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Abstract

Gaussian processes provide a flexible framework for forecasting, removing noise,
and interpreting long temporal datasets. State space modelling (Kalman filtering)
enables these non-parametric models to be deployed on long datasets by reducing
the complexity to linear in the number of data points. The complexity is still
cubic in the state dimension m which is an impediment to practical application. In
certain special cases (Gaussian likelihood, regular spacing) the GP posterior will
reach a steady posterior state when the data are very long. We leverage this and
formulate an inference scheme for GPs with general likelihoods, where inference is
based on single-sweep EP (assumed density filtering). The infinite-horizon model
tackles the cubic cost in the state dimensionality and reduces the cost in the state
dimension m to O(m2) per data point. The model is extended to online-learning
of hyperparameters. We show examples for large finite-length modelling problems,
and present how the method runs in real-time on a smartphone on a continuous
data stream updated at 100 Hz.

1 Introduction

Gaussian process (GP, [25]) models provide a plug & play interpretable approach to probabilistic
modelling, and would perhaps be more widely applied if not for their associated computational
complexity: naïve implementations of GPs require the construction and decomposition of a kernel
matrix at cost O(n3), where n is the number of data. In this work, we consider GP time series
(i.e. GPs with one input dimension). In this case, construction of the kernel matrix can be avoided
by exploiting the (approximate) Markov structure of the process and re-writing the model as a
linear Gaussian state space model, which can then be solved using Kalman filtering (see, e.g., [27]).
The Kalman filter costs O(m3n), where m is the dimension of the state space. We propose the
Infinite-Horizon GP approximation (IHGP), which reduces the cost to O(m2n).

As m grows with the number of kernel components in the GP prior, this cost saving can be significant
for many GP models where m can reach hundreds. For example, the automatic statistician [6]
searches for kernels (on 1D datasets) using sums and products of kernels. The summing of two
kernels results in the concatenation of the state space (sum of the ms) and a product of kernels results
in the Kronecker sum of their statespaces (product of ms). This quickly results in very high state
dimensions; we show results with a similarly constructed kernel in our experiments.

We are concerned with real-time processing of long (or streaming) time-series with short and long
length-scale components, and non-Gaussian noise/likelihood and potential non-stationary structure.
We show how the IHGP can be applied in the streaming setting, including efficient estimation of the
marginal likelihood and associated gradients, enabling on-line learning of hyper (kernel) parameters.
We demonstrate this by applying our approach to a streaming dataset of two million points, as well as
providing an implementation of the method on an iPhone, allowing on-line learning of a GP model of
the phone’s acceleration.

For data where a Gaussian noise assumption may not be appropriate, many approaches have been
proposed for approximation (see, e.g., [21] for an overview). Here we show how to combine Assumed
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INTRODUCTION

I Gaussian process models provide a plug & play
interpretable approach to probabilistic modelling

I Naı̈ve implementations of GPs require the construction
and decomposition of a kernel matrix at cost O(n3), where
n is the number of data

I We consider GP time series (one input dimension)
I We exploit the (approximate) Markov structure of the

process and re-write the model as a linear Gaussian state
space model

I Inference by Kalman filtering costsO(m3n), where m is the
dimension of the state space

I We propose the Infinite-Horizon GP approximation
(IHGP) which reduces the cost to O(m2n)

I We further extend the model to run on streams of data
and learn the kernel hyperparameters on the fly

STATE SPACE GPS

I Consider a GP model admitting the form:

f (t) ∼ GP(0, κ(t , t ′)) prior
y | f ∼∏n

i=1p(yi | f (ti)) likelihood

where (ti , yi) are the n input–output pairs

I A naı̈ve solution would scale as O(n3)

I For Markovian covariance functions, κ(t , t ′), an equivalent
formulation can be given in terms of stochastic
differential equations (SDE, see [2]):

ḟ(t) = F f(t) + L w(t) prior
yi ∼ p(yi | hT f(ti)) likelihood

I Can be written as a discrete-time state space model:

fi ∼ N(Ai−1fi−1,Qi−1) prior
yi ∼ p(yi | hTfi) likelihood

I This model can be solved by Kalman filtering in O(m3n),
where m is the dimensionality of fi (see [2, 3])

I The state dimension m is typically small, but grows quickly
if the GP prior is complicated—especially when involving
sums and products of several kernels

Figures below decompose the intensity into components:
log λ(t) = ftrend(t) + fyear(t) + fweek(t)
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Figure 5: Explanatory analysis of the aircraft accident data set (1210 accidents predicted in n =
35,959 daily bins) between years 1919–2018 by a log-Gaussian Cox process (Poisson likelihood).

