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Abstract

The added flexibility of Student-t processes
(TPs) over Gaussian processes (GPs) robus-
tifies inference in outlier-contaminated noisy
data. The uncertainties are better accounted
for than in GP regression, because the pre-
dictive covariances explicitly depend on the
training observations. For an entangled
noise model, the canonical-form TP regres-
sion problem can be solved analytically, but
the naive TP and GP solutions share the
same cubic computational cost in the num-
ber of training observations. We show how
a large class of temporal TP regression mod-
els can be reformulated as state space mod-
els, and how a forward filtering and back-
ward smoothing recursion can be derived for
solving the inference analytically in linear
time complexity. This is a novel finding
that generalizes the previously known con-
nection between Gaussian process regression
and Kalman filtering to more general ellipti-
cal processes and non-Gaussian Bayesian fil-
tering. We derive this connection, demon-
strate the benefits of the approach with ex-
amples, and finally apply the method to em-
pirical data.

1 INTRODUCTION

Gaussian processes (GPs, [1]) provide a flexible way
of imposing non-parametric priors over functions,
which has made them popular modeling tools in both
Bayesian machine learning and signal processing. In
signal processing, temporal GPs are typically repre-
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sented as state space models [2], whereas the kernel
(covariance function) formalism is favored in machine
learning. The link between these two representations
is interesting, because it enables the combination of
the intuitive model specification from machine learning
with computationally efficient signal processing meth-
ods [3–5]. Most notably, for one-dimensional models
this reduces the computational cost of a naive GP re-
gression solution from O(n3) to O(n) in the number of
training data points n by solving the inference problem
by Kalman filtering methods (see, e.g., [6]).

The success of Gaussian processes has awakened an
interest in expanding the methodology to more gen-
eral families of elliptical processes [7, 8], such as the
Student-t process (TP, see, e.g., [9, 10]). The scale
mixture connection to Gaussian processes justifies the
added flexibility in TPs, and longer tails provide ro-
bustness against outliers. Additionally, the predictive
covariance explicitly depends on the training obser-
vations, even though in GPs it only depends on the
training inputs. Hence, noise in the measurements also
gives information on the uncertainty, whereas in GP
regression this information is ignored. Recently Shah
et al. [10] resurrected the concept of TP regression,
where they proposed the noise model to be included
in the kernel function. They showed that contrary to
the TP described by Rasmussen and Williams [1], this
model can be solved analytically and it was shown to
be beneficial in comparison to the GP regression ap-
proach.

In this paper, we present a connection between tem-
poral Student-t processes and state space models, and
propose a novel method for solving the TP regression
problem recursively in linear time complexity with re-
spect to the number of observations. This generalizes
the known Kalman filtering connection of GPs [3–5]
to more general elliptical processes. As the degrees
of freedom ν → ∞, we recover the Kalman filter and
the model reverts to GP regression. We construct the
Student-t processes analogously to Shah et al. [10] as
a mixture of Gaussian processes with only a single in-
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verse Wishart random variable as the scaling distri-
bution. By representing the Student-t distributions
as a scale mixture, marginalizations in the Kalman
smoother forward–backward algorithm can be inter-
changed with marginalization over the scale variable.
It is also possible to construct Student-t processes (i.e.,
processes with Student-t marginals) by other means
(see [8]): by constructing a suitable Lévy subordinator
which transforms a Gaussian process into a Student-
t process via a time change, or by constructing a
stochastic differential equation with a suitable non-
linear drift. Our approach roughly corresponds to us-
ing a globally scaled time change instead of stochas-
tic subordinator-based time scaling. Even though this
hints that a generalization to Lévy subordinator based
processes might be possible, it is non-trivial due to the
entanglement of the process and noise.

The problem of robustifying GP regression models has
been tackled before, mostly by considering long-tailed
measurement noise. In signal processing several types
of robust filtering approaches exist (see, e.g., [11–15],
and references therein), whereas under the GP frame-
work in machine learning, robustification has been
implemented by a Student-t observation model [16].
Similar Student-t likelihood based methods in state
space models have been analyzed in [12, 13]. How-
ever, in these approaches the inference is approximate,
whereas this paper considers analytic solutions enabled
by the noise entanglement.

