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Monet fysikaaliset ja biologiset mallit ovat sidottuja sekä paikkaan että
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Symbols and Abbreviations

Matrices are capitalized and vectors are in bold type. Operators are slanted.
We do not generally distinguish between probabilities and probability den-
sities.

Operators and miscellaneous notation

1 : k 1, 2, . . . , k

p(f | y) Conditional probability density of f given y

fk|k−1 Conditional value of fk given observations up to step k − 1

R, C and N The real, complex and natural numbers

N (m, C) Gaussian distribution with mean m and covariance C

I Identity matrix

AT Matrix transpose of A

Ft[f(t)](ω) Fourier transform of f(t)

〈·, ·〉 Inner product

H Hilbert space

L Linear operator

ψn(x) Eigenfunction

λn Eigenvalue

Ω and ∂Ω Domain and domain boundary

General notation

f ∈ Rs System state

x ∈ Rn Spatial coordinate

y ∈ Rd Observation

k Time step index

T Final time step

Abbreviations

GP Gaussian process

SDE Stochastic differential equation

SPDE Stochastic partial differential equation

RTS Rauch–Tung–Striebel (smoother)

fMRI Functional magnetic resonance imaging

TR Repetition time, interval between subsequent scans (TR)

RMSE Root-mean-square error
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1 Introduction

Models derived for physical processes often involve variability in both space

and time. Such spatio-temporal models can, for example, be applied to

neural activity in the brain or the weather — just to name the applications

that are addressed further on. For analysis, the Bayesian treatment provided

by Gaussian process (GP) regression (O’Hagan, 1978) is often eligible. GP

regression is a supervised machine learning (Alpaydin, 2010) paradigm where

learning amounts to computing the posterior process from a given set of

measurements. However, large datasets and the modeling of space, time

and spatio-temporal interactions raise difficulties that are often impossible

to deal with. One issue with GP methods is that their computational

complexity is O(n3), due to the inversion of an n× n matrix. This renders

the basic approach prohibitive as the amount of data grows.

The celebrated Kalman filter (Kalman, 1960; Jazwinski, 1970; Grewal

and Andrews, 2001) can be used for computing the Bayesian solutions to a

general class of temporal Gaussian processes observed through a Gaussian

linear model. While GP models are given in terms of a mean and covari-

ance function, Kalman filter models are constructed as solutions to linear

stochastic differential equations. The Kalman filter actually only provides

the forward-time posterior, and the full posterior is given by some smooth-

ing method such as the Rauch–Tung–Striebel smoother (Rauch et al., 1965;

Grewal and Andrews, 2001). The solutions can be written in closed-form,

and the computational complexity scales linearly with respect to the number

of measurements in the temporal dimension.

The appealing properties of the Kalman filter can be exploited in

postulating an infinite-dimensional Kalman filter (see, e.g., Curtain, 1975;

Cressie and Wikle, 2002; Wikle and Cressie, 1999) or a distributed param-

eter Kalman filter (as referred to in Tzafestas, 1978; Omatu and Seinfeld,

1989), where the state is actually an element in an infinite-dimensional

Hilbert space. With ‘Hilbert space methods’ in the title, we refer to

tools from functional analysis that can be used to form finite-dimensional

approximations and combine them with observations. This can give actual

solutions to real-world estimation problems. In this context Hilbert spaces

methods are used as synonyms for basis function approximations.
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Introduction 2

Figure 1: An illustration of spatio-temporal data, where functional brain data
is visualized as a three-dimensional density. The three time series correspond
to three different spatial locations.

As mentioned, application areas can be found in different spatio-temporal

models. The term ‘spatio-temporal’ or ‘space–time’ model refers any math-

ematical model that combines space (as in place) and time. Instead of

directly considering four-dimensional GP regression, we review evolution-

type models. These are interpreted with space being three-dimensional —

also one- and two-dimensional spatial domains are considered here — and

time playing the role of a fourth dimension that is different from the spatial

dimensions.

The main interest in this work is put on the following time evolution

prototype model which is presented here to ease the reading further on.

Also the demonstrations fall under this formulation which we presented in

the form

∂f(x, t)

∂t
= A f(x, t) + Lw(x, t)

yk = Hk f(x, t) + rk

where f(x, t) : Rn × R+ → R is the state, A some spatial (linear) opera-

tor and w(x, t) a space–time white noise process. The observation model

is set up by a functional Hk. Values of yk are noisy measurements of the

phenomenon at discrete time steps tk, where the noise term rk is assumed

Gaussian. Details and generalizations of the model can be found in Sec-

tion 2.4.
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Introduction 3

This work is meant to be primarily application-driven, which means that

we put interest in practically feasible solutions. Therefore we also present

some illustrative real-world examples where the methods have been applied

to actual data. In the two different data sets, the state function f(x, t)

corresponds to the value of the phenomenon (i.e. outdoor temperature

or brain activity) and yk to some observations of it (i.e. thermometer

readings or magnetic resonance imaging data of the brain). Figure 1 shows

an illustrative sketch of a spatial three-dimensional density field. Three

temporal time series are extracted from different spatial locations. If we

consider all possible time series in all spatial locations, we have the spatio-

temporal data.

1.1 Literature Review

We present a brief literature review covering the themes discussed in this

thesis. The context, in which each of the sources is used, is easier seen by

following the references throughout the text.

The mathematical definitions and properties concerning Hilbert spaces

in the scope of functional analysis are covered in, e.g., Kreyszig (1978), and

a more detailed presentation of spectral theory and differential operators

is given in Davies (1995). Hilbert space methods in partial differential

equations are presented by Showalter (1977).

Stochastic differential equations (SDE) are discussed extensively in

Øksendal (2003) and stochastic partial differential equations (SPDE)

further in Holden et al. (1996) and Chow (2007). An extensions to this

is the pseudodifferential operator presentation in Shubin (1987). The

infinite-dimensional dynamic perspective offered in Robinson (2001) and

Da Prato and Zabczyk (1992) bring up the evolution type models.

Tools for combining SPDE equations with indirect observations are pro-

vided by Bayesian inference, a concept which is readily presented by Gelman

et al. (2004). The Bayesian outlook sets the backdrop of the study, which

leads to the use of Gaussian process regression. Gaussian process models

(O’Hagan, 1978) are introduced from a machine learning perspective by Ras-

mussen and Williams (2006). They are formally equivalent to random field

based kriging in geostatistics (Cressie, 1993; Christakos, 2005). The link
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Introduction 4

was shown by Hartikainen and Särkkä (2010) and Särkkä and Hartikainen

(2012), the work on which this thesis is primarily based.

