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INTRODUCTION

» Gaussian process models provide a plug & play
interpretable approach to probabilistic modelling

» Naive implementations of GPs require the construction
and decomposition of a kernel matrix at cost O(n°), where
n is the number of data

» We consider GP time series (one input dimension)

» We exploit the (approximate) Markov structure of the
process and re-write the model as a linear Gaussian state
space model

» Inference by Kalman filtering costs ©(m>n), where mis the
dimension of the state space

» We propose the Infinite-Horizon GP approximation
(IHGP) which reduces the cost to O(m?°n)

» We further extend the model to run on streams of data
and learn the kernel hyperparameters on the fly

STATE SPACE GPsS

» Consider a GP model admitting the form:
f(t) ~ GP(0, x(t, 1)) prior
y | f~ I oy | (1)) likelihood
where (t;, y;) are the n input—output pairs

» A naive solution would scale as O(n3)

» For Markovian covariance functions, x(t, t'), an equivalent
formulation can be given in terms of stochastic
differential equations (SDE, see [2]):

f(t) = Ff(t) + Lw(t) prior
yi ~ ply; | hTH(8) likelihood

» Can be written as a discrete-time state space model:
fi ~N(A;_1fi_1,Q;_4) prior
yi~ ply; | h'f) likelihood

» This model can be solved by Kalman filtering in O(m3n),
where m is the dimensionality of f; (see [2, 3])

» The state dimension m is typically small, but grows quickly
if the GP prior is complicated—especially when involving
sums and products of several kernels

Figures below decompose the intensity into components:

| log A(t) = firena(t) + fyear(t) + fweek (1)

% A m

Accident intensity, A (t)
10 20 30 40

© \ \ \ \ \ \ \ \ \
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Time (years)

1920

1920

it)

1960
1960

(arb. un

2000
2000

Sun Mon Tue Wed Thu Fri Sat

JFMAMIJ JASOND
Year Month Day-of-week

1920 1940 1960 1980 2000

Experiment 1: Explanatory analysis of the aircraft accident
intensity data set ([3], 1210 accidents predicted in n = 35,959
daily bins) between years 1919-2018 by a log-Gaussian Cox
process (Poisson likelihood). We recover a slow trend, and
time-varying periodic yearly and weekly variation.

James Hensman
PROWLER.10
james@prowler.io

the decision company

INFINITE-HORIZON GPs

» We leverage the idea of steady-state filtering, where the
solution filter is seen to reach a steady state when t — oo

» The steady state is solved by Discrete Algebraic Riccati
Equations (DAREsS)

» After the initial setup cost, the Infinite-Horizon GP scales
as O(m2n)

» The memory scaling is linear in the number of data and
state dimension, O(mn)

» The infinite-horizon approximation introduces biases near
the boundaries (first/last samples) of data
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Figure: (Left) GP regression with n = 100 observations and
a Matérn covariance function. The IHGP is close to exact
far from boundaries, where the constant marginal variance
assumption shows. (Right) The negative marginal likelihood
curves as a function of length-scale.

NON-GAUSSIAN LIKELIHOODS

» For non-Gaussian likelihoods, we leverage Single-sweep
Expectation propagation (EP) [4]

» Also known as Assumed density filtering
» Only requires visiting each data point once

» In IHGP, the computational efficiency comes from matching
a likelihood variance parameter by moment matching

» The matched parameters are used for finding the
corresponding steady state by cubic convolutional
Interpolation

» Directly applicable to streaming applications
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Experiment 2: Results for explorative analysis of electricity
consumption data over 1,442 days with one-minute resolution
(n > 2M). The batch optimized hyperparameters values shown
by dashed lines, the results for IHGP with adaptation (solid)
adapt to changing circumstances. The model adapts; e.g. In
(b) the periodic component is turned off when the house is
vacant for a long time.
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» Codes: https://github.com/AaltoML/IHGP
» Video abstract: https://youtu.be/myCvUT3XGPc
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ONLINE LEARNING OF
HYPERPARAMETERS

» Hyperparameter learning as incremental gradient

descent

» Resembling stochastic gradient descent without the
assumption of finding a stationary optimum

» The ‘mini-batches’ are windows of recent data

» The infinite-horizon method guarantees that there are no
boundary effects related to choosing the batch
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(a) Holding in hand (b) Shake (c) Swinging (d) On table

Experiment 3: Screenshots of online adaptive IHGP running
in real-time on an iPhone. The lower plot shows current
hyperparameters (measurement noise is fixed to a% = 1 for
easier visualization) of the prior covariance function, with a
trail of previous hyperparameters. The top part shows the last
2 seconds of accelerometer data (red), the GP mean, and 95%
quantiles.
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