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INTRODUCTION

I Gaussian processes (GPs, [2]) are a central
part of both signal processing and statistical
machine learning.

I In signal processing, often represented as
state space models.

I In machine learning, the kernel (covariance
function) representation is favored.

I This link enables the combination of the
intuitive model specification from machine
learning with computationally efficient signal
processing methods.

I Reduces the problematic O(N3) computational
complexity to O(N) in the number of
observations N by Kalman filtering methods.

I For infinitely differentiable covariance functions
the representation is an approximation.

I We study a class of covariance functions that
can be represented as a scale mixture of
squared exponentials.

I We show how the generalized Gauss–Laguerre
quadrature rule can be employed in a state
space approximation in this class.

I We focus on the rational quadratic (RQ)
covariance function approximation, and we
demonstrate the results in GP regression and a
log-Gaussian Cox process.

GAUSSIAN PROCESSES IN
MACHINE LEARNING

I Kernel representation: The model functions f
are assumed to be realizations from a GP prior:

f (t) ∼ GP(0, k(t , t ′)).

I Certain classes of covariance functions allow
to work with the mathematical dual, where the
Gaussian process is constructed as a solution
to a Mth order linear stochastic differential
equation (SDE).

I State space representation: The GP regression
problem can also be given as:

df(t)

dt
= Ff(t) + Lw(t),

f (tk) = Hf(tk),

where w(t) is a multi-dimensional white noise
process with spectral density Qc.

I The model is defined by the feedback matrix F,
the noise effect matrix L, the spectral density
Qc, the stationary covariance P∞, and the
observation model H.

I The inference problem can now be solved
using Kalman filtering [3] in O(NM3) time
complexity.

Fig. 1: Approximations to the rational quadratic covariance function with different shape parameters α.
The degree of approximation was n = 6 (quadrature degree) and m = 6 (state space). The thick solid lines
show the exact values and the dashed lines denote the approximations for each α. The thin solid line
shows the values for the squared exponential covariance function.
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Hartikainen and Särkkä [2] have presented a state space
approximation for this covariance function by approximating
the corresponding rational power spectrum

SSE(ω) = σ2
√
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2ω2

2 `2

)
, (12)

by a truncated Taylor expansion of 1/S(ω) around origin.
For details on what the actual state space model matrices
F,L,Qc, and H look like, see [2]. The state space approxi-
mation is not infinitely differentiable, but already a truncated
approximation by a six-dimensional state gives good empiri-
cal results (see, e.g., [7]).

3.2. The generalized Gauss–Laguerre quadrature

When applicable, solving the integral equation (10) gives
the corresponding covariance function (e.g., the rational
quadratic in Sec. 3.3). However, the scale mixture integral can
also be directly approximated in terms of the Gauss–Laguerre
quadrature rule (see, e.g., [12, 15]).

The generalized Gauss–Laguerre quadrature rule approx-
imates integrals of the following form:

∫ ∞

0

xγe−xf(x) dx ≈
n∑

i=1

wi f(xi), (13)

where xγ exp(−x) is the weight function and f(x) the inte-
grand.

The quadrature rule is given by the abscissae xi and cor-
responding weights wi, i = 1, 2, . . . , n, where the abscissae
are given by the roots of the generalized Laguerre polynomial
Lγn(x) of degree n [12], and the weights are given as:

wi =
Γ(n+ γ + 1)xi

n! (n+ 1)2
[
Lγn+1(xi)

]2 , (14)

where Γ(·) is the gamma function.

3.3. The rational quadratic covariance function

The rational quadratic (RQ) covariance function (see, e.g., [1,
6]) is of the form:

kRQ(t) = σ2

(
1 +

t2

2α`2

)−α
, (15)

where σ2, `, α > 0. The shape parameter α defines the decay
of the tail, and includes the Cauchy covariance as a special
case at α = 1. As α→∞, the covariance function converges
to the squared exponential.