Kalman filtering (Kalman, 1960; Jazwinski, 1970; Grewal and Andrews,

2001) and Rauch–Tung–Striebel smoothing (Rauch et al., 1965) for linear

state space systems act as a backdrop to the infinite–dimensional filtering

theory. The concept of infinite-dimensional Kalman filtering is not a new one

(for an early survey, see, Curtain, 1975), as it can be seen as a very intuitive

extension to the standard linear Kalman filter. Infinite-dimensional filtering

has been covered by Falb (1967), and later by Wikle and Cressie (1999)

and Cressie and Wikle (2002). Recently the non-stationary inverse problem

viewpoint (Kaipio and Somersalo, 2004) in this setting has been addressed

by Pikkarainen (2006).

Fields where applications of infinite-dimensional Kalman filtering have

been considered include earth sciences and geostatistics (see Christakos,

2005), and also biomedical applications, such as in electrical impedance

tomography (e.g. Pikkarainen, 2005), exist.

1.2 Objectives and Scope

In the first section of this thesis we will go through the concepts of stochas-

tic equations in infinite dimensions and Hilbert space valued stochastic

processes. The link between Gaussian process (GP) regression and the

state space form of stochastic partial differential equations (SPDE) is gone

through in some detail to provide an insight to the spatio-temporal state

space formulation.

The next step is to introduce optimal estimation — i.e. Kalman filtering

and Rauch–Tung–Striebel smoothing — in finite dimensions. We show how

a continuous-time stochastic differential equation can be discretized to fall

under the Kalman filtering formulation. We present the infinite-dimensional

Kalman filter as a generalization of the standard discrete-time linear filtering

solution.

For practical implementations, the infinite-dimensional Kalman filter has

to be used in combination with some approximative methods in order to do

the computations feasible. This aspect is dealt with in the third section

of this thesis, where we present eigenfunction expansions of the Laplace

operator in various domains — n-dimensional hypercubes and spheres —
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Introduction 5

subject to Dirichlet boundary conditions. Here we restrict our interest to

problems which can be solved in these domains and formulated in terms of

the Laplace operator.

We also go through the practical numerical use of infinite-dimensional

Kalman filtering. To do this, we extend the resonator model that was intro-

duced in Särkkä et al. (2012a) to a space–time form. We demonstrate the

use of this spatio-temporal resonator model by presenting three case studies:

a hourly temperature model on the surface of a sphere, and two examples

for fMRI data analysis in both two-dimensional polar and three-dimensional

spherical coordinates. In the latter examples, we construct a space–time fil-

tering model for modeling physiological noise in fMRI data, which acts as a

spatial extension to the recently published DRIFTER method (Särkkä et al.,

2012a). The results and approaches are discussed in some detail and future

extensions are suggested.

The main contributions of this study are to (i) verify previous work, (ii)

unify different notation and conceptual approaches from distinctive fields of

space–time modeling, and (iii) provide a backdrop in spatio-temporal models

that can be subject to further extensions.

Solin AH



6

2 Infinite-Dimensional Methods in Kalman

Filtering

2.1 Hilbert Spaces

Hilbert spaces (see, e.g., Kreyszig, 1978, for a good introduction) are a

generalization of the concept of two- or three-dimensional Euclidean spaces.

Hilbert spaces extend the vector algebra and calculus of finite-dimensional

spaces to any finite or infinite number of dimensions. A Hilbert space is an

abstract vector space characterized by an inner product and a norm which

define concepts as ‘length’ and ‘angle’ in the space.

To be more precise, we assign a vector space an inner product. This

forms an inner product space, where the inner product is here defined by

〈f, g〉 =

∫ b

a
f(x) g(x) dx,

where f, g : [a, b] → R. The inner product induces a norm to the space, so

an inner product space is can be made a normed vector space. The norm

defines the metrics of the space, for which we can write ‖f‖2 = 〈f, f〉. All

the quadratically integrable or square-integrable functions, for which∫ b

a
‖f(x)‖2 dx <∞,

form a complete metric space (a space with all points defined), which is

hence a Banach space. A complete space with an inner product and a norm

‖f(x)‖2 = 〈f, f〉 is called a Hilbert space. This Hilbert space (the functional

space of square-integrable functions) is conventionally denoted L2[a, b] in

the bounded interval a to b.

We present some concepts related to linear operator theory that will be

referred to throughout this work. Hereafter we denote operators by slanted

calligraphic symbols, e.g. L. In general, a compact operator is a linear

operator L from a Banach space to another Banach space, such that the

image under L of any bounded subset of X is a relatively compact subset of

Y . Such an operator is necessarily a bounded operator, and so continuous.

Equivalently, a definition of a compact operator T on a Hilbert space

H can be given such that T : H → H is said to be compact if (and only
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Infinite-Dimensional Methods in Kalman Filtering 7

if) it can be written in the form

T =

N∑
n=1

λn 〈fn, ·〉 gn,

where f1, f2, . . . , fN ∈ H and g1, g2, . . . , gN ∈ H for 1 ≤ N < ∞ are (not

necessarily complete) orthonormal sets. The coefficients λ1, λ2, . . . , λN are a

sequence of positive numbers which are the singular values of the operator.

As we will put our main interest in the unbounded Laplace operator ∆ = ∇2,

this setup is strictly speaking unsatisfactory. However, the methods can be

rigorously generalized to unbounded operators and the results would be

analogous.

A linear operator L on a Hilbert space H is called symmetric if 〈Lx, y〉 =

〈x,Ly〉 for all elements x and y in the domain of L. A symmetric operator

that is defined everywhere is also self-adjoint, which means that the operator

is equal to its own adjoint L∗. In the scope of this study, it is noteworthy

that if (and only if) the Hilbert space is finite-dimensional and a self-adjoint

operator L has been written in terms of an orthonormal basis, the matrix

L describing L is Hermitian (it equals its own conjugate transpose L = L∗

or transpose L = LT in the real case).

The main interest in constructing real-world solutions to infinite-

dimensional models in this study is put on expanding the infinite-

dimensional operator equations to truncated series approximations. The

theory behind this is based on the Hilbert–Schmidt theorem which is also

known more casually as the eigenfunction expansion theorem.

