Volumetric Space–Time Structure of Physiological Noise in BOLD fMRI

Arno Solin¹, Simo Särkkä¹, Aapo Nummenmaa^{1,2}, Aki Vehtari¹, Toni Auranen³, Simo Vanni^{3,4}, and Fa-Hsuan Lin^{1,5}

¹Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland, ²Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States, ³Advanced Magnetic Imaging Centre, Aalto University, Espoo, Finland, ⁴O.V. Lounasmaa Laboratory, Aalto University, Espoo, Finland, ⁵Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan

Computer 64 Mon 22.4.2012 5:30 PM

Aims of Study

- Estimate volumetric amplitude and latency maps of physiological noise in the brain.
- Determine the strength and relative phase shift compared to an external physiological reference signal.

- The results can be:
 - Used in studying the structure of physiological noise in the brain.
 - Applied to removal or
 estimation of noise
 components in slow fMRI.
 - Utilized in future fastimaging techniques as *a priori* information.

Data Acquisition

- A 27-run set of resting state fMRI data and anatomical images for one volunteer.
- Sequence parameters:
 - 3 T scanner (Siemens Skyra)
 - TR: 77 ms
 - TE: 21 ms
 - FA: 60 degrees
 - FOV: 224 mm
 - Matrix size: 64x64
 - Voxel size: 3.5x3.5x6 mm

Data Acquisition

- Each run, roughly 30 s in length, comprised of two slices:
 - One fixed reference slice
 - Gap size between the slices advancing with run number
- The reference slices were used for validation.
- Cardiac and respiration reference signals were acquired time-locked to the fMRI.

Finding Physiological Signals

- We use the **DRIFTER** algorithm
 [3] for separating the oscillating signals from the fMRI data.
- Voxel time series and external reference signals as inputs.
- The method is based on modeling stochastic oscillators with Kalman filters.
- Open source Matlab toolbox available online.

[3] Särkkä S., *et al.* Dynamical retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. *NeuroImage*. 2012;60:1517–1527.

Finding Physiological Signals

Estimation of Amplitude and Latency

Volumetric Amplitude Maps

Cardiac Amplitude

Respiratory Amplitude

Volumetric Cardiac Phase/Latency

A full cycle corresponds to a lag of approximately 0.94 s.

Volumetric Respiratory Phase/Latency

A full cycle corresponds to a lag of approximately 4.2 s.

Discussion

Interpretation:

- Clear phase shift between different areas in the oscillatory noise signals.
- The cardiac phase is nearly constant over the cerebral cortex.
- The respiratory phase follows a more uniform pattern over the whole volume.

Validation:

- The reference slices were used to confirm that the approach provides useful estimates.
- Below four independent respiratory amplitude estimates for slice number 19.
 The estimates are very similar

Discussion

Practical implications:

- Phase shifts 0°, 90°, and 180° imply correlations 1, 0, and -1, which has effect to connectivity analysis.
- These temporal phase maps can be provided by a reference scan or they can be pre-calculated.

Future Research:

- Combine the *a priori* phase and slice timing information for finding physiological noise in slow EPI.
- Structural information can be used as *a priori* information in **ultra-fast** parallel imaging methods.

Conclusion

- We have presented means to estimate the volumetric spatio-temporal structure of oscillating physiological signals in BOLD fMRI.
- Phase shift maps can provide substantial prior information in noise elimination and image reconstruction methods.

The **DRIFTER toolbox** for Matlab/SPM 8 is available for download at: http://becs.aalto.fi/en/research/bayes/drifter/