampling [10] for the latent functions,
and the surrogate slice sampler [11] for the hyperparameters. These samplers are the defaults in
GPSTUFF [3], and they do not require any parameter tuning. The class label probabilities p(y. ; =
1| D, x. ;) for the test set can now be predicted by the trained model by integrating over the latent
functions. For more information and discussion on the methods, see the toolbox manual [12].

4 Code description

The codes that were used for training and prediction can be found at:
e http://github.com/asolin/MLSP2014-kaggle—-challenge

All files are written in Mathworks Matlab, and running the scripts require installation of the GP-
STUFF toolbox (see Sec. 5). The following files are provided:

e settings.m (Matlab)

a. Specifies the path to the training data (TRAIN_.DATA_PATH), test data
(TEST_DATA_PATH), model (MODEL_PATH), and submission output directo-
ries (SUBMISSION_PATH). This is the only place that specifies the paths to these
directories.

b. The GPSTUFF toolbox is added to the Matlab path with appropriate initializations.
e train.m (Matlab)
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a. Read training data from TRAIN_DATA_PATH (specified in settings.m).

b. Do the normalization steps described in Section 2.

c. Set up and train the GP classifier (Note that the random number generator seed is not
specified).

d. Save the model under MODEL_PATH (specified in settings.m).

e predict.m (Matlab)

a. Read the training and test data from TRAIN_DATA_PATH and TEST_DATA_PATH,
and do the normalization steps described in Section 2.

b. Load the model from MODEL_PATH.

c. Use the model to make predictions on new samples.

d. Save the predictions to SUBMISSION_PATH.

5 Dependencies

This solution builds heavily upon the GPSTUFF toolbox [3, 13] for Mathworks Matlab (and Octave).
It is our in-house-developed software package for Gaussian process modeling. All codes were tested
in Matlab 8.2.0.701 (R2013b), and GPSTUFF version 4.5 (release 2014-07-22, available online [13],
and distributed under the GNU General Public License) in Ubuntu Linux.

6 How to generate the solution

The following steps should be taken to replicate the model training procedure:

1. Download and unpack the GPSTUFF toolbox [13].
2. Modify (to set the paths) and run setup .m in Matlab.

3. Run train.m in Matlab to train the GP classifier (note that the random seed is not fixed).
The model is saved under the path specified in setup.m.

4. Run predict .m in Matlab to predict using the GP classifier. The model output is stored
under the path specified in setup .m.

The winning model (serialized and saved) and submission CSV file are stored under . /model/
and . /submission/, respectively.

7 Additional comments and observations

This particular GP classifier model was chosen by trying out a couple of models and comparing their
performance by leave-one-out cross-validation (LOOCYV). This model did show promising perfor-
mance using LOOCY, but the score (AUC) on the public leaderboard (calculated on approximately
52% of the data) on Kaggle was only 0.70536, discouraging any further tuning of the model. How-
ever, the final private leaderboard score (AUC) turned out as 0.92821 (topping the list). There is a
huge discrepancy between the scores. My firm belief is that tuning this model a bit further would
probably be beneficial for a more real-life application.
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