
C
on

ta
ct

de
ta

ils
:

ar
no

.s
ol

in
@

aa
lto

.fi
,w

eb
ad

dr
es

s:
ht

tp
://

ar
no

.s
ol

in
.fi

,A
IS

TA
TS

20
19

.

Know Your Boundaries:
Constraining Gaussian Processes by Variational Harmonic Features

Arno Solin
Aalto University

arno.solin@aalto.fi

Manon Kok
Delft University of Technology

m.kok-1@tudelft.nl

INTRODUCTION

I Gaussian processes (GPs) provide a powerful framework
for extrapolation, interpolation, and noise removal in
regression and classification

I We constrain GPs to arbitrarily-shaped domains with
boundary conditions

I Applications in, e.g., imaging, spatial analysis, robotics,
or general ML tasks

I As a pre-processing step, we solve a Fourier-like
generalised harmonic feature representation of the GP
prior in the domain of interest

I This both constrains the GP and attains a low-rank
representation that is used for speeding up inference

I The method scales as O(nm2) in prediction
and O(m3) in hyperparameter learning
(n number of data, m features)

I A Titsias-style variational
approach to allow the
method to deal with
non-Gaussian
likelihoods

MODEL

I Consider a boundary-
constrained GP model of form:{

f (x) ∼ GP(0, κ(x,x′)), x ∈ Ω

s.t. f (x) = 0, x ∈ ∂Ω

y | f ∼
n∏

i=1

p(yi | f (xi)) likelihood

where (xi , yi) are the n input–output pairs

I Given a domain Ω ⊂ Rd (d typically 1–3), we follow [3]
for projecting the GP onto the eigenbasis of the Laplace
operator, ∇2, that solves the eigenvalue problem:{

−∇2φj(x) = λ2
j φj(x), x ∈ Ω,

φj(x) = 0, x ∈ ∂Ω.

I The approximate eigenvalues and eigenfunctions of the
Laplacian in Ω (s.t. the the boundary conditions) can be
solved numerically (see Fig. 3).

Codes and resources available:
https://github.com/AaltoML/

boundary-gp

GP INFERENCE

I We require the covariance
function κ to be stationary

I Leverage [3] for approximating the
covariance function by the eigen-

decomposition and the spectral density
function:

κ(x,x′) ≈
m∑

j=1

s(λj)φj(x)φj(x
′) = ΦΛΦT,

where s(·) is the spectral density function of κ(·, ·)
I As Φ does not depend on the hyperparameters and

Λ is diagonal, we also get a computational boost
I For non-Gaussian likelihoods, we set up a

variational approach and maximize the ELBO [2]
I We demonstrate the applicability of our method

to both GP regression (Fig. 1) and classification
(Fig. 4) on simulated data, where we show

that encoding boundary information by this
approach is beneficial (Fig. 2)
I We also consider a Log-Gaussian

Cox process (Poisson likelihood)
study of tick bite count modelling

REFERENCES
[1] A. Solin and M. Kok (2019). Know your

boundaries: Constraining Gaussian processes by
variational harmonic features. Proceedings of AISTATS.

[2] J. Hensman, N. Durrande, and A. Solin (2018). Variational Fourier
features for Gaussian processes. Journal of Machine Learning
Research, 18(151):1–52.
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Figure 2: Example domain for which we can numeri-
cally compute the harmonic basis functions using the
sparse stencil matrix.

constraints of smoothly attaining the given boundary
constraint. Thus the effective covariance function in
the domain-aware GP prior is highly non-stationary.

Note that without loss of generality we can change the
boundary constraint to be constant. Other boundary
conditions, such as Neumann conditions (derivative
going to zero at boundary) can also be included. Since
we no longer assume a rectangular or spherical domain,
it is no longer possible, like in Sec. 2.1, to compute the
eigendecomposition of the Laplace operator in closed
form. In this section we will now first discuss how to
compute the harmonic features numerically. We will
then discuss how the variational approach from Sec. 2.2
can be used to handle non-Gaussian likelihoods.

3.1 Computing the Harmonic Features

Instead of computing the eigendecomposition of the
Laplace operator in closed form as in Sec. 2.1, we solve
the eigendecomposition numerically. We first turn our
domain of interest into a grid mask (e.g., in Fig. 2 we
use a 162×162 grid). We then approximate the Lapla-
cian using a 9-point finite difference approximation
with step size h (determined by the physical size of the

domain) as

−∇2u(x1, x2)

≈ 1
h2

[
2
3u(x1+h,x2)+ 2

3u(x1−h,x2)+ 2
3u(x1,x2+h)

+ 2
3u(x1,x2−h)+ 1

3u(x1+h,x2+h)+ 1
3u(x1+h,x2−h)

+ 1
3u(x1−h,x2+h)+ 1

3u(x1−h,x2−h)− 10
3 u(x1,x2)

]
. (27)

This operation can be written as an operation by a
sparse stencil matrix S. By letting this stencil matrix
only work on locations that are inside the domain Ω, the
boundary conditions can naturally be included. Let us
consider an irregularly-shaped domain Ω, for instance
the one displayed in Fig. 2a. This results in a stencil
matrix (of size 1622×1622) with the sparsity pattern
displayed in Fig. 2b. The number of non-zero entries
in this stencil matrix is 65,596 which corresponds to
∼1%� of the elements.

We form the stencil corresponding to the domain of
interest and solve them largest, real eigenvalues λ2

j and
the corresponding eigenvectors φj(x) of the stencil ma-
trix using a Krylov–Schur algorithm [15, 27]. The im-
plementation is part of ARPACK (https://www.caam.
rice.edu/software/ARPACK/) and callable in Matlab
as eigs and in Python through scipy.sparse.linalg.eigs.
The first 25 harmonic basis functions of the example
domain from Fig. 2a are shown in Fig. 2c.

Note that using a Taylor expansion of the different
terms in (27), it can be shown that in (27) we actually
compute −∇2u(x1, x2) − h2

12∇4u(x1, x2) + O(h4). Ig-
noring these higher order terms, the eigenvalue problem
that is being solved is therefore instead

−∇2u(x1, x2)− h2

12
∇4u(x1, x2) = λ2u(x1, x2). (28)

The eigenvalues can be corrected for this as

λ̄2
j = 2λ2

j

/√
1 +

λ2
jh

2

3 + 1 . (29)

3.2 Variational Harmonic Features

The variational approach from Sec. 2.2 can be used for
variational inference in a model in which the Fourier fea-
tures are either computed in closed-form as in Sec. 2.1
or numerically as in Sec. 3.1. The harmonic features
will hereby play a similar role as the inducing points in
Sec. 2.2. Assume that our function values are defined
in terms of our features as f(x) = Φ(x)u and that
the prior over these features is p(u) = N(0,Λ), where
Φ(x) and Λ are defined in (12) and (13), respectively.
Similar to (17), the function values and inducing inputs
are then jointly Gaussian. We will now follow a similar
approach to the one taken in Sec. 2.2 and approximate
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(c) Harmonic basis functions

Fig. 3: Example domain (a) for which we can numerically compute the
harmonic basis functions, φj(x), (c) using the sparse stencil matrix (b).
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Figure 5: The effect of increasing the number of inducing features for the banana classification dataset with a
hard decision boundary. In each pane, the coloured points represent training data and the decision boundaries
are black lines. The outermost line is the pre-defined hard decision boundary.
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Figure 6: Predicted density of tick bites per square
kilometre around the Netherlands. The map is 400 km
wide and the sea, rivers, and lakes (in white) are con-
straining the domain. The data (reported tick bites)
are shown by the black dots, and they are modelled as
a Log-Gaussian Cox process (Poisson likelihood).

Fig. 6, where the colour indicates the intensity tick
bites per square kilometre. As can be seen, this density
explains the data well. For the eigendecomposition we
used m = 256 and a grid size of 200×200.

5 DISCUSSION AND CONCLUSION

We have considered the problem of including physical
knowledge about spatial constraints in GP inference.
A numerical computation of the harmonic features of
the GP prior allows us to specify boundary conditions
on arbitrary shapes while at the same time attaining
a low-rank representation that is used for speeding
up inference. By approximating the posterior using

variational inference, it is possible to use our method
for non-Gaussian likelihoods.

We have illustrated the efficacy of our method using
both simulated and experimental data, with both Gaus-
sian and non-Gaussian likelihoods. For the proposed
method, there is a fixed setup cost for each new kind of
domain, after which the method is as fast as the Hilbert
GP (and thus slightly faster than VFF). In Sec. 4.1
(m = 100) the setup cost was 4.9±0.1 s, and for the ba-
nana example (Sec. 4.2 for m = 64) the setup cost was
10.3±0.4 s. After the preparation cost, the computation
time for the actual GP inference is fast. Evaluating the
marginal likelihood (or doing GP prediction) in Sec. 4.1
takes 0.23 s when we have increased the number of
observations to n = 10,000 for the numbers to make
more practical sense. If the variational approximation
is used, most time is spent in the optimiser—as seen in
the experiment in Sec. 4.3, where the setup cost was in
the range of some hundred seconds, but the optimiser
ran for 25 min. This would, of course, be the same for
all methods using the variational approximation.

The examples that we have presented only consider
two-dimensional input domains. Higher-dimensional
domains can, however, be considered in similar fash-
ion as in [9]. Although the number of required basis
functions grows exponentially in the input dimension-
ality d, Kronecker products and sums across the input
dimensions have previously been used to address this
problem. Throughout the paper we have focussed on
using Dirichlet boundary conditions. The method can,
however, be extended to be used with other boundary
conditions, such as Neumann conditions.