To present the eigenfunction expansion of a bounded compact self-

adjoint operator L : H → H let λn, n = 1, 2, . . . , N , be a sequence of

non-zero real eigenvalues such that |λn| is monotonically non-increasing. If

N =∞ then limn→∞ λn = 0. We furthermore assume that each eigenvalue

is repeated in the sequence according to its multiplicity. Now we can say

that there exists a set ψn, n = 1, 2, . . . , N , of corresponding eigenfunctions

such that

Lψn = λnψn, for n = 1, 2, . . . , N.

This enables us to consider the case where L operates on some function u(·)
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Infinite-Dimensional Methods in Kalman Filtering 8

by writing

Lu =

N∑
n=1

λn 〈ψn, u〉ψn, for all u ∈H ,

where ψn forms an orthonormal basis for the range of L. This relates to the

so called spectral decomposition of an operator which we write in the form

of the following mapping

f(x) 7→
∫ b

a
k(x, y)f(y) dy,

where k(·, ·) is a continuous function symmetric in x and y. The resulting

eigenfunction expansion expresses the kernel function k(·, ·) of L as a series

of the form

k(x, y) =
∑
n

λnψn(x)ψn(y),

where the functions ψn are orthonormal in the sense that 〈ψn, ψm〉 = 0 for

all n 6= m. More generally, kernels of unbounded operators comprise delta

functions and their derivatives.

2.2 Stochastic Equations in Infinite Dimensions

The rest of this section is dedicated to stochastic processes in finite and

infinite-dimensions. We go through the idea behind Gaussian process mod-

els, time evolution models and the connection between them.

2.2.1 Spatio-Temporal Gaussian Processes

A linear finite-dimensional regression problem can be written as a vector

f ∈ Rs being a draw from a normal prior N (m0,C0). The observed value

y ∈ Rd of f can be affected by some zero mean Gaussian measurement

noise, r ∼ N (0,R), with covariance R. This linear regression problem can

be given in the form

f ∼ N (m0,C0)

y = H f + r,
(1)

where H ∈ Rd×s is the linear observation model matrix.
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Infinite-Dimensional Methods in Kalman Filtering 9

We extend the linear regression model in Equation (1) to account for an

infinite-dimensional process. Gaussian process (GP) regression (O’Hagan,

1978; Rasmussen and Williams, 2006) is a machine learning paradigm in

which a process is seen as realizations of a Gaussian random process prior.

A Gaussian process model is characterized by its prior mean m0(x) and

prior covariance function C0(x,x′). Let us consider that f(x) ∈ H (Rn) is

an element in an infinite-dimensional Hilbert space, and thus values f(x)

correspond to outputs of the process with different inputs:

f(x) ∼ GP
(
m0(x), C0(x,x′)

)
y = Hf(x) + r,

(2)

where y ∈ Rd is the observation and r ∼ N (0,R) is the measurement

noise component as earlier. The measurement model is defined by H, a

functional which defines the discrete observations. The GP model is actually

equivalent to the kriging model of Cressie (1993) as presented for example

by Särkkä and Hartikainen (2012).

The GP model in Equations (2) can be seen as a spatial regression model.

If we include a separate dependent variable t to the model to account for

the temporal structure, we get a spatio-temporal GP model, which can be

written rather straight-forwardly as

f(x, t) ∼ GP
(
m0(x, t), C0(x, t; x′, t′)

)
yk = Hkf(x, tk) + rk,

(3)

where the functions are dependent on t as well (such that f : Rn × R+ →
R), and we assume that the values are observed at discrete time points

tk, k = 1, 2, . . . , T . The observation functional Hk and the dimension of

the observation yk ∈ Rdk as well as the time-white measurement noise

rk ∼ N (0,Rk), can all depend on the step index k.

2.2.2 Covariance Functions

In the previous section we saw that a Gaussian process is charac-

terized by its mean m(x) = E[f(x)] and its covariance function

C(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))]. The covariance function

encodes the similarity of data between separate locations in space (or time).
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Infinite-Dimensional Methods in Kalman Filtering 10

A covariance function is a function of input pairs x and x′ where the

function gives information about the relation of the two inputs. A stationary

covariance function is a function of x− x′ (the difference between the point

locations), and if the covariance is only function of ‖x − x′‖ (the distance

between points), it is called isotropic (further details can be found, e.g., in

Rasmussen and Williams, 2006).

In general, a function of two arguments mapping the relation between

x ∈ Ω and x′ ∈ Ω is called a kernel k(x,x′). This relates directly to

covariance functions, and is also familiar from earlier as the same notation

arises in theory of integral operators. We can consider an operator T with

a kernel k(·, ·) such that

T f(x) =

∫
Ω
k(x,x′)f(x′) dx′.

Rasmussen and Williams (2006) offer a more thorough introduction to the

subject. A kernel is said to be symmetric if k(x,x′) = k(x′,x).

The connection between covariance functions and covariance matrices

is that if we are given a set of input points {xi | i = 1, 2, . . . , n} we can

compute the so called Gram matrix K ∈ Rn×n, which has elements Kij =

k(xi,xj). If k(·, ·) is a covariance function, then the Gram matrix K is

the corresponding covariance matrix. Because the covariance function is

symmetric, the corresponding covariance matrix is also symmetric.

A kernel is said to be positive semidefinite, if∫
Ω

∫
Ω
k(x,x′)f(x)f(x′) dx dx′ ≥ 0

for all square-integrable functions, f ∈ L2(Ω). Similarly a positive semidefi-

nite matrix K satisfies xTKx ≥ 0 for all x ∈ Rn. Furthermore a symmetric

matrix is positive semidefinite if and only if all its eigenvalues are non-

negative. We can also state that any Gram matrix (valid covariance matrix)

is positive semidefinite.

Bochner’s theorem (see, e.g., Da Prato and Zabczyk, 1992) states that

a complex-valued function k : Rn → C is the covariance function k(·, ·) of

a weakly stationary, r = x − x′, mean-square continuous complex-valued
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random process on Rn, if and only if it can be represented as

k(r) =
1

(2π)n

∫
Rn

eiω·r dµ(ω),

where µ is a positive finite measure. In a rigorous sense, this is problematic

because the white noise measure is not finite, but the theory can be made

exact through generalizations. However, if the measure µ(ω) has a density,

this is the spectral density S(ω) corresponding to the kernel (i.e. the co-

variance function). This gives rise to the Fourier duality of covariance and

spectral density, which is known as the Wiener–Khintchine theorem (see,

e.g., Rasmussen and Williams, 2006) and defines

k(r) =
1

(2π)n

∫
S(ω)eiω·r dω and S(ω) =

∫
k(ω)e−iω·r dr.