The main contributions of this paper are:

• A novel explicit connection between Student-t
processes and state space models.

• A novel Bayesian filtering and smoothing based
inference scheme for solving temporal Student-t
process regression problems in linear time com-
plexity.

This paper is structured as follows. In Section 2, we
begin by introducing the Student-t process and de-
fine the required concepts for constructing the infer-
ence scheme. In Section 3 we establish the connection
between the Student-t process and the corresponding
state space model and describe our inference algo-
rithm. Numerical experiments are conducted in Sec-
tion 4, and the results are discussed in Section 5.

2 STUDENT-t PROCESSES

In this section, we provide the required backdrop for
the rest of the paper by considering the properties
of the Student-t distribution and processes. A sur-
vey on concepts and results related to the Student-t
distribution has been provided by Kotz and Nadara-
jah [17], and here we only briefly present the rele-

vant aspects. For consistency between the multivari-
ate Gaussian (i.e., the GP parametrization) and the
multivariate Student-t parametrization (i.e., the TP
parametrization), we define the multivariate Student-
t distribution as follows.

Definition 2.1. The random variable y ∈ Rn is mul-
tivariate Student-t distributed, y ∼ MVT(µ,K, ν),
with degrees of freedom ν > 2, mean µ ∈ Rn, and
covariance matrix K ∈ Rn×n, if it has the density
function

MVT(y | µ,K, ν) =
Γ(ν+n

2 )

Γ(ν2 )

1

((ν − 2)π)
n
2

1

|K| 12(
1 +

1

ν − 2
(y − µ)TK−1(y − µ)

)− ν+n2
. (1)

From Definition 2.1, as ν →∞, we recover the multi-
variate Gaussian density, N(y | µ,K). The Student-t
distribution can be defined as a scale mixture of Gaus-
sians (see, e.g., [1, 8, 9]), as in the following lemma.

Lemma 2.2. Let γ ∼ IG(ν/2, (ν − 2)/2) be inverse
gamma distributed and y | γ ∼ N(µ, γK) be a Gaus-
sian with mean µ and scaled covariance γK, then
marginally y ∼ MVT(µ,K, ν).

A sketch for a proof for the above lemma is pro-
vided in the supplementary material of this paper.
The same result can be derived by placing an inverse
Wishart process prior on the kernel function, leading
to a Student-t process [10]. The Student-t distribution
inherits several appealing features from the Gaussian,
the most important in this context being an analytic
conditional distribution. The following result can be
readily found in literature (see, e.g., [17]):

Lemma 2.3. Let f1 ∈ Rn1 and f2 ∈ Rn2 be jointly
t distributed with ν degrees of freedom. The condi-
tional density for a multivariate Student-t has an ana-
lytic form: f1 | f2 ∼ MVT

(
µ1|2,K1|2, ν1|2

)
, with mean

µ1|2 = K12K
−1
22 (f2 − µ2) + µ1, covariance K1|2 =

ν−2+β
ν−2+n2

(
K11 −K12K

−1
22 K21

)
, β = (f2−µ2)TK−1

22 (f2−
µ2), and degrees of freedom ν1|2 = ν + n2.

We define the Student-t process using a similar
parametrization as Shah et al. [10]:

Definition 2.4. The process f(x) is a Student-t pro-
cess, f(x) ∼ T P(µ(x), k(x,x′), ν), on X with degrees
of freedom ν > 2, a mean function µ : X → R,
and a covariance function (kernel) k : X × X →
R, if any finite collection of function values has
a joint multivariate Student-t distribution such that
(f(x1), f(x2), . . . , f(xn))T ∼ MVT(µ,K, ν), where
Ki,j = k(xi,xj) and µi = µ(xi), for i, j = 1, 2, . . . , n.

The Student-t process generalizes the concept of
Gaussian processes. For a Student-t process f ∼
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(b) Samples from the TP posterior

Figure 1: Demonstration of the added flexibility of the Student-t process in comparison with a Gaussian process
with the same hyperparameter values for an exponentiated quadratic (squared exponential) covariance function.
The shaded regions illustrate the 95% credible intervals.

