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INTRODUCTION

I Schizophrenia is a chronic mental disorder that
is often characterized by abnormal social
behavior and odd interpretations of reality.

I Associated with small differences in brain
structure and activity.

I Therefore brain imaging techniques provide
data that can be used for assisting the
diagnosis of schizophrenia.

I The goal was to automatically diagnose
subjects with schizophrenia using multimodal
features derived from their magnetic resonance
imaging (MRI) brain scans.

I The winning proposition [1] was based on a
Gaussian process (GP) classifier [2].

MATERIALS

I The data consist of two sets of information
collected by different medical imaging
modalities: functional and structural data.

Functional data

I Functional Network Connectivity (FNC, [4])
derived from functional magnetic resonance
imaging (fMRI) scans.

I Describes the subject’s overall level of
‘synchronicity’ between brain areas.

I Synchrony measures between each of the 28
chosen areas (378 combinations altogether).

Structural data

I Source-Based Morphometry (SBM, [3])
loadings. SBM loadings are derived from
structural MRI scans.

I Indicates the concentration of grey
matter in different regions of the
subject’s brain.

I A number of 32 feature
regions altogether.

Data and normalization
I The training data D consist of n = 86 subjects,

where xi ∈ R410 (378 from the FNC and 32
from the SBM).

I The test data D∗ = {(x∗,i , y∗,i)}n∗
i=1 consists of

n∗ = 119,748 subjects (artificially inflated to
prevent hand labeling) with unknown labels y∗.

I Each dimension was normalized in the inputs
xi and x∗,i by dividing them by the standard
deviations from training inputs.

GAUSSIAN PROCESS
CLASSIFICATION

I The winning model was based on Gaussian
process classification [2], which is a Bayesian
machine learning method.

I In binary GP classification with observations
yi ∈ {−1,1}, i = 1, . . . ,n, associated with
inputs {x}n

i=1, the observations are considered
to be drawn from a Bernoulli distribution with a
success probability p(yi = 1 | xi).

I The probability is related to a latent function via
a sigmoid function that transforms it to a unit
interval.

I We use a probit transformation that defines the
likelihood model

p(yi | f (xi)) = Φ(yif (xi)) =

∫ yi f (xi)

−∞
N (z | 0,1) dz,

where Φ(·) is the Gaussian cumulative
distribution function.

I A Gaussian process defines the prior
distribution over the latent functions:

f ∼ GP(0, k(x,x′)).

I The latent Gaussian process model is
characterized by its covariance function
(kernel) k(·, ·).

I We want to account for any linear structure
plus some additional short-scale non-linearities
in the latent space.

I Therefore we set up the covariance function as
a linear combination of three separate
covariance functions:

k(x,x′) = kconst.(x,x′)+klinear(x,x′)+kν=5/2
Matérn(x,x′).

I The first two covariance function components
(a constant and linear covariance function)
define an affine model:

kconst.(x,x′) = θ1 and
klinear(x,x′) = θ2 xTx′.

I The last covariance function gives the model
flexibility to adopt to some non-linearities:

kν=5/2
Matérn(x,x′) = θ3
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√
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exp
(
−
√

5r
θ4

)
,

where r = ‖x− x′‖.
I This particular Matérn covariance function

holds the assumption of the model functions
being continuous and rather smooth (twice
differentiable).

I The hyperparameters θ = {θ1, θ2, θ3, θ4} were
given the following hyper-priors:
θ1, θ2, θ3 ∼ Log-Uniform, and θ4 ∼ t4(0,1). The
hyperparameters were initialized as
θ = {1,1,1,0.01}.

I The training was started by running a Laplace
approximation scheme on the model until
convergence.

I Final training was performed by sampling
(1000 samples, 91 after removing burn-in and
thinning).

I We used Elliptical Slice Sampling [5] for the
latent functions, and the Surrogate Slice
Sampler [6] for the hyperparameters.

I Class label probabilities p(y∗,i = 1 | D,x∗,i) for
the test set were predicted by the trained
model by integrating over the latent functions.

IMPLEMENTATION

I To implement GP classification we used the
GPSTUFF toolbox [7] for Mathworks Matlab
(and Octave):

http://becs.aalto.fi/en/

research/bayes/gpstuff

I Codes for replicating the winning submission
are available online:

http://github.com/asolin/

MLSP2014-kaggle-challenge

CONCLUSIONS

I Our GP classifier received a final private
leaderboard AUC score of 0.92821 on Kaggle,
and hence winning the competition.

I This particular GP classifier model was chosen
by trying out a couple of models and
comparing their performance by leave-one-out
cross-validation (LOOCV).

I This model did show promising performance
using LOOCV, but the score (AUC) on the
public leaderboard (calculated on
approximately 52% of the data) on Kaggle was
only 0.70536.

I This sort of discrepancy is not uncommon in
fields of study, where data is scarce.

I The limited size of the test data set did clearly
affect the coherence of the public and private
leaderboard scores, making it difficult to predict
the true performance of the method based on
the public score.

I One evident choice of improvement would be
to consider two separate length-scale
hyperparameters for the FNC and SBM
loadings.

I It is also generally well-known that in GP
classification MCMC is more accurate than
approximative inference methods such as
Expectation propagation (EP) or the Laplace
approximation.

I However, the inference times line up in the
opposite order. Therefore, for example EP
could be a viable option to speed up the
inference.
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