
Figure 2: The network for the
links returning the strongest
intersubject correlations. The
bilateral symmetry is strong.

Figure 3: The connectivity map
correlated with singing in the movie.
Lateralization over right temporal
areas for melody/pitch processing.

Figure 4: Network for head motion
in the film. Strong parietal regions,
bits of fusiform face area, frontal
areas and amygdala.

Figure 5: Network for hand motion
in the film. Strong parietal regions
and parieto–occipital connections.

Figure 6: The same network as in
Fig. 2, but calculated by the wavelet

method by Chang and Glover [1].
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INTRODUCTION

I Functional connectivity in functional
magnetic resonance imaging (fMRI)
is often estimated as the average
pairwise similarity between the
temporal dynamics of two regions of
interests (ROIs) [5].

I In time-varying functional
connectivity, where the stimulus is
continuously changing, the functional
connectivity is modulated in time
[1–2].

I Here, we study the dynamic
functional connectivity between pairs
gray matter of voxels by considering
the time–frequency dynamics
between them.

I Each pair of time series is
decomposed into oscillatory
components described by a
stochastic oscillator model [4].

I The oscillators are inferred from the
data using optimal Bayesian filtering
methods.

I The coherence between the different
frequency components is converted
into a time-varying functional
network.

Figure 1: The time–frequency cross-
power between two simulated time series.

METHODS

I We use a stochastic oscillator model,
that is described by a second order
stochastic differential equation (SDE)
for each voxel i and frequency fj :

dx i(t)
dt

=

(
0 2πfj

−2πfj 0

)
x i(t)+

(
0
1

)
ξi(t),

where ξi(t) is a random white noise
component with spectral density qi .

I This is a linear SDE, and it can be
solved for all the observations time
points tk , k = 1,2, . . .

I The discrete model can then be fitted
to the fMRI data using Kalman
filtering and smoothing.

I The model is based on DRIFTER —
a method for removing physiological
noise from fMRI data [4] — but
evaluated over a set of fixed
frequencies.

I Summing the cross-coherence power
surface over frequencies defines the
functional activation between the
regions (see [1]).

I We compare the pairwise activation
time series to ground truth stimuli in
order to estimate connectivity maps
describing the types of connections.

MATERIAL

I Functional brain images together with
anatomical data were acquired for 14
healthy native speakers of Finnish.

I The subjects watched 22 min 58 s of
a Finnish language film in an MRI
scanner (3 T GE Signa Excite,
8-channel head coil).

I The film was a shortened version of
the feature film “Match Factory Girl”
(dir. Aki Kaurismäki, 1990, original
length 68 min).

I 16 visual and auditory features from
the film were extracted as ground
truth references (see [3] for details).

I Sequence parameters: EPI slices:
29, TR: 2 s, TE: 32 ms, matrix size:
64×64, FA: 90◦, voxel size:
3.4×3.4 mm, slice thickness: 4 mm,
gap size: 1 mm. Data downsampled
to 6 mm isotropic voxels, and 6235
gray matter voxels chosen for study.

RESULTS

I Figure 1 shows how the oscillator
model captures the coupling of two
simulated signals.

I The strongest network of intersubject
consistency of connectivity time
series is shown in Figure 2.

I Figures 3–5 show networks of linear
regression between stimulus features
(singing, head motion, hand motion)
[3] and connectivity time series.

I Comparisons of intersubject
consistency connectionscaptured by
the wavelet approach by Chang and
Glover [1]: inter-hemispheric
connections between the occipital
lobes appear to be less consistent
across subjects when using wavelets.

CONCLUSIONS

I We have proposed a method for
estimating coupling of oscillatory
phenomena in fMRI data.

I The outcome can be used for
estimating time-varying functional
connectivity networks.

I This approach is related to that of [1],
where a wavelet basis was used for
modeling the cross-coherence.
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