The main merit of our approach is that due to its sim-
ple and straightforward formulation, it can easily be
extended or used in larger-scale systems. For exam-
ple, the approach can be extended to spatio-temporal
analysis or be used in frameworks for simultaneous
localisation and mapping (SLAM). The codes are avail-
able at https://github.com/AaltoML/boundary-gp.

Fig. 4: Increasing the number of inducing features for the banana
classification dataset with a hard decision boundary. The coloured
points represent training data and the decision boundaries are black
lines. The outermost line is the pre-defined hard decision boundary.
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Figure 4: The effect of increasing the number of in-
ducing inputs/features in the star-shaped domain re-
gression study. The curves show the mean absolute
error (± std/min/max) in predictive mean compared
to the results of the FULL GP model with noise-free
observations along the boundary.

instability. These problems were not encountered in
the FULL and proposed model. For a fair comparison
of representative power, we hence fixed the hyperpa-
rameters (σ2

f = 1, ` = 0.1, σ2
n = 0.12) for all models

and chose the inducing input locations for FITC by
k-means clustering.

Fig. 3 shows the predictive mean for one of the data
sets with the four different methods (m = 64). The
naïve FULL GP with the noise-free observations clearly
best agrees with the proposed method that can directly
use the boundary information as part of the GP prior.
FITC and VFF do a fair job but differ even visually
from the results in (a)–(b). Clear differences can be
seen in the blue middle part and in the left arm.

For a quantitative evaluation, we compared estimates
for all ten data sets and a differing number of inducing
inputs/features. Fig. 4 shows the effect of increasing
the number of inducing inputs/features and reports the
mean absolute error (MAE) for the predictive mean
compared to the results of the FULL GP. The results
show that including the boundary information directly
has clear benefits. The same conclusion can be drawn
from analysis of the marginal log-likelihoods and the
predictive marginal variance estimates. In terms of
computation time, our model is on par with VFF, with
additional computational saving in evaluation of the
marginal likelihood. Furthermore, the noise-free bound-
ary measurements bring additional computational bur-
den to the general-purpose schemes, while our model
considers the boundary directly.

4.2 Banana Classification Dataset

We consider the banana classification dataset (see [11])
with a hard decision boundary. We perform variational
classification using a Gaussian approximation to the
posterior q(u) and optimise the ELBO with respect
to the mean and variance of the approximation. We
expect that increasing the number of harmonic features
leads to an improved approximation; the variational
framework guarantees that more inducing variables
is monotonically better [28]. However, this does not
necessarily hold due to the restriction on q(u).

Fig. 5 shows the two classes in the banana data set
with red and blue markers. The pre-defined hard deci-
sion boundary is the solid black boundary enclosing all
the data. It indicates the boundary outside of which
the data does not play a role and at which there is
absolute uncertainty of the correct class. We use a
Bernoulli likelihood and a Matérn (ν = 5/2) kernel
for the GP prior. We train the hyperparameters of
the model jointly with the variational approximation.
Fig. 5 shows the classification model outcomes with
different numbers of inducing harmonic features. The
black lines are the decision boundaries, which clearly
improve with the increasing number of features.

4.3 Tick Bite Density Estimation

Ticks are small arachnids, typically 3–5 mm long. They
are external parasites that live by feeding on blood typ-
ically of mammals and birds. Because of this, they
may carry diseases that affect humans and other ani-
mals. To monitor the spread of ticks and of the diseases
they might carry, many countries ask people to report
tick bites. One such platforms is https://tekenradar.nl
which is an initiative of the National Institute for Public
Health and the Environment and Wageningen Univer-
sity, and collects data about tick bites in the Nether-
lands. The data is accessible online, and we used data
of tick bites collected by this platform during the first
9 months of 2018. The 4,446 data points are scattered
over the country as shown in Fig. 6.

We use this data to model the tick density and exploit
physical prior knowledge that ticks only live on land.
The boundaries of our domain reflect this knowledge
by assuming that the tick density is zero at sea, in the
large lake in the middle of the country and in various
rivers and lakes in the country. The area outside the
domain in Fig. 6 is shown in white. We model the
tick density using the number of ticks in a grid of
roughly n = 15,000 points and a Poisson likelihood
in a Log-Gaussian Cox process model [20]. We used
a Matérn (ν = 3/2) covariance function, and we train
the hyperparameters of the model jointly with the
variational approximation. The results are shown in

Fig. 2: Effect of increasing the number
of inducing inputs/features in Fig. 1.

Fig. 1: Example results for a
GP regression task in a star-

shaped domain. The boundary
enforces the process to go to

zero. The dots are the training
inputs.
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