In practice the Fourier transforms are not that often needed to be calculated

explicitly. If the kernel k(·, ·) is a covariance function, we denote it by C(·, ·)
and the corresponding covariance matrix by C.

In this study, we are concerned with isotropic stationary covariance func-

tions. As an illustrative example we consider a covariance functions of the

Matérn class (Matérn, 1960). This class of stationary isotropic (if the norm

is the Euclidean distance) covariance functions is widely used in many ap-

plications as it is rather simple and the parameters have somewhat under-

standable interpretations. A Matérn covariance function can be written as

C(r) = σ2 21−ν

Γ(ν)

(√
2ν

r

l

)ν
Kν

(√
2ν

r

l

)
, (4)

where r = ‖x − x′‖, Γ(·) is the Gamma function and Kν(·) is the modified

Bessel function. The covariance function is characterized by three param-

eters: a smoothness parameter ν, distance scale parameter l and strength

(magnitude) parameter σ, all of which are positive. The Matérn class is es-

pecially interesting as it features two commonly used covariance functions as

special cases: if ν →∞, we get the squared exponential covariance function

C(r) = σ2 exp
(
−r2/(2l2)

)
, and if ν = 1

2 , we get the exponential covariance

function C(r) = σ2 exp (−r/l).
Figure 2 shows three covariance functions of the Matérn class with dif-

ferent parameter values for ν, one-dimensional draws from Gaussian distri-
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Figure 2: Matérn covariance functions and random functions draws from
Gaussian processes with the corresponding covariance functions, for different
values of ν. On far right a Gaussian random field with Matérn covariance
(ν = 5/2). In all the figures l = 1.

butions with the corresponding covariance matrices, and a two-dimensional

draw that is a Gaussian random field. The one-dimensional draws are done

by discretizing the x-axis into 2000 equally-spaced points. The draw in the

rightmost figure is based on a 256×256 equally-spaced grid.

2.2.3 Converting Covariance Functions to Stochastic Equations

As was discussed earlier, the covariance function of the Gaussian process

encodes the overall structure of the solution by including the dependencies

between the values in the model. The space–time covariances characterize

a random field in a subspace. Intuitively the same effects should be possible

to be described by a suitable differential equation — or more precisely, a

stochastic differential equation.

In this section we consider one-dimensional — the intuitive interpretation

being the temporal dimension — stationary isotropic covariance functions

C(t, t′) which can be written in terms of being only a function of the norm

of the difference of the points, that is C(t, t′) = C(τ), where τ = |t − t′|.
Following the procedure described by Hartikainen and Särkkä (2010), we

consider a stationary scalar covariance function C(τ) for a process f(t), t ∈
R. We try to find the corresponding stochastic differential equation (SDE)

with approximately the same covariance function. By Fourier transform we

can compute the spectral density S(ω) of the model, where ω ∈ R. We try

to find a function G(iω), so that S(ω) ≈ G(iω)G(−iω).
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Following the derivation in Hartikainen and Särkkä (2010) we consider

a linear time-invariant (LTI) stochastic differential equation (SDE). The

differential equation can be written as

dmf(t)

dtm
+ am−1

dm−1f(t)

dtm−1
+ · · ·+ a1

df(t)

dt
+ a0f(t) = w(t),

where a0, . . . , am−1 are known constants and w(t) is a white noise process

with spectral density Sw(ω) = q. The model is an mth order scalar LTI

SDE, where the process is characterized by its derivatives up to order m

and the stochastic variation comes from the white noise term. The linear

SDE can be written as a matrix equation

df(t)

dt
= F f(t) + Lw(t), (5)

where the state f(t) =
(
f(t), d

dtf(t), . . . , dm−1

dtm−1 f(t)
)

contains the derivatives

of f(t) up to order m − 1. The dynamic model matrix F ∈ Rm×m and the

process noise propagation matrix L ∈ Rm×1 can be given as

F =


0 1

. . .
. . .

0 1

−a0 · · · −am−2 −am−1

 and L =


0
...

0

1

 .

This is called the ‘companion form’ (see Grewal and Andrews, 2001) for

higher-order differential equations expressed in terms of first-order differ-

ential equations, and it is especially useful in the Kalman filtering context

as it is in the form of a linear matrix equation. The SDE in Equation (5)

can also be given using the Itô differential notation, where it would be

dx(t) = F f(t) dt + L dW (t), where W (t) is a Wiener process or Brownian

motion (see, e.g., Øksendal, 2003).

Even though we have written the stochastic differential equation in vec-

tor form, we still are primarily interested in the value of the process it-

self. The value of f(t) can be extracted by the linear observation model

f(t) = H f(t), where H = [1 0 . . . 0]T. Using this identity and formally
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Fourier transforming both sides in Equation (5) yield

−iωFt[f(t)](ω) = F Ft[f(t)](ω) + L Ft[w(t)](ω).

The next step is to substitute the Fourier transform by the spectral density

of the noise process |Ft[w(t)](ω)|2 = Sw(ω) = q (from earlier), and to denote

the Fourier transform as the spectral density of the process. Rearranging

the terms gives us

S(ω) = H (F + iωI)−1 L qLT
[
(F− iωI)−1

]T
HT.

When the process has reached a stationary state (i.e. run an infinite period of

time) the covariance function of f(t) is given by the inverse Fourier transform

of the spectral density:

C(τ) =
1

2π

∫ ∞
−∞

S(ω)eiωτ dω.

According to Hartikainen and Särkkä (2010), this can be calculated as

C(τ) =

H C∞UT(τ) HT, if τ ≥ 0

H U(τ) C∞HT, if τ < 0

where U(τ) = exp(Fτ) and C∞ is the stationary covariance of f(t). The

matrix Riccati equation (see Grewal and Andrews, 2001)

dC

dt
= F C + C FT + L qLT = 0

can be used to solve the stationary covariance C∞.