T P(µ(·), k(·, ·), ν), as ν →∞, we recover the Gaussian
process with the corresponding mean and covariance
functions. Shah et al. argue that the TP is the most
general elliptical process which has an analytically rep-
resentable density. Figure 1 illustrates the difference
between a GP and TP by presenting random draws
from the posterior distributions. The exponentiated
quadratic (squared exponential, Gaussian, RBF) co-
variance function was given the same hyperparameter
values in both models.

2.1 TP Regression as a Generalization of GP
Regression

We consider the concept of TP regression [10], which is
concerned with predicting an unknown scalar output
f(x∗) associated with a known input x∗ ∈ Rd, given a
training data set D = {(xk, yk) | k = 1, 2, . . . , n}. The
model function is assumed to be a realization of a zero-
mean Student-t random process prior (with covariance
function kθ(x,x′)) and the observations corrupted by
an entangled Student-t noise process:

f(x) ∼ T P(0, k(x,x′), ν),

yk = f(xk),
(2)

where the noise model is incorporated in the covari-
ance function. The direct solution to the TP regres-
sion problem gives predictions for the latent function,
p(f(x∗) | x∗,D) = MVT(E[f(x∗)],V[f(x∗)], ν + n).
By Lemma 2.3, this can be computed in closed-form
as

E[f(x∗)] = kT
∗K
−1y, (3)

V[f(x∗)] =
ν − 2 + yTK−1y

ν − 2 + n

(
kθ(x∗,x∗)− kT

∗K
−1k∗

)
,

where k∗ is an n-dimensional vector with the ith entry
being kθ(x∗,xi), and y is a vector of the n observa-
tions. The noise model is included in the covariance

function by adding a noise covariance function to the
parametrized kernel: Kij = kθ(xi,xj) + σ2

nδi,j , where
δi,j is the Kronecker delta. As pointed out in [10], the
noise will be uncorrelated with the latent function, but
not independent. In the limit ν →∞, this model tends
to a GP regression model with independent Gaussian
noise. The computational complexity of these equa-
tions is inherently cubic in n due to the term K−1.

Training the model amounts to estimating the hyper-
parameters θ of the covariance function kθ(x,x′), the
noise scale σ2

n, and degrees of freedom ν. In prac-
tice, this is often done by minimizing the negative log
marginal likelihood function (following from Def. 2.1):

L(θ) = − log p(y | θ, ν)

=
n

2
log((ν − 2)π) +

1

2
log(|K|)− log Γ

(
ν + n

2

)
+ log Γ

(
ν

2

)
+
ν + n

2
log

(
1 +

β

ν − 2

)
, (4)

where β = (y − µ)TK−1(y − µ). The power of
the TP regression scheme over GP regression comes
from the different marginal likelihood, leading to dif-
ferent hyperparameter values under training. Unfor-
tunately, due to the appearance of K−1, evaluation
of the marginal likelihood has a cubic computational
complexity.

3 STUDENT-t PROCESSES AS
STATE SPACE MODELS

In this section, we propose a novel way of reformulat-
ing the TP regression scheme from the previous section
as a state space inference problem. We consider how
the Student-t process can be written as a scaled mix-
ture of linear stochastic differential equations which
can be solved at a given finite number of input values.
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We now restrict our interest to temporal processes,
such that x = t (X = R). The following results could
be generalized to spatio-temporal models similar to the
generalization of spatio-temporal GPs (see [5]), where
the model is seen as a Student-t field evolving in time.

3.1 Student-t Processes as Solutions to State
Space Stochastic Differential Equations

Instead of directly working with the kernel formal-
ism of the Student-t process f(t) given in Defini-
tion 2.4, certain classes of covariance functions can be
constructed as solutions of mth order linear stochas-
tic differential equations (SDEs) or equivalently m-
dimensional state space form SDEs.

Lemma 3.1. Given a class of parametric stationary
Gaussian processes with a rational spectrum, there ex-
ists a class of state space form SDEs which are weakly
(in law) equivalent with this class of Gaussian pro-
cesses, in the sense that their covariance functions
match. These state space SDEs can be written as

df(t)

dt
= Ff(t) + Lw(t), and f(tk) = Hf(tk), (5)

where f(t) =
(
f1(t), f2(t), . . . , fm(t)

)T
holds the m

stochastic processes, and w(t) is a multi-dimensional
white noise process with spectral density Qc, and ini-
tial state f(0) ∼ N(0,P0).