The RQ covariance function is stationary, and there exists
a corresponding spectral density. The spectral density can be
obtained by Fourier transforming the above expression for the
covariance. The spectral density expression is given by
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where Kν(·) denotes the modified Bessel function of the sec-
ond kind.

The rational quadratic covariance bears a lot of resem-
blance to the Matérn family of covariance functions (see [1]).
The rational quadratic family complements the Matérn family
as a sort of spectral dual.

The rational quadratic covariance function can be seen as
a scale mixture of squared exponentials with different char-
acteristic length-scales. Following [1], we parametrize the
squared exponential in terms of inverse squared length-scales,
ξ = `−2

SE , and put a gamma distribution prior on ξ:

p(ξ | α, β) ∝ ξα−1 exp(−α ξ/β). (17)

(a) Covariance function

A general class of scale mixture
covariance functions

I The squared exponential (RBF, Gaussian,
exponentiated quadratic) covariance function
(corresponds to α =∞ in Fig. 1):

kSE(t) = σ2 exp
(
− t2

2 `2

)
,

where `, σ2 > 0 are the characteristic
length-scale and magnitude parameters.

I A general class of stationary kernels can be
constructed as superpositions of squared
exponential covariance functions (a scale
mixture):

kSM(t) =

∫ ∞

0
p(`) kSE(t | `) d`, (1)

where kSE(t | `) denotes the squared
exponential kernel with length-scale `.

I This class includes, for example, the rational
quadratic and Cauchy covariance functions.

I The corresponding stochastic process is
infinitely many times mean square
differentiable, and thus has no finite state
space representation.

I However, the squared exponential can be
approximated by a state space model [4].
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(b) Spectral density

The rational quadratic
covariance function

I The rational quadratic (RQ) covariance function
(see Fig. 1) is of the form:

kRQ(t) = σ2
(

1 +
t2

2α`2

)−α
.

I The scale mixture form (1) now gives the
integral representation:

kRQ(t) =

∫ ∞

0
p(ξ | α, `RQ) kSE(t | ξ) dξ.

I The Gauss–Laguerre quadrature rule gives us
an approximation:

kRQ(t) ≈
n∑

i=1

kSE(t | σ2
i , `i).

I The squared exponentials are evaluated with
σ2

i = σ2
RQ wi/Γ(α) and `2

i = `2
RQα/xi.

I Quadrature points and weights: xi are the roots
of the generalized Laguerre polynomial
Lα−1

n (x), and the weights wi are given as:

wi =
Γ(n + α) xi

n! (n + 1)2
[
Lα−1

n+1(xi)
]2.

I The state space formulation is thus a sum of
state space models for the squared exponential
(see [4]).

CONCLUSIONS

I We have shown how certain types of
covariance functions (e.g., the rational
quadratic covariance) can be approximated by
a Gaussian quadrature rule.

I This formulation can be used for constructing a
state space approximation for this model.

I This link enables the use of efficient sequential
inference methods to solve GP inference
problems in O(N) time complexity.

I The approximation converges and a rough
upper bound for the error can be given.

I Our experiments showed that this state space
approximation is useful in practice both in GP
regression (Fig. 2) and GP modeling in a more
general setting (Fig. 3).

CODES AVAILABLE

I This method is now a part of the GPSTUFF
toolbox for Matlab/Octave.

I Details and related codes are available on the
author web page:

http://becs.aalto.fi/~asolin/
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EXAMPLES

Consistency with naive GP regression
I In the first example (Fig. 2), we compare the results

given by the state space approximation model
against the naive full GP regression solution.

I We use the rational quadratic covariance function
and simulated data.

I The results are practically equal, but the state space
solution can be obtained in O(N) time complexity.

A temporal log-Gaussian Cox process
I In the second example (Fig. 3), we model the

intensity of coal mining accidents.
I We consider a log-Gaussian Cox process, which is

an inhomogeneous Poisson point process [5].
I The model is thus a GP model with a Poisson

likelihood:
f (t) ∼ GP(0, k(t , t ′))

p(D | f ) =
N∏

k=1

Poisson(yk | exp(f (tk))) ,

I The state space approximation can be beneficial, as
the interval can be discretized into a very dense grid
without running into computational limitations.