2.2.4 Space–Time Covariance Functions as Evolution Models

In this section we go through a rather general method for converting space–

time covariances into stochastic differential equations. The following pro-

cedure is presented by Särkkä and Hartikainen (2012). We assume the co-

variance functions to be stationary, which enables us to write the covariance

function C(x,x′; t, t′) as C(x − x′, t − t′) and further C(x, t). Once again,

we consider a stationary scalar covariance function C(x − x′, t − t′) for a
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spatio-temporal process f(x, t) : Rn ×R+ → R. Intuitively, there should be

a stochastic (partial differential) equation which behaves similarly.

Fourier transforming the covariance function gives us the corresponding

spectral density S(ωx, ωt), where ωx ∈ Rn and ωt ∈ R. Next we need to

find a function G(iωx, iωt) which is stable in forward time and rational for

variables iωt such that

G(iωx, iωt) =
b0(iωx)

(iωt)N + aN−1(iωx)(iωt)N−1 + · · ·+ a0(iωx)
. (6)

The absolute value of this function should approximate the spectral density

well, S(ωx, ωt) ≈ G(iωx, iωt)G(−iωx,−iωt). This can, for example, be done

by forming a Taylor expansion of the inverse spectral density function in

terms of (iωt)
2. This results in a polynomial approximation of order 2N ,

which is of form

1

S(ωx, ωt)
≈ c0(iωx) + c2(iωx)(iωt)

2 + c4(iωx)(iωt)
4 + · · ·

We can now use the rational approximation in (6) to form the Fourier

transform of f(x, t), which is

F (iωx, iωt) = G(iωx, iωt)N(iωx, iωt),

where N(iωx, iωt) is the formal Fourier transform of a space–time white

noise with unit spectral density. Consequently the spectral density of

F (iωx, iωt) is |F (iωx, iωt)|2 = G(iωx, iωt)G(−iωx,−iωt) ≈ S(ωx, ωt).

The inverse Fourier transform with respect to time is denoted by

f̃(ωx, t) = F−1
t [F (iωx, iωt)]. This gives

df̃(ωx, t)

dt
=


0 1

. . .
. . .

0 1

−a0(iωx) −a1(iωx) · · · −aN−1(iωx)

 f̃(ωx, t)+


0
...

0

1

 w̃(ωx, t),

where the process of interest is the first component f̃ = f̃1 and w̃(ωx, t) is a

scalar white noise process with constant spectral density |b0(iωx)|2.

Taking a second inverse Fourier transform F−1
x [·], now with respect to
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the spatial variable x, yields the following stochastic evolution equation,

df(x, t)

dt
=


0 1

. . .
. . .

0 1

−A0 −A1 · · · −AN−1

 f(x, t) +


0
...

0

1

w(x, t),

where w(x, t) is a Hilbert space valued white noise process (see, e.g.,

Da Prato and Zabczyk, 1992) with a stationary spectral density operator

Qc(x,x
′) , Qc(x) = F−1

[
|b0(iωx)|2

]
. The linear operators Aj are defined

in terms of their Fourier transforms, such that Aj = F−1
x [aj(iωx)], for

j = 0, 1, . . . , N − 1.

Särkkä and Hartikainen (2012) point out that if the terms aj(iωx) are

rational functions, the operators are so called integro-differential operators

— and further, if they are polynomials, the equation becomes a stochas-

tic partial differential equation of evolution type. Even if the functions

are neither polynomials nor rational functions, the operators are so called

pseudo-differential operators and the equation becomes a stochastic pseudo-

differential equation or a fractional stochastic equation.

2.3 Optimal Estimation in Finite Dimensions

The term optimal estimation refers to the methods that are used to esti-

mate the underlying state of a time-varying system of which there exist

only indirectly observed noisy measurements. In many cases Kalman filter

and Rauch–Tung–Striebel smoother (see, e.g., Grewal and Andrews, 2001;

Särkkä, 2006; Solin, 2010) algorithms are the ones referred to with opti-

mal estimation. These two algorithms can be used for computing the exact

Bayesian posterior filtering distributions of the state in discrete-time linear

Gaussian state space models.

2.3.1 Time Discretization

Before using the discrete-time methods, we start by considering continuous-

time linear stochastic differential equations (SDEs) (see, e.g., Øksendal,

2003). This is because the time discretization plays and important role

in the handling of continuous-time linear operator equations further on.
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We consider the stochastic process defined by the following continuous-

discrete state space model, where the dynamics are defined by a differential

equation and the measurements are discrete in time,

df(t)

dt
= F(t) f(t) + L(t)w(t)

y(tk) = Hk f(tk) + rk,

(7)

where y(tk) ∈ Rd is the observation of the process at time tk, k = 0, 1, 2, . . .

and matrix Hk ∈ Rd×s defines the measurement model. w(t) ∈ Rq is a

q-dimensional white noise process with spectral density Qc. Because we

consider linear time-invariant (LTI) models, we drop off the dependence of

t in the dynamic model F(t). We will come back to time-dependency later

on.

Linear continuous-time models can be handled by optimal estimation

techniques by first discretizing the dynamics (see, e.g., Särkkä, 2006) of the

model. If we assume that the model is time-invariant, the sampling period

is ∆t, and we define tk = k∆t, then the weak solution (Øksendal, 2003) to

this continuous-time stochastic differential equation can be expressed as

f(tk+1) = exp(∆tF) f(tk) +

∫ tk+1

tk

exp((tk+1 − s) F) L w(s) ds. (8)

The second integral above is just a Gaussian random variable with covariance

Qk =

∫ ∆t

0
exp((∆t− τ) F) L Qc LT exp((∆t− τ) F)T dτ. (9)

Thus, if we define Ak = exp(∆tF), the model becomes a discrete-time

state space model. This leads to the reformulation of Equation (7), which

gives us the discrete-time state space model

f(tk+1) = Ak f(tk) + qk

y(tk) = Hk f(tk) + rk,
(10)

where f(tk) ∈ Rs is the state at time tk, where k = 0, 1, 2, . . ., y(tk) ∈ Rd is

the measurement at time tk, qk ∼ N (0,Qk) is the Gaussian process noise,

and rk ∼ N (0,Rk) is the Gaussian measurement noise. Matrix Ak is the

state transition matrix and Hk is the measurement model matrix.
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2.3.2 Linear Estimation of Discrete-Time Models

As the model and state now are discrete in time, we drop the function

representation of the state in Equation (10) for a more conveniently indexed

presentation. Thus we may start by considering a linear stochastic state

space model

fk = Ak−1fk−1 + qk−1

yk = Hkfk + rk,
(11)

where fk ∈ Rs is the state, yk ∈ Rd is the measurement of the state at time

step k, qk ∼ N (0, Qk) is the Gaussian process noise of the dynamic model,

rk ∼ N (0, Rk) is the Gaussian noise process of the measurement model, Ak

is the dynamic model translation matrix and Hk is the measurement model

matrix. The time steps k run from 0 to T , and at time step k = 0 only the

prior distribution is given, f0 ∼ N (m0, C0).