4.1 Experimental validation

In the toy examples, the data were simulated from yi = sinc(xi − 6) + εi, εi ∼ N(0, 0.1) (see Fig. 1
for a visualization). The same function with thresholding was used in the classification examples in
the Appendix. Table 1 shows comparisons for different log-concave likelihoods over a simulated data
set with n = 1000. Example functions can be seen in Fig. 1 and Appendix E. The results are shown
for a Matérn (ν = 3/2) with a full GP (naïve handling of latent, full EP as in [24]), state space (SS,
exact state space model, ADF as in [22]), and IHGP. With m only 2, IHGP is not faster than SS, but
approximation errors remain small. Fig. 3 shows experimental results for the computational benefits
in a regression study, with state dimensionality m = 2, . . . , 100. Experiments run in Mathworks
MATLAB (R2017b) on an Apple MacBook Pro (2.3 GHz Intel Core i5, 16 Gb RAM). Both methods
have linear time complexity in the number of data points, so the number of data points is fixed to
n = 10,000. The GP prior is set up as an increasing-length sum of Matérn (ν = 3/2) kernels with
different characteristic length-scales. The state space scheme follows O(m3) and IHGP is O(m2).

4.2 Log-Gaussian Cox processes

A log Gaussian Cox process is an inhomogeneous Poisson process model for count data. The
unknown intensity function λ(t) is modelled with a log-Gaussian process such that f(t) = log λ(t).
The likelihood of the unknown function f is p({tj} | f) = exp(−

∫
exp(f(t)) dt +

∑N
j=1 f(tj)).

The likelihood requires non-trivial integration over the exponentiated GP, and thus instead the standard
approach [20] is to consider locally constant intensity in subregions by discretising the interval into
bins. This approximation corresponds to having a Poisson model for each bin. The likelihood
becomes p({tj} | f) ≈∏n

i=1 Poisson(yi({tj}) | exp(f(t̂i))), where t̂i is the bin coordinate and yi
the number of data points in it. This model reaches posterior consistency in the limit of bin width
going to zero [34]. Thus it is expected that the accuracy improves with tighter binning.

Coal mining disasters dataset: The data (available, e.g., in [35]) contain the dates of 191 coal
mine explosions that killed ten or more people in Britain between years 1851–1962, which we
discretize into n = 200 bins. We use a GP prior with a Matérn (ν = 5/2) covariance function that
has an exact state space representation (state dimensionality m = 3) and thus no approximations
regarding handling the latent are required. We optimise the characteristic length-scale and magnitude
hyperparameters w.r.t. marginal likelihood in each model. Fig. 4 shows that full EP and state space
ADF produce almost equivalent results, and IHGP ADF and state space ADF produce similar results.
In IHGP the edge effects are clear around 1850–1860.
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Experiment 1: Explanatory analysis of the aircraft accident
intensity data set ([3], 1210 accidents predicted in n = 35,959
daily bins) between years 1919–2018 by a log-Gaussian Cox
process (Poisson likelihood). We recover a slow trend, and
time-varying periodic yearly and weekly variation.

INFINITE-HORIZON GPS

I We leverage the idea of steady-state filtering, where the
solution filter is seen to reach a steady state when t →∞

I The steady state is solved by Discrete Algebraic Riccati
Equations (DAREs)

I After the initial setup cost, the Infinite-Horizon GP scales
as O(m2n)

I The memory scaling is linear in the number of data and
state dimension, O(mn)

I The infinite-horizon approximation introduces biases near
the boundaries (first/last samples) of data
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Figure 1: (Left) GP regression with n = 100 observations and a Matérn covariance function. The
IHGP is close to exact far from boundaries, where the constant marginal variance assumption shows.
(Right) Hyperparameters θ = (σ2

n, σ
2, `) optimised independently for both models.

Density Filtering (ADF, a.k.a. single-sweep Expectation Propagation, EP [5, 12, 19]) with the IHGP.
We are motivated by the application to Log-Gaussian Cox Processes (LGCP, [20]). Usually the LGCP
model uses binning to avoid a doubly-intractable model; in this case it is desirable to have more bins
in order to capture short-lengthscale effects, leading to more time points. Additionally, the desire to
capture long-and-short-term effects means that the state space dimension m can be large. We show
that our approach is effective on standard benchmarks (coal-mining disasters) as well as a much
larger dataset (airline accidents).

The structure of the paper is as follows. Sec. 2 covers the necessary background and notation related to
GPs and state space solutions. Sec. 3 leverages the idea of steady-state filtering to derive IHGP. Sec. 4
illustrates the approach on several problems, and the supplementary material contains additional
examples and a nomenclature for easier reading. Code implementations in MATLAB/C++/Objective-C
and video examples of real-time operation are available at https://github.com/AaltoML/IHGP.

2 Background

We are concerned with GP models [25] admitting the form: f(t) ∼ GP(µ(t), κ(t, t′)) and y | f ∼∏n
i=1 p(yi | f(ti)), where the data D = {(ti, yi)}ni=1 are input–output pairs, µ(t) the mean function,

and κ(t, t′) the covariance function of the GP prior. The likelihood factorizes over the observations.
This family covers many standard modelling problems, including regression and classification tasks.
Without loss of generality, we present the methodology for zero-mean (µ(t) := 0) GP priors. We
approximate posteriors of the form (see [24] for an overview):

q(f | D) = N(f |Kα, (K−1 + W)−1), (1)

where Ki,j = κ(ti, tj) is the prior covariance matrix, α ∈ Rn, and the (likelihood precision) matrix
is diagonal, W = diag(w). Elements of w ∈ Rn are non negative for log-concave likelihoods. The
predictive mean and marginal variance for a test input t∗ is µf,∗ = kT

∗α and σ2
f,∗ = k∗∗ − kT

∗ (K +

W−1)−1k∗. A probabilistic way of learning the hyperparameters θ of the covariance function (such
as magnitude and scale) and the likelihood model (such as noise scale) is by maximizing the (log)
marginal likelihood function p(y |θ) [25].

Numerous methods have been proposed for dealing with the prohibitive computational complexity
of the matrix inverse in dealing with the latent function in Eq. (1). While general-purpose methods
such as inducing input [4, 23, 30, 33], basis function projection [11, 17, 32], interpolation approaches
[37], or stochastic approximations [10, 14] do not pose restrictions to the input dimensionality, they
scale poorly in long time-series models by still needing to fill the extending domain (see discussion
in [3]). For certain problems tree-structured approximations [3] or band-structured matrices can
be leveraged. However, [8, 22, 26, 29] have shown that for one-dimensional GPs with high-order
Markovian structure, an optimal representation (without approximations) is rewriting the GP in terms
of a state space model and solving inference in linear time by sequential Kalman filtering methods.
We will therefore focus on building upon the state space methodology.

2

Figure: (Left) GP regression with n = 100 observations and
a Matérn covariance function. The IHGP is close to exact
far from boundaries, where the constant marginal variance
assumption shows. (Right) The negative marginal likelihood
curves as a function of length-scale.

NON-GAUSSIAN LIKELIHOODS
I For non-Gaussian likelihoods, we leverage Single-sweep

Expectation propagation (EP) [4]

I Also known as Assumed density filtering

I Only requires visiting each data point once

I In IHGP, the computational efficiency comes from matching
a likelihood variance parameter by moment matching

I The matched parameters are used for finding the
corresponding steady state by cubic convolutional
interpolation

I Directly applicable to streaming applications

F Electricity example

In the electricity consumption example we aim to explain the underlying process (occupancy and
living rhythm) that generates the electricity consumption in the household.

We first perform GP batch regression with a GP prior with the covariance function

κ(t, t′) = κ
ν=3/2
Mat. (t, t′) + κ1 day

per (t, t′)κν=3/2
Mat. (t, t′), (18)

where the first component captures the short or long-scale trend variation, and the second component
is a periodic model that aims to capture the time of day variation (with decay, a long length-scale
Matérn). In order not to over-fit, we fix the measurement noise variance and the length-scale of the
multiplicative Matérn component. We optimised the remaining four hyperparameters with respect to
marginal likelihood. The values are visualized in Fig. 9 with dashed lines. Total running time 624 s
on the MacBook Pro used in all experiments.

As the stationary model is clearly a over-simplification of the modelling problem, we also apply
IHGP in an online setting in finding the hyperparameters. Fig. 9 shows the adapted hyperparameter
time-series over the entire time-range.

We have selected three 10-day windows (with 14,400 observations each) to highlight that the model
manages to capture the changes in the data. Subfigure (a) shows the (noisy) daily variation with
a clear periodic structure. In (b) the electricity consumption has been small for several days and
the magnitude of both components has dropped. Furthermore, the periodic model has increased its
length-scale to effectively turn itself off. In (c) the predictive capability of the model shows and
captures the daily variation even though there has been a fault in the data collection.
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Figure 9: Results for explorative analysis of electricity consumption data over 1,442 days with
one-minute resolution (n > 2M). (d) The batch optimized hyperparameters values shown by dashed
lines, the results for IHGP with adaptation (solid) adapt to changing circumstances. (a)–(c) show
three 10-day windows where the model has adapted to different modes of electricity consumption.
Data shown by dots, predictive mean and 95% quantiles shown by the solid line and shaded regions.

Experiment 2: Results for explorative analysis of electricity
consumption data over 1,442 days with one-minute resolution
(n > 2M). The batch optimized hyperparameters values shown
by dashed lines, the results for IHGP with adaptation (solid)
adapt to changing circumstances. The model adapts; e.g. in
(b) the periodic component is turned off when the house is
vacant for a long time.

I Codes: https://github.com/AaltoML/IHGP
I Video abstract: https://youtu.be/myCvUT3XGPc

ONLINE LEARNING OF
HYPERPARAMETERS

I Hyperparameter learning as incremental gradient
descent

I Resembling stochastic gradient descent without the
assumption of finding a stationary optimum

I The ‘mini-batches’ are windows of recent data

I The infinite-horizon method guarantees that there are no
boundary effects related to choosing the batch
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Figure 6: Screenshots of online adaptive IHGP running in real-time on an iPhone. The lower plot
shows current hyperparameters (measurement noise is fixed to σ2

n = 1 for easier visualization) of
the prior covariance function, with a trail of previous hyperparameters. The top part shows the last
2 seconds of accelerometer data (red), the GP mean, and 95% quantiles. The refresh rate for updating
the hyperparameters and re-prediction is 10 Hz. Video examples are in the supplementary material.

Airline accident dataset: As a more challenging regression problem we explain the time-dependent
intensity of accidents and incidents of commercial aircraft. The data [22] consists of dates of 1210
incidents over the time-span of years 1919–2017. We use a bin width of one day and start from year
1900 ensure no edge effects (n = 43,099), and a prior covariance function (similar to [6, 36])

κ(t, t′) = κ
ν=5/2
Mat. (t, t′) + κ1 year

per (t, t′)κν=3/2
Mat. (t, t′) + κ1 week

per (t, t′)κν=3/2
Mat. (t, t′) (12)

capturing a trend, time-of-year variation (with decay), and day-of-week variation (with decay). This
model has a state space representation of dimension m = 3 + 28 + 28 = 59. All hyperparameters
(except time periods) were optimised w.r.t. marginal likelihood. Fig. 5 shows that we reproduce the
time-of-year results from [22] and additionally recover a high-frequency time-of-week effect.

4.3 Electricity consumption

We do explorative analysis of electricity consumption for one household [9] recorded every minute
(in log kW) over 1,442 days (n = 2,075,259, with 25,979 missing observations). We assign the
model a GP prior with a covariance function accounting for slow variation and daily periodicity (with
decay). We fit a GP to the entire data with 2M data points by optimising the hyperparameters w.r.t.
marginal likelihood (results shown in Appendix F) using BFGS. Total running time 624 s.