Proof. This follows from the constructions given in [5].

Theorem 3.2. A Student-t process, f(t) ∼
T P(0, k(t, t′), ν), where k(t, t′) corresponds to a ratio-
nal spectral density, can be constructed as a scale mix-
ture of state space form SDEs in the form considered
in Lemma 3.1 by setting the spectral density to γQc,
and using the initial state f(0) ∼ N(0, γP0), where γ
is an inverse gamma random variable.

Proof. With the white noise spectral density γQc, the
spectral density of the process and hence its covariance
function is directly proportional to γ while the mean
remains zero. The result follows from Lemmas 2.2 and
3.1 together with the fact that the scaled mixtures will
be weakly equivalent provided that the scale members
are.

As well-known, the continuous-time linear time-
invariant model (5) can be solved for discrete points
[2, 3]. In construction of the TP above, the model is de-
fined by the feedback matrix F, the noise effect matrix
L, the spectral density γQc of the white-noise process,
the observation model H, and the initial state covari-
ance γP0. The solution to (5) can be written out in

closed-form at the specified time points tk, k = 1, 2, . . .,
as f(tk) = fk such that f0 ∼ N(0, γP0) and

fk = Ak−1fk−1 + qk−1, (6)

where qk−1 ∼ N(0, γQk−1). The state transition and
process noise covariance matrices can be solved ana-
lytically (see, e.g., [5]):

Ak = Φ(∆tk) and (7)

Qk =

∫ ∆tk

0

Φ(∆tk − τ)LQcL
TΦ(∆tk − τ)T dτ, (8)

where ∆tk = tk+1 − tk and Φ(τ) = exp(Fτ) is the
matrix exponential of the feedback matrix. For sta-
tionary models, the initial state covariance P0 is de-
fined by the stationary covariance P∞ that is the solu-
tion to the corresponding Lyapunov equation: dP∞

dt =
FP∞ + P∞FT + LQcL

T = 0. For these models, the
state transition covariance matrix is given by Qk =
P∞ −AkP∞AT

k .

Remark 3.3. The results can be generalized to some
classes of non-stationary models. See the results by
Van Trees [18, Sec. A.3] and Anderson et al. [19].

Remark 3.4. Above, we have restricted the class of
covariance functions to those with a rational spec-
trum, which excludes, for example, the exponentiated
quadratic (squared exponential), rational quadratic,
and quasi-periodic covariance functions. However, it
has been recently shown in [20–22] that these covari-
ance functions can be approximated to an arbitrary ac-
curacy via finite-dimensional state space models.

3.2 Including the Noise Model

The entangled measurement noise is augmented into
the state as an additional component:

fk = qk−1, where qk−1 ∼ N(0, σ2
n). (9)

This corresponds to the noise covariance function,
knoise(ti, tj) = σ2

n δi,j , where δi,j is the Kronecker delta
function, and results in a diagonal Gram matrix.

This model can be derived by consider an Ornstein–
Uhlenbeck process and its covariance function (also
known as the exponential covariance function, [1])
kexp(t, t′) = σ2

n exp(−λ|t − t′|). The corresponding
state space model can be given as a one-dimensional

stochastic differential equation: df(t)
dt = −λf(t)+w(t),

where w(t) is a white noise process with spectral den-
sity Qc = 2λσ2

n, and the stationary state variance
P∞ = σ2

n. For this model, as λ → ∞ (the charac-
teristic length-scale going to zero), the model tends to
a white noise process, which has the formal discrete-
time solution given in Equation (9) (with zero feedback
for any ∆t).
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Algorithm 1: Student-t filter.
for k = 1, 2 . . . , n do

Filter prediction:

mk|k−1 = Ak−1mk−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1

+ γk−1Qk−1

Filter update:

vk = yk −Hkmk|k−1

Sk = HkPk|k−1H
T
k

γk =
γk−1

νk − 2
(νk−1 − 2 + vT

kS
−1
k vk)

Kk = Pk|k−1H
T
kS
−1
k

mk|k = mk|k−1 +Kkvk

Pk|k =
γk

γk−1

(
Pk|k−1 −KkSkK

T
k

)
end

Algorithm 2: Student-t smoother.
for k = n− 1, n− 2, . . . , 1 do

Smoother prediction:

mk+1|k = Akmk|k

Pk+1|k = AkPk|kA
T
k + γkQk

Smoother update:

Gk = Pk|kA
T
kP
−1
k+1|k

mk|n = mk|k +Gk(mk+1|n −mk+1|k)

Pk|n =
γn

γk

(
Pk|k −GkPk+1|kG

T
k

)
+GkPk+1|nG

T
k

end

As summing covariance functions, k(t, t′) = kθ(t, t′) +
knoise(t, t′), under the kernel formalism corresponds to
stacking state variables in the state space model, in-
cluding the entangled noise contribution can be ac-
complished by augmenting the white noise process
into the state variable. This leads to the following
joint state space model: F = blkdiag(Fθ,−∞) and
P0 = blkdiag(Pθ,0, σ

2
n), and the observation model

H = (Hθ, 1) (training) and H = (Hθ, 0) (prediction
of the latent function).

3.3 Sequential Inference

Filtering and smoothing (see, e.g., [6]) in state space
models refer to the Bayesian methodology of comput-
ing posterior distributions of the latent state based on
a history of noisy measurements. Let the observed
data be denoted as Dn = {(ti, yi) | i = 1, 2, . . . , n}.
In Bayesian filtering and smoothing the interest is put
into the following marginal distributions:

• The filtering distributions are the outcome of the
Bayesian filter. They are the marginal distribu-
tions of the state fk given the current and previ-
ous measurements up to the point tk: fk | Dk ∼

MVT(mk|k,Pk|k, νk).

• The prediction distributions, which can be com-
puted with the prediction step of the Bayesian
filter, are the marginal distributions of the fu-
ture state fk+j , for j = 1, 2, . . . steps follow-
ing the previous observation: fk+j | Dk ∼
MVT(mk+j|k,Pk+j|k, νk).

• The smoothing distributions computed by the
Bayesian smoother are the marginal distribu-
tions of the state fk, k = 1, 2, . . . , n given all
the measurements in the interval: fk | Dn ∼
MVT(mk|n,Pk|n, νn). The smoothing solution
corresponds to the naive solution in Equation (3).

Given the class of Student-t processes in Theorem 3.2,
the TP regression problem in Equation (3) can be
solved by sequentially solving a forward filtering prob-
lem, and updating the filtering outcome by running a
backward smoother. This is constructed by sequen-
tially predicting the next step as given by the link in
Theorem 3.2, and updating the state as by Lemma 2.3.

The inference scheme is presented as a closed-form
recursion in Algorithm 1 (filter) and Algorithm 2
(smoother). The initial degrees of freedom are ν0 = ν,
scaling factor γ0 = 1, prior state mean m0|0 = 0,
and prior state covariance P0|0 = P0. The smoother
is initialized by the filtering outcome. The degrees
of freedom parameter is updated as νk = νk−1 + nk,
where nk = 1, if there is an update on time-step k,
and nk = 0 otherwise (for prediction of test points).
Prediction of test inputs corresponds to including t∗ in
the filtering and smoothing sweeps, but skipping the
filter update for the point. For training the hyperpa-
rameters, the negative log marginal likelihood can be
evaluated sequentially as a by-product of the filtering
recursion in Algorithm 1:

L(θ) =

n∑
k=1

{
1

2
log((ν − 2)π) +

1

2
log(|Sk|)

+ log Γ

(
νk−1

2

)
− log Γ

(
νk
2

)
+

1

2
log

(
νk−1 − 2

ν − 2

)
+
νk
2

log

(
1 +

vT
kS−1

k vk
νk−1 − 2

)}
, (10)

where vk and Sk are the innovation mean and covari-
ance evaluated by the filter update step. The par-
tial derivatives of the negative log marginal likelihood
function requires derivatives of the entire filtering re-
cursion to be calculated. These rather lengthy equa-
tions are included in the supplementary material. The
computational cost scales as O(nm3), which makes
this very beneficial if m� n.
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(a) Student-t filtering solution
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(b) Student-t smoothing solution
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(d) Gaussian smoothing solution

Figure 2: Comparison between the Student-t filtering and smoothing and the corresponding (Gaussian) Kalman
filtering and Rauch–Tung–Striebel smoothing results for a set of measurements ( ) of the scaled sinc function
( ) featuring outliers. The shaded regions represent the 95% credible intervals. The hyperparameters were
fixed to the same values for both the models.

Remark 3.5. It is apparent that the filtering and
smoothing scheme reverts to the Kalman filter and
Rauch–Tung–Striebel smoother [6], as ν → ∞ (mean-
ing γk → 1, for k = 1, 2, . . . , n).

Figure 2 demonstrates the difference between the
Gaussian (Kalman) and Student-t filter. Given fixed
hyperparameters, the estimated means are equal, but
the state covariances are not. This becomes appar-
ent at the fourth observation (a clear outlier) at which
the Student-t filter uncertainty grows to match that
of the observation. The smoothing outcomes corre-
spond exactly to the naive GP and TP predictions
(see Sec. 2.1).

4 EXPERIMENTS

We demonstrate that the added flexibility and com-
putational benefits make the state space inference
scheme an appealing method for doing inference in
data-intensive applications with long (or unbounded)
time horizons.

4.1 Computational Efficiency

We illustrate the efficiency of the proposed inference
scheme. We simulate data from a Gaussian process
with a Matérn covariance function (smoothness 3/2;
for the state space representation, see [3]) and corrupt
the observations by independent Student-t noise. The
state space solution is benchmarked against a naive
TP implementation in Matlab (implemented as given
in Sec. 2.1 using the techniques from [1]). Figure 3a
shows the results for simulated TP regression prob-
lems with the number of observations ranging up to
n = 10 000. The empirical results agree with the the-
oretical derivations, and the computation time grows
as O(n) for the state space and as O(n3) for a naive
implementation. Within numerical precision, both
schemes returned identical results.

4.2 Comparisons Between GP and TP
Regression via Synthetic Data

The following synthetic sets of data were considered.
We sample 100 functions from a GP prior with a



Arno Solin and Simo Särkkä
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Figure 3: Demonstration of the computational benefits of the state space model in solving a TP regression
problem. The error bars show the absolute minimum/maximum over the repetitions. The right-side figure shows
predictions for a TP and GP after respective hyperparameter optimizations in the stock price data.

Matérn (smoothness 3/2) covariance function, and cor-
rupt the observations by independent Gaussian noise
(Synth A), independent Student-t noise (Synth B),
and independent Gaussian noise with 25% of the ob-
servations being outliers with 100× larger noise vari-
ance (Synth C). Following [10], for each function we
train on 80 observations and test on 20.

Table 1 shows the mean squared error and log likeli-
hood for GP and TP regression results where the hy-
perparameters (along with σ2

n, and ν for the TP) were
optimized with respect to marginal likelihood using
a conjugate-gradient optimizer. For added Gaussian
noise (Synth A), all methods returned equal results,
whereas for the long-tailed noises in (Synth B and
Synth C) the TP model outperforms the GP (the GP
failing to capture the latent function gives large stan-
dard deviations). The negligible differences between
the state space and naive results are due to numerical
issues along the hyperparameter optimization.

4.3 Household Electricity Consumption

The Student-t process can provide robustness to real-
world inference problems, where the data is inherently
noisy and corrupted by outlying observations. Obser-
vations of electricity consumption for one household
(in kilowatt, ranging between 0.12 and 6.6) were made
hourly over a time-period of 1 442 days (n = 34 087,
with 545 missing observations). We use hourly av-
erages calculated from the even larger original data
set1. We consider a GP and TP model solved by the
fast state space inference methods. Prior knowledge
of the daily and weekly rhythms are encoded into the

1Data available from the UCI Machine Learn-
ing Repository: http://mlr.cs.umass.edu/ml/datasets/
Individual+household+electric+power+consumption.

GP/TP prior with the following quasi-periodic covari-
ance structure:

kθ(t, t′) = kweekly(t, t′) kMatérn(t, t′)

+ kdaily(t, t′) kMatérn(t, t′), (11)

where the periodic covariance functions (see, e.g.,
[1]) have magnitude and length-scale hyperparameters,
and the Matérn covariance (smoothness 5/2, unknown
length-scales) allow the model to decay away from ex-
act periodicity. This particular model is not suited for
inducing point or basis function approximations (em-
ployed, e.g., in [23]), but it has an approximate state
space representation [22] (Taylor series truncated at 7
terms). We use 10-fold cross validation, with entire
days left out for validation, and optimize the marginal
likelihood with respect to all the 8 hyperparameters
(including σ2

n, and ν for the TP) in each fold.

As seen in Table 1, the TP gives a smaller error
than the GP, which is primarily driven by the non-
sensitivity to outliers during the hyperparameter op-
timization. Additionally, in this application the state
space TP could be employed in real-time prediction.

4.4 Volatile Changes in Stock Price Data

As an example of a noisy regression problem we con-
sider the stock market share price of Apple Inc. from
December 2, 1980 onwards (n = 8 537 trading days,
see Fig. 3b). We model the log-price with a covariance
function sum of a constant, linear, Matérn (smooth-
ness 3/2), and exponential covariance function (see
[1]). This is a non-stationary model, but it has an
exact state space representation. We do 10-fold cross-
validation on entire years left out for testing, and train
all eight hyperparameters by maximizing the marginal
likelihood. The results are included in Table 1.

http://mlr.cs.umass.edu/ml/datasets/Individual+household+electric+power+consumption
http://mlr.cs.umass.edu/ml/datasets/Individual+household+electric+power+consumption
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Table 1: GP and TP regression results computed by the direct naive solution and the state space methods. The
table reports the log likelihood (LL) and mean squared error (MSE) for the test sets.

Naive GP State space GP Naive TP State space TP

Data set MSE LL MSE LL MSE LL MSE LL

Synth A 0.04± 0.02 −25± 4 0.04± 0.02 − 25± 4 0.04± 0.02 −25± 4 0.04± 0.02 − 25± 4
Synth B 0.15± 0.28 −36± 17 0.13± 0.17 − 36± 17 0.12± 0.11 −36± 17 0.12± 0.11 − 36± 17
Synth C 0.56± 0.85 −46± 7 0.56± 0.85 − 46± 7 0.39± 0.23 −46± 7 0.38± 0.21 − 46± 7
Electricity — — 0.64± 0.20 −3261± 241 — — 0.56± 0.04 −3287± 101
Stock — — 5.16± 15 −1700± 339 — — 0.41± 0.84 −1701± 339

4.5 Interpolating GPS Location Data

Gaussian filtering is often employed in tracking appli-
cations, and the Student-t equivalent can help in quan-
tifying the uncertainty caused by unreliable or missing
observations. We consider a set of GPS data2 marking
the coordinates of a moving vehicle. The total size of
the data set is n = 6 373 observations collected over a
time period of 106 minutes (sampling rate ∼ 1 Hz).

We use a Wiener velocity model (see, e.g., [6]) for the
position f(t) = (fx(t), fy(t)), where the acceleration
(second derivative) of the vehicle is modeled as white
noise: f̈x(t) = wx(t) and f̈y(t) = wy(t), where the two
white noise processes share a common spectral density
hyperparameter. We train a GP and TP model (opti-
mize Qc, σ2

n, and ν w.r.t. marginal likelihood) off-line
using the first five minutes of GPS data (302 observa-
tions).

For testing, we split the data randomly into batches
of 30 seconds. Figure 4 shows the data with every
third batch left out. The results from 10-fold cross-
validation gives the Gaussian model an average MSE
of 1589 versus 908 for the Student-t model. This differ-
ence stems primarily from the difference in the learned
hyperparameter values, which is also apparent from
the results in Figure 4.

5 CONCLUSION

We have introduced a computationally efficient
Bayesian filtering and smoothing based solution for
inference in Student-t process (TP) regression mod-
els based on the entangled TP model formulation of
[10], and an extension of the state space GP approach
of [5] to TPs. The advantage of the approach is that
the resulting Bayesian filtering and smoothing solution
as well as the marginal likelihood evaluation can be
implemented as a closed-form recursion which scales
linearly (as opposed to cubicly) in the number of mea-
surements. We have also demonstrated the practical
computational benefits of the approach, and applied
the method to synthetic and real-data examples.

2Data available from the author web page.
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Figure 4: Interpolation of missing GPS observations
by two-dimensional GP regression (Gaussian smooth-
ing) and TP regression (Student-t smoothing). The
unknown ground truth is shown by dots and the col-
ored patches illustrate the credible intervals up to 95%.

The ideas presented in this paper can be extended in
various ways. Spatio-temporal Student-t processes can
be tackled with a similar approach as in [5], which re-
sults in stochastic partial differential equations with
spatio-temporal Student-t process solutions. The re-
sulting inference scheme is an infinite-dimensional gen-
eralization of the Bayesian filtering and smoothing
scheme presented here. The state space representa-
tions of Student-t processes can also be combined with
ordinary or partial differential equation based latent
force models (LFMs, [24, 25]) in a computationally ef-
ficient state space form [26, 27]. Provided that the
differential equations are linear, the inference can still
be done by closed-form expressions.

An example Matlab implementation of the pro-
posed method is available on the author web page:
http://arno.solin.fi.
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[11] Michael Roth, Emre Özkan, and Fredrik Gustafsson.
A Student’s t filter for heavy tailed process and mea-
surement noise. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, pages 5770–5774, 2013.
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1.1 Proof of Lemma 2.2

Proof. Let γ ∼ IG(α, β) be inverse gamma distributed with parameters α and β and y | γ ∼
N(µ, γK). The scale mixture form of the probability density function can be written as

p(y) =

∫ ∞
0

βα

Γ(α)
γ−α−1 exp

(
− β

γ

)
1

(2π)
n
2

1

|γK| 12
exp

(
− 1

2
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)
dγ (12)

=
1
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(2βπ)
n
2

1

|K| 12
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Γ(α+ n

2 )

Γ(α)

1

(2βπ)
n
2

1

|K| 12

(
1 +

∆2

2β

)−(α+n
2 )
, (14)

where ∆2 = (y−µ)TK−1(y− µ). We now recognize this as the Student-t density in Definition 2.1
by parametrizing α = ν

2 and β = ν−2
2 . Thus y ∼ MVT(µ,K, ν). Note the redundancy in γ ∼

IG(ν2 , ρ
ν−2

2 ) and y | γ ∼ N(µ, γρK) for ρ > 0. Without loss of generality, we choose ρ = 1.

1.2 Marginal likelihood for the naive TP

We write down the negative log marginal likelihood (energy) function and its derivatives with respect
to the degrees of freedom ν and the covariance hyperparameters θ = (σ2

n, θ1, θ2, . . .). The negative
log marginal likelihood, L = − log p(y | ν,θ), is given by

L =
n

2
log((ν − 2)π) +

1

2
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+ log
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)
, (15)

where β = yTK−1
θ y. The derivatives can now be given as

∂
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∂

∂θi
L =

1

2
Tr

(
K−1

θ

∂Kθ

∂θi

)
+

1

2

ν + n

ν − 2 + β
yTK−1

θ

∂Kθ

∂θi
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θ y, (17)

where ψ(·) is the digamma function.



1.3 Marginal likelihood for the state space TP

The negative log marginal likelihood can be evaluated recursively starting from L0 = 0:

Lk = Lk−1 +
1

2
log((ν − 2)π) +

1

2
log(|Sk|) + log Γ
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νk−1

2
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− log Γ
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2
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1

2
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)
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νk
2

log

(
1 +

vT
kS−1

k vk
νk−1 − 2

)
, (18)

where vk and Sk are the innovation mean and covariance evaluated by the filter update step, and
νk = νk−1 + nk. Formally differentiating Lk gives a recursion algorithm for evaluating the gradient
along with the filtering steps:
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. (19)

The formal differentiation of the function also includes differentiating the filter prediction and update
steps. This leads to the following rather lengthy recursion formulas, which include a lot of small
matrix operations. On the filter prediction step we compute:
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and on the filter update step we compute:
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Note that, the derivative ∂L
∂ν can be evaluated as given in Equation (16), if the β = βn is evaluated

along the filtering recursion such that βk = βk−1 + γk−1v
T
kS−1

k vk and starting from β0 = 0. For

maximum a posteriori estimation, the recursion should be started from the initial condition ∂L0(θ)
∂θi

=

−∂ log p(θ)
∂θi

. For a similar formulation for the Gaussian filter, see [6] and the references therein.
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