Consistency with naive GP regression

4. EXPERIMENTS

As a first example we compare the results given by the state
space approximation model against the naive full GP regres-
sion solution by using the rational quadratic covariance func-
tion, and we show that the results are practically equal. As
a more elaborate example we consider a log-Gaussian Cox
process model with a Poisson likelihood.

4.1. A simulated example study

In Gaussian process regression we want to predict an un-
known scalar output f(t∗) associated with a known input
t∗ ∈ R, given a set of training data D = {(tk, yk) | k =
1, 2, . . . , N}. The model functions f(t) are seen as realiza-
tions of a Gaussian process prior with observations corrupted
by Gaussian noise:

f(t) ∼ GP(0, k(t, t′)),

yk = f(tk) + εk,
(24)

where εk ∼ N (0, σ2
n). The solution to the GP regression

problem can be computed in closed-form [1] such that

E[f(t∗)] = kT
∗ (K + σ2

nI)−1y,

V[f(t∗)] = k(t∗, t∗)− kT
∗ (K + σ2

nI)−1k∗,
(25)

where the predictions are given for p(f(t∗) | t∗,D) =
N (E[f(t∗)],V[f(t∗)]). However, the direct solution to the
GP regression problem scales as O(N3) which is due to the
inversion of the N ×N matrix in (25).

Therefore, as the number of data points N becomes large,
using the state space methodology becomes appealing. This
is possible if the model in (24) can be written in the SDE
form as explained in Section 2. The inference problem can
then be solved by Kalman filtering and smoothing methods in
O(NM3) time complexity, where M is the full state dimen-
sionality.

We consider a small simulated data set of N = 32 data
points from a sinc function, where the measurements have
been corrupted by zero-mean Gaussian noise. We train both a
full GP model (24) and a state space model for this regres-
sion problem, and compare the results. We use a rational
quadratic covariance function with α = 1 and optimize the
hyperparameters σ2

n, σ2
RQ and `RQ with respect to marginal

likelihood (see, e.g., [1, 4] for details).
Figure 3 shows the state space inference outcome for the

GP regression problem with the rational quadratic covariance
function. The shaded region marks the 95% confidence in-
terval. The naive full GP solution corresponding to (25) is
shown by the dashed red lines, and they agree with the state
space approximation result. The degree of the approximations
were n = 6 and m = 6 leading to state dimension M = nm.
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Fig. 3: GP regression results for simulated data (shown by the
point markers). The state space mean and 95% confidence
interval estimates are shown by the solid blue line and the
grey patch. The corresponding full GP regression results is
shown by dashed red lines. The thin solid lines are random
draws from the state space posterior.

4.2. A temporal log-Gaussian Cox process

As a second example we consider a log-Gaussian Cox pro-
cess, which is an inhomogeneous Poisson point process
model with an unknown intensity function λ(t). The log-
intensity is modeled as a GP such that f(t) = log λ(t) (see,
e.g., [17]). We use the method proposed by Møller et al.
[17], where the data range is discretized into N intervals and
a locally constant intensity is assumed in each interval. The
model is thus a GP model with a Poisson likelihood:

f(t) ∼ GP(0, k(t, t′))

p(D | f) =

N∏

k=1

Poisson(yk | exp(f(tk))) ,
(26)

where tk, k = 1, 2, . . . , N , denotes the coordinate of the kth
interval and yk the number of incidents in the interval. As the
model is now non-Gaussian we have to resort to the Laplace
approximation (finding the mode by a Newton scheme and
forming a Gaussian approximation in the mode, see [1, 10])
for doing the updates inside the Kalman filter.

The data1 contain the dates of 191 coal mine explosions
that killed ten or more men in Britain between years 1851 and
1962, where the RQ assumptions of smoothness and long-
range correlations are justified. We use a grid discretization of
N = 1024 points, a RQ covariance function with α = 1, and
optimize the model hyperparameters with respect to marginal
likelihood. Figure 4 shows the estimated intensity curve for
the log-Gaussian Cox process with a shaded 90% confidence
region.

1The data set is available as a part of the GPSTUFF software package:
http://becs.aalto.fi/en/research/bayes/gpstuff/

Fig. 2: GP regression results for simulated data (shown by the
point markers). The state space mean and 95% confidence
interval estimates are shown by the solid blue line and the grey
patch. The corresponding full GP regression results is shown
by dashed red lines. The thin solid lines are random draws
from the state space posterior.
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Fig. 4: Coal mining accident data, with N = 1024 intervals
and 191 incidents. The bar shows the actual incidents, and the
modeling outcome for the intensity in the log-Gaussian Cox
process model with an approximate 90% confidence region is
shown in the figure above.

We argue that the state space approximation can be ben-
eficial in this type of modeling, as the interval can be dis-
cretized into a very dense grid without running into compu-
tational limitations. Dense grids are appealing in this type of
modeling, as it is known [18] that this approximation reaches
posterior consistency in the limit of widths of the intervals
going to zero.

5. CONCLUSION AND DISCUSSION

In this paper we have shown how certain types of covari-
ance functions (most notably the rational quadratic covari-
ance) that are constructed as scale mixtures of the squared
exponential covariance function can be approximated by a
Gaussian quadrature rule. In state space estimation, this en-
ables us to use existing methods for conversion of the squared
exponential covariance functions in approximating the ratio-
nal quadratic covariance function.

In Section 3.3, we have written down approximation to the
rational quadratic covariance function, and the convergence
of this approximation is analyzed. Furthermore, the results in
the experiments section showed that this state space approx-
imation is useful in practice both in GP regression (Sec. 4.1)
and GP modeling in a more general setting (Sec. 4.2).
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[8] Simo Särkkä and Jouni Hartikainen, “Infinite-dimensional
Kalman filtering approach to spatio-temporal Gaussian process
regression,” in Proceedings of the Fifteenth International Con-
ference on Artificial Intelligence and Statistics, 2012, vol. 22
of JMLR W&CP, pp. 993–1001.
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“Sparse spatio-temporal Gaussian processes with general like-
lihoods,” in Artificial Neural Networks and Machine Learning
(ICANN), 2011.

[11] Michael Leonard Stein, Interpolation of Spatial Data, Springer
Series in Statistics. Springer, New York, 1999.

[12] Milton Abramowitz and Irene Stegun, Handbook of Mathe-
matical Functions, Dover Publishing, New York, 1970.

[13] Mohinder S. Grewal and Angus P. Andrews, Kalman Filter-
ing: Theory and Practice Using MATLAB, Wiley-Intersciece,
second edition, 2001.

[14] Edward J. Davison and Fu-Tin Man, “The numerical solution
of A′Q+QA = −C,” IEEE Transactions on Automatic Con-
trol, vol. 13, no. 4, pp. 448–449, 1968.

[15] Frank W.J. Olver, NIST Handbook of Mathematical Functions,
Cambridge University Press, 2010.

[16] James Victor Uspensky, “On the convergence of quadrature
formulas related to an infinite interval,” Transactions of the
American Mathematical Society, vol. 30, no. 3, pp. 542–559,
1928.

[17] Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge
Waagepetersen, “Log Gaussian Cox processes,” Scandinavian
Journal of Statistics, vol. 25, pp. 451–482, 1998.

[18] Surya T. Tokdar and Jayanta K. Ghosh, “Posterior consistency
of logistic Gaussian process priors in density estimation,” Jour-
nal of Statistical Planning and Inference, vol. 137, no. 1, pp.
34–42, 2007.

Fig. 3: Coal mining accident data, with N = 1024 intervals and
191 incidents. The bar shows the actual incidents, and the
modeling outcome for the intensity in the log-Gaussian Cox
process model with an approximate 90% confidence region is
shown in the figure above.

http://becs.aalto.fi/~asolin/