The data is, however, inherently non-stationary due to the long time-horizon, where use of electricity
has varied. We therefore also run IHGP online in a rolling-window of 10 days (nmb = 14,400,
η = 0.001, window step size of 1 hr) and learn the hyperparameters online during the 34,348
incremental gradient steps (evaluation time per step 0.26±0.05 s). This leads to a non-stationary
adaptive GP model which, e.g., learns to dampen the periodic component when the house is left
vacant for days. Results shown in Appendix F in the supplement.

4.4 Real-time GPs for adaptive model fitting

In the final experiment we implement the IHGP in C++ with wrappers in Objective-C for running as
an app on an Apple iPhone 6s (iOS 11.3). We use the phone accelerometer x channel (sampled at
100 Hz) as an input and fit a GP to a window of 2 s with Gaussian likelihood and a Matérn (ν = 3/2)
prior covariance function. We fix the measurement noise to σ2

n = 1 and use separate learning rates
η = (0.1, 0.01) in online estimation of the magnitude scale and length-scale hyperparemeters. The
GP is re-estimated every 0.1 s. Fig. 6 shows examples of various modes of data and how the GP has
adapted to it. A video of the app in action is included in the web material together with the codes.
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Experiment 3: Screenshots of online adaptive IHGP running
in real-time on an iPhone. The lower plot shows current
hyperparameters (measurement noise is fixed to σ2

n = 1 for
easier visualization) of the prior covariance function, with a
trail of previous hyperparameters. The top part shows the last
2 seconds of accelerometer data (red), the GP mean, and 95%
quantiles.
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the complexity to linear in the number of data points. The complexity is still
cubic in the state dimension m which is an impediment to practical application. In
certain special cases (Gaussian likelihood, regular spacing) the GP posterior will
reach a steady posterior state when the data are very long. We leverage this and
formulate an inference scheme for GPs with general likelihoods, where inference is
based on single-sweep EP (assumed density filtering). The infinite-horizon model
tackles the cubic cost in the state dimensionality and reduces the cost in the state
dimension m to O(m2) per data point. The model is extended to online-learning
of hyperparameters. We show examples for large finite-length modelling problems,
and present how the method runs in real-time on a smartphone on a continuous
data stream updated at 100 Hz.

1 Introduction

Gaussian process (GP, [25]) models provide a plug & play interpretable approach to probabilistic
modelling, and would perhaps be more widely applied if not for their associated computational
complexity: naïve implementations of GPs require the construction and decomposition of a kernel
matrix at cost O(n3), where n is the number of data. In this work, we consider GP time series
(i.e. GPs with one input dimension). In this case, construction of the kernel matrix can be avoided
by exploiting the (approximate) Markov structure of the process and re-writing the model as a
linear Gaussian state space model, which can then be solved using Kalman filtering (see, e.g., [27]).
The Kalman filter costs O(m3n), where m is the dimension of the state space. We propose the
Infinite-Horizon GP approximation (IHGP), which reduces the cost to O(m2n).

As m grows with the number of kernel components in the GP prior, this cost saving can be significant
for many GP models where m can reach hundreds. For example, the automatic statistician [6]
searches for kernels (on 1D datasets) using sums and products of kernels. The summing of two
kernels results in the concatenation of the state space (sum of the ms) and a product of kernels results
in the Kronecker sum of their statespaces (product of ms). This quickly results in very high state
dimensions; we show results with a similarly constructed kernel in our experiments.

We are concerned with real-time processing of long (or streaming) time-series with short and long
length-scale components, and non-Gaussian noise/likelihood and potential non-stationary structure.
We show how the IHGP can be applied in the streaming setting, including efficient estimation of the
marginal likelihood and associated gradients, enabling on-line learning of hyper (kernel) parameters.
We demonstrate this by applying our approach to a streaming dataset of two million points, as well as
providing an implementation of the method on an iPhone, allowing on-line learning of a GP model of
the phone’s acceleration.

For data where a Gaussian noise assumption may not be appropriate, many approaches have been
proposed for approximation (see, e.g., [21] for an overview). Here we show how to combine Assumed
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