The dynamic model defines the system dynamics and its uncertainties as

a Gauss–Markov sequence. The discrete-time state space model presented

in Equations (11) can be written equivalently in terms of probability distri-

butions as a recursively defined probabilistic model of the form

p(fk | fk−1) = N (fk | Ak−1fk−1, Qk−1)

p(yk | fk) = N (yk | Hkfk, Rk).
(12)

The model is assumed to be Markovian in the sense that it incorporates

the Markov property, which means that the current state is conditionally

independent from the past given the previous state. Additionally all the

measurements of the separate states are assumed to be conditionally inde-

pendent of each other given the state.

In this approach we bluntly divide the concept of Gaussian optimal

estimation into three marginal distributions of interest (see, e.g., Särkkä,

2006):

Filtering distributions p(fk | y1:k) that are the marginal distribu-

tions of current state fk given all previous measurements y1:k =

(y1,y2, . . . ,yk).

Prediction distributions p(fk | y1:k−1) that are the marginal dis-

tributions of forthcoming states.
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Figure 3: An illustrative example of the filtering and smoothing results for
a linear Gaussian random-walk model. The variances are presented with the
help of the 95 % confidence intervals.

Smoothing distributions p(fk | y1:T ) that are the marginal dis-

tributions of the states fk given measurements y1:T such that

T > k.

At time step k the prediction distribution utilizes less than k measurements,

whereas the filtering solution uses exactly k measurements and the smooth-

ing distribution more than k measurements.

An illustrative example of the differences between filtering and smooth-

ing is shown in Figure 3. The black solid line in the figure demonstrates a

realization of a Gaussian random walk process. The blue line together with

the bluish patch following the line show the filtered solution obtained by

using the noisy measurements in the figure. Similarly the red line and the

reddish patch depict the smoothed solution. As the smoother has access to

more measurements, it follows the original states more strictly and has a

smaller variance than the filtering solution.

2.3.3 Kalman Filter Equations

The Kalman filter is a closed-form solution to the linear filtering problem in

Equation (11) — or equivalently in (12). As the Kalman filter is conditional

to all measurements up to time step k, the recursive filtering algorithm can
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be seen as a two-step process that first includes calculating the marginal

distribution of the next step using the known system dynamics (see, e.g.,

Bar-Shalom et al., 2001). This is called the Prediction step:

mk|k−1 = Ak−1mk−1|k−1

Ck|k−1 = Ak−1Ck−1|k−1A
T
k−1 + Qk−1.

(13)

The algorithm then uses the observation to update the distribution to match

the new information obtained by the measurement at step k. This is called

the Update step:

Sk = HkCk|k−1H
T
k + Rk

Kk = Ck|k−1H
T
kS−1

k

mk|k = mk|k−1 + Kk(yk −Hkmk|k−1)

Ck|k = Ck|k−1 −KkSkK
T
k .

(14)

As a result, the filtered distribution at step k is given by p(fk | y1:k) =

N (fk |mk|k, Ck|k). The difference yk−Hkmk|k−1 in Equation (14) is called

the innovation or the residual. It basically reflects the deflection between

the actual measurement and the predicted measurement. The innovation is

weighted by the Kalman gain. This term minimizes the a posteriori error

covariance by weighting the residual with respect to the prediction step

covariance Ck|k−1 (see Maybeck, 1979, 1982; Welch and Bishop, 1995).

The linear Kalman filter solution coincides with the optimal least squares

solution which is exactly the posterior mean mk|k. For derivation and further

discussion on the matter see, for example, Kalman (1960), Maybeck (1979)

and Särkkä (2006).

2.3.4 Rauch–Tung–Striebel Smoother Equations

We take a brief look at fixed-interval optimal smoothing. The purpose of

optimal smoothing is to obtain the marginal posterior distribution of the

state fk at time step k, which is conditional on all the measurements y1:T ,

where k ∈ [1, . . . , T ] is a fixed interval.

Similarly as the discrete-time linear Kalman filter gives a closed-form

filtering solution, the discrete-time Rauch–Tung–Striebel (RTS) Smoother

(see, e.g., Rauch et al., 1965; Särkkä, 2006) gives a closed-form solution to
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the linear smoothing problem. That is, the smoothed state is given as

p(fk | y1:T ) = N (fk |mk|T , Ck|T ).

The RTS equations are written so that they utilize the Kalman filtering

results mk|k and Ck|k as a forward sweep, and then perform a backward

sweep to update the estimates to use the forthcoming observations (see, e.g.,

Särkkä, 2006). The forward sweep is already presented in Equations (13)

and (14). The smoother’s backward sweep may be written as

mk+1|k = Akmk|k

Ck+1|k = AkCk|kA
T
k + Qk

Gk = Ck|kA
T
kC−1

k+1|k

mk|T = mk|k + Gk(mk+1|T −mk+1|k)

Ck|T = Ck|k + Gk(Ck+1|T −Ck+1|k)G
T
k ,

(15)

where mk|T is the smoothed mean and Ck|T the smoothed covariance at time

step k. The RTS smoother can be seen as a discrete-time forward–backward

filter, as the backward sweep utilizes information from the forward filtering

sweep. When performing the backward recursion, the time steps run from

T to 0.

2.4 Optimal Estimation in Infinite Dimensions

Next we consider the infinite-dimensional counterpart of the continuous-

time state space model in Equation (7). We denote the space–time state by

f(x, t), where x ∈ Ω (for some domain Ω ⊆ Rn) denotes the spatial variable

and t ∈ R+ stands for time. We consider the case where the linear matrix

evolution equation from before is replaced by a linear differential operator

equation. We can then define the following stochastic equation (see, e.g.,

Särkkä and Hartikainen, 2012) in an infinite-dimensional state space form:

∂f(x, t)

∂t
= F f(x, t) + Lw(x, t)

yk = Hk f(x, t) + rk,

(16)
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where x 7→ fj(x, t) ∈ H (Rn) for j = 1, 2, . . . , s, and F is an s × s matrix

of linear operators operating on x with elements F i,j : H (Rn) → H (Rn).

The stochastic part is given by the matrix L ∈ Rs×q and w(x, t) is a q-

dimensional vector of Hilbert space H (Rn) valued white noise processes

with the joint spectral density operator Qc(x,x
′).

The observation model in (16) is defined by the dk × s -dimensional

matrix Hk of functionals operating on x with elements Hi,j : H (Rn)→ R.

The observations are given as a vector yk ∈ Rdk , which corresponds to dk

observations at distinctive locations xobs
i,k ∈ Ω, i = 1, 2, . . . , dk at time step

tk. The measurement noise rk ∼ N (0,Rk) is a zero-mean Gaussian random

variable.

The dynamic model above is an infinite-dimensional linear stochastic

differential equation (Da Prato and Zabczyk, 1992). If A is a differential

operator, the Equation (16) is an evolution type stochastic partial differential

equation (SPDE, see Chow, 2007; Pikkarainen, 2006). However, the same

formulation also apply to a wider class of equations, where the operators are

pseudo-differential operators (Shubin, 1987; Särkkä and Hartikainen, 2012).

2.4.1 Time Discretization

In Equation (16) we have written the spatio-temporal model as an evolution

type SPDE, where we treat the temporal variable separately. The reason for

this is to enable us to use infinite-dimensional optimal estimation methods.

These methods are however meant for discrete time estimation, and thus we

need to discretize the evolution equation with respect to time.

The discrete-time version of Equation (16) can be calculated similarly

as in the finite-dimensional case in Section 2.3. We first form the evolution

operator

U(∆t) = exp (∆tF) ,

where exp(·) is the operator exponential function. A solution to the stochas-

tic equation can now be given as (Särkkä and Hartikainen, 2012)

f(x, tk+1) = U(tk+1 − tk) f(x, tk) +

∫ tk+1

tk

U(tk+1 − τ) L w(x, τ) dτ, (17)

where tk+1 and tk < tk+1 are arbitrary. The second term is Gaussian process

with covariance function Q(x,x′; t, t′) =
∫ t
t′ U(t − τ) L Qc LTU∗(t − τ) dτ .
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This leads to the following discrete-time model

f(x, tk) = U(∆tk) f(x, tk−1) + qk(x)

yk = Hk f(x, t) + rk,
(18)

where ∆tk = tk − tk−1 and qk(x) ∼ GP(0,Q(x,x′; tk, tk−1)).

This discretization is not an approximation, but the so called mild so-

lution to the infinite-dimensional differential equation. The mild solution

is a weaker solution concept than the weak solution of a stochastic pro-

cess. However, it is worth noting, that in many circumstances the mild and

weak solutions coincide (see Da Prato and Zabczyk, 1992, for proofs and

discussion).

2.4.2 Infinite-Dimensional Kalman Filter

The infinite-dimensional Kalman filter (see Tzafestas, 1978; Omatu and Se-

infeld, 1989; Cressie and Wikle, 2002) is a closed-form solution to the infinite-

dimensional linear filtering problem. As in the finite-dimensional case, we

present a two-step scheme that first includes calculating the marginal dis-

tribution of the next step using the known system dynamics. The following

formulation uses a similar notation as Särkkä and Hartikainen (2012) and

can be compared to the finite-dimensional filter in Equations (13) and (14).

The infinite-dimensional Prediction step can be written as follows:

mk|k−1(x) = U(∆tk) mk−1|k−1(x)

Ck|k−1(x,x′) = U(∆tk) Ck−1|k−1(x,x′)U∗(∆tk) + Q(x,x′; tk, tk−1),
(19)

where (·)−1 denotes the matrix or operator inverse and (·)∗ denotes an

adjoint which in practice swaps the roles of inputs x and x′ and operates from

the right. The operator adjoint can be compared to the matrix transpose.

The recursive iteration is initialized by presenting the prior in the form

f(x, t0) ∼ GP (m0(x),C0(x,x′)).

The algorithm then uses the observation to update the distribution to

match the new information obtained by the measurement at step k. This is
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the infinite-dimensional Update step:

Sk = Hk Ck|k−1(x,x′)H∗k + Rk

Kk(x) = Ck|k−1(x,x′)H∗k S−1
k

mk|k(x) = mk|k−1(x) + Kk(x)
(
yk −Hkmk|k−1(x)

)
Ck|k(x,x

′) = Ck|k−1(x,x′)−Kk(x) Sk K∗k(x).

(20)

As a result the filtered forward-time posterior process at step k (time tk) is

given by fk|k(x) ∼ GP
(
mk|k(x), Ck|k(x,x

′)
)
.

2.4.3 Infinite-Dimensional Rauch–Tung–Striebel Smoother

The infinite-dimensional Rauch–Tung–Striebel smoother equations are writ-

ten so that they utilize the Kalman filtering results mk|k(x) and Ck|k(x,x
′)

as a forward sweep, and then perform a backward sweep to update the es-

timates to match the forthcoming observations. The smoother’s backward

sweep may be written with the following infinite-dimensional RTS smooth-

ing equations (Särkkä and Hartikainen, 2012):

mk+1|k(x) = U(∆tk) mk|k(x)

Ck+1|k(x,x
′) = U(∆tk) Ck|k(x,x

′)U∗(∆tk) + Qk(x,x
′; tk, tk−1)

Gk(x) = Ck|k(x,x
′)U∗(∆tk)

[
Ck+1|k(x,x

′)
]−1

mk|T (x) = mk|k(x) + Gk(x,x
′)
[
mk+1|T (x)−mk+1|k(x)

]
Ck|T (x,x′) = Ck|k(x,x

′) + Gk(x) (Ck+1|T
(
x,x′)−Ck+1|k(x,x

′)
)
G∗k(x).

(21)

The discrete-time backward sweep utilizes information from the forward

filtering steps, and thus the time steps run from T to 0.

Now that we have run both the Kalman filtering and Rauch–Tung–

Striebel sweeps on the model given the observed data, we have the marginal

posterior that can be given as the Gaussian process

f(x, tk | y1:T ) ∼ GP
(
mk|T (x),Ck|T (x,x′)

)
,

where the observed values yk ∈ Rdk are given on discrete time points tk, k =

1, 2, . . . , T , and measured at known locations xobs
i,k ∈ Ω, i = 1, . . . , dk.
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The observant reader might have noticed that during the estimation

the infinite-dimensional Kalman filtering approach evaluates values only for

inference with respect to the observations, that is for known locations xobs
i,k .

However the resulting process functions can be evaluated at any test points

x∗ ∈ Ω by simply considering an appropriate measurement functional H.

The marginal posterior of the value of f(x∗, tk) in x∗ at time instant tk is

thus

p (f(x∗, tk) | y1:T ) = N
(
f(x∗, tk) |mk|T (x∗),Ck|T (x∗,x∗)

)
. (22)

Predicting values at more time steps could also be included. A test time

point t∗ should be taken into account when doing the time discretization

and the state of the system f(x, t∗) would be predicted on this step, but as

there is no data, no update step would be needed.

As a noteworthy detail we point out the connection between the stan-

dard (in this case) spatial GP model and the evolution type state space

SPDE. The model in Equation (16) coincide with the GP formulation in

Equation (3). If we leave out the temporal evolution model, that is F = 0

and Qc(x,x
′) = 0, the estimation task for this model could be solved by

considering only one measurement step and using the same equations.
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3 Approximative Numerical Solutions

Practical implementations of infinite-dimensional Kalman filtering require

some sort of approximations to be used. In this study we take a basis

function (Hilbert space) approach, which shows beneficial in the examples

further on.

Hereafter we concentrate our interest on the Laplace operator in do-

mains that are subject to certain symmetries and can be easily dealt with

in numerical implementations. We start by showing how the eigenfunction

expansion of the Laplacian operator subject to Dirichlet boundary condi-

tions can be given using orthonormal basis functions subject to the L2 inner

product.

Furthermore, we show how the linear operator equation models can be

approximated using the eigenfunction expansion and thereby applied in the

infinite-dimensional Kalman filtering context. This is used at the end of

this section where we form finite-dimensional approximations to the infinite-

dimensional models.

3.1 Eigenfunction Expansions of the Laplacian Subject to

Dirichlet Boundary Conditions

We consider an arbitrary domain Ω that has a boundary ∂Ω. Inside the

domain some real-valued process can be given in terms of a function f(x, t),

for (x, t) ∈ Ω × R+, where t stands for time. Even though the function f

could be a function of several other variables as well, we only consider one

spatial variable x ∈ Ω and one temporal variable.

x2 x1
r

θ φ

θ

∂Ω

Figure 4: We consider the following two-dimensional surface domains Ω; on
far left a rectangular domain given in Cartesian coordinates, in the middle a
disk given in polar coordinates, and on far right the hull of an S2 sphere given
in angular coordinates.
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x1 x2

x2

r

θ

φ

Figure 5: We consider the following three-dimensional domains Ω; on the
left side a box given in Cartesian coordinates, and on the right a sphere given
spherical coordinates.

Furthermore, we suppose the function to be zero everywhere on the

boundary x ∈ ∂Ω. This property is commonly referred to as the Dirichlet

boundary condition and is in practice the simplest boundary condition. A

function f(x, t) is harmonic if operating on the function with the Laplace

operator ∇2 = ∇ · ∇ = ∆ yields zero for all t ∈ R+. We write the problem

as

∇2f(x, t) = 0, (x, t) ∈ Ω× R+

f(x, t) = 0, (x, t) ∈ ∂Ω× R+.

We start by considering a one-dimensional domain Ω ⊂ R, where Ω =

{x | −L < x < L}. The value on the boundary is f(L) = f(−L) = 0. The

eigenvalue problem can be given as

∇2ψn(x) = λnψn(x),

where ψn(x) is the nth eigenfunction and λn the corresponding eigenvalue.

Solving the problem yields the solution

λn =
nπ

2L
and ψn(x) =

√
1

L
sin

(
nπ(x+ L)

2L

)
. (23)

For different values of n, these eigenfunctions are all possible eigenfunctions

and they form a complete orthonormal basis that can be used for evaluating
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any function, with sufficient continuity and smoothness properties, over the

domain. As discussed at the very beginning of this study, this means that the

one-dimensional Laplacian can be associated with the formal kernel (even

though the sum does not converge)

k(x, x′) =
∑
n

λnψn(x)ψn(x′),

such that

∇2f(x, t) =

∫
k(x, x′)f(x′, t) dx′.

We continue by considering several higher-dimensional domains in the next

sections. Figure 4 shows two-dimensional domains, a rectangular area in

Cartesian coordinates, a disk in polar coordinates and the surface of a

sphere in angular coordinates. Further on, we will also present two three-

dimensional domains that are visualized in Figure 5: a three-dimensional

cube in Cartesian coordinates and a sphere in spherical coordinates.

3.1.1 In an n-Dimensional Hypercube

Both the two dimensional rectangle in Figure 4 and the three-dimensional

cube in Figure 5 fall under the same formulation of n-dimensional hyper-

cubes. Hereafter we denote the dimensionality by d and reserve ni for in-

dexing the eigenvalues. The Laplace operator in d-dimensional Cartesian

coordinates can be given as ∆ =
∑d

i=1
∂2

∂x2i
. Assuming separable solutions,

the one-dimensional results can be extended rather straightforward to higher

dimensions from Equation (23).

We first consider a two-dimensional rectangle Ω = {(x1, x2) | −L1 ≤
x1 ≤ L1,−L2 ≤ x2 ≤ L2} ⊂ R2. By assuming separable solutions, the

eigenfunctions and eigenvalues from the one-dimensional solution in (23)

can be generalized to two dimensions (see, e.g., Pivato, 2010),

λn1,n2 =
n1π

2L1
+
n2π

2L2
and

ψn1,n2(x) =

√
1

L1L2
sin

(
n1π(x1 + L1)

2L1

)
sin

(
n2π(x2 + L2)

2L2

)
,

(24)

for index pairs (n1, n2) ∈ N2. Now, the eigenvalues and eigenfunctions in a
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d-dimensional hypercube are given by

λn1,n2,... =
d∑
i=1

niπ

2Li
and

ψn1,n2,...(x) =

d∏
i=1

√
1

Li
sin

(
niπ(xi + Li)

2Li

)
,

(25)

where x ∈ Ω ⊂ Rