INTRODUCTION

» Gaussian processes (GPs, [2]) are a central
part of both signal processing and statistical
machine learning.

» In signal processing, often represented as
state space models.

» In machine learning, the kernel (covariance
function) representation is favored.

» This link enables the combination of the
intuitive model specification from machine
learning with computationally efficient signal
processing methods.

» Reduces the problematic O(N?) computational
complexity to O(N) in the number of
observations N by Kalman filtering methods.

» For infinitely differentiable covariance functions
the representation is an approximation.

» We study a class of covariance functions that
can be represented as a scale mixture of
squared exponentials.

» We show how the generalized Gauss—Laguerre
quadrature rule can be employed in a state
space approximation in this class.

» We focus on the rational quadratic (RQ)
covariance function approximation, and we
demonstrate the results in GP regression and a
log-Gaussian Cox process.

GAUSSIAN PROCESSES IN
MACHINE LEARNING

» Kernel representation: The model functions f
are assumed to be realizations from a GP prior:

f(t) ~ GP(0, k(t, t)).

» Certain classes of covariance functions allow
to work with the mathematical dual, where the
Gaussian process is constructed as a solution
to a Mth order linear stochastic differential
equation (SDE).

» State space representation: The GP regression
problem can also be given as:

%(tt) = Ff(t) + Lw(t),

f(t) = HE(t),
where w(t) is a multi-dimensional white noise
process with spectral density Q..

» The model is defined by the feedback matrix F,
the noise effect matrix L, the spectral density
Q., the stationary covariance P, and the
observation model H.

» The inference problem can now be solved
using Kalman filtering [3] in O(NM?3) time
complexity.
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Fig. 1: Approximations to the rational quadratic covariance function with different shape parameters a.
The degree of approximation was n = 6 (quadrature degree) and m = 6 (state space). The thick solid lines
show the exact values and the dashed lines denote the approximations for each «. The thin solid line
shows the values for the squared exponential covariance function.

A general class of scale mixture
covariance functions

» The squared exponential (RBF, Gaussian,
exponentiated quadratic) covariance function
(corresponds to a = oo in Fig. 1):

t2

where ¢, 0% > 0 are the characteristic
length-scale and magnitude parameters.

» A general class of stationary kernels can be
constructed as superpositions of squared
exponential covariance functions (a scale
mixture):

keu(t) = /0 Cp(O)kse(t Ode (1)

where ksg(t | ¢) denotes the squared
exponential kernel with length-scale /.

» This class includes, for example, the rational
quadratic and Cauchy covariance functions.

» The corresponding stochastic process is

The rational quadratic
covariance function

» The rational quadratic (RQ) covariance function
(see Fig. 1) is of the form:
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» The scale mixture form (1) now gives the
iIntegral representation:

ka(t) = /0 " p(E | @, tra) kee(t | €)de.

» The Gauss—Laguerre quadrature rule gives us
an approximation:

n
kRQ(t) ~ ZkSE(t ’ 0,-2,6,').
=1

» The squared exponentials are evaluated with
Ol-z = OI%Q W,'/r(Oé) and 512 = K%QO&/X,'.

» Quadrature points and weights: x; are the roots
of the generalized Laguerre polynomial

L2=1(x), and the weights w; are given as:

injinitely_many times mean square r(n+a)X;
differentiable, and thus has no finite state Wi = | 2 Lo 5
space representation. nt(n+1)2 L7 (%)

» However, the squared exponential can be
approximated by a state space model [4].

Consistency with naive GP regression

» The state space formulation is thus a sum of
state space models for the squared exponential
(see [4]).

?

Aalto University

CONCLUSIONS

» We have shown how certain types of
covariance functions (e.g., the rational
guadratic covariance) can be approximated by
a Gaussian quadrature rule.

» This formulation can be used for constructing a
state space approximation for this model.

» This link enables the use of efficient sequential
iInference methods to solve GP inference
problems in O(N) time complexity.

» The approximation converges and a rough
upper bound for the error can be given.

» Our experiments showed that this state space
approximation is useful in practice both in GP
regression (Fig. 2) and GP modeling in a more
general setting (Fig. 3).

CODES AVAILABLE

» This method is now a part of the GPSTUFF
toolbox for Matlab/Octave.

» Details and related codes are available on the
author web page:

http://becs.aalto.fi/~asolin/
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A temporal log-Gaussian Cox process

Consistency with naive GP regression »

» In the first example (Fig. 2), we compare the results
given by the state space approximation model
against the naive full GP regression solution.

» We use the rational quadratic covariance function

and simulated data.

» The results are practically equal, but the state space
solution can be obtained in O(N) time complexity.

A temporal log-Gaussian Cox process
» In the second example (Fig. 3), we model the

intensity of coal mining accidents.

» We consider a log-Gaussian Cox process, which is
an inhomogeneous Poisson point process [5].

» The model is thus a GP model with a Poisson

likelihood:
f(t) ~ GP(0, k(t, 1))

N
p(D | f) = | | Poisson(yx | exp(f(t))).

k=1

» The state space approximation can be beneficial, as
the interval can be discretized into a very dense grid
without running into computational limitations.
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Fig. 2: GP regression results for simulated data (shown by the
point markers). The state space mean and 95% confidence
interval estimates are shown by the solid blue line and the grey
patch. The corresponding full GP regression results is shown
by dashed red lines. The thin solid lines are random draws
from the state space posterior.
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Fig. 3: Coal mining accident data, with N = 1024 intervals and
191 incidents. The bar shows the actual incidents, and the
modeling outcome for the intensity in the log-Gaussian Cox
process model with an approximate 90% confidence region is
shown in the figure above.
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