Know Your Boundaries:
Constraining Gaussian Processes by Variational Harmonic Features

Arno Solin Manon Kok
Aalto University Delft University of Technology
arno.solin@aalto.f1i m.kok-10tudelft.nl

INTRODUCTION

» Gaussian processes (GPs) provide a powerful framework
for extrapolation, interpolation, and noise removal in
regression and classification

» We constrain GPs to arbitrarily-shaped domains with
boundary conditions

» Applications in, e.g., imaging, spatial analysis, robotics,
or general ML tasks

» As a pre-processing step, we solve a Fourier-like
generalised harmonic feature representation of the GP
prior in the domain of interest

» This both constrains the GP and attains a low-rank
representation that is used for speeding up inference

» The method scales as O(nm?) in prediction
and O(m°) in hyperparameter learning
(n number of data, m features)

Codes and resources available:
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shaped domain. The boundary
enforces the process to go to

zero. The dots are the training

iInputs.

GP INFERENCE

» We require the covariance
function « to be stationary

» Leverage [3] for approximating the
covariance function by the eigen-
decomposition and the spectral density

» A Titsias-style variational function:
approach to allow the m
method to deal with k(% X) & ) s() 6i(X) §j(x') = dAGT,
non-Gaussian j=1

likelihoods where s(-) is the spectral density function of «(-, -)
» As ® does not depend on the hyperparameters and
A is diagonal, we also get a computational boost
MODEL

» For non-Gaussian likelihoods, we set up a
variational approach and maximize the ELBO [2]

» We demonstrate the applicability of our method
to both GP regression (Fig. 1) and classification

(Fig. 4) on simulated data, where we show

that encoding boundary information by this
approach is beneficial (Fig. 2)

» We also consider a Log-Gaussian
Cox process (Poisson likelihood)
study of tick bite count modelling

» Consider a boundary-
constrained GP model of form:

f(x) ~ GP(0, x(x,x)), xe€Q
s.t. f(x) =0, X € 0N

n
y | f~]]pylf(x;)) likelihood
i=1
where (X;, y;) are the n input—output pairs
» Given a domain Q c RY (d typically 1-3), we follow [3]

for projecting the GP onto the eigenbasis of the Laplace
operator, V2, that solves the eigenvalue problem:

—V2¢i(X) = Ajzcbj(x), X € Q,
qu(X) =0, X € 0f).
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» The approximate eigenvalues and eigenfunctions of the
Laplacian in Q (s.t. the the boundary conditions) can be
solved numerically (see Fig. 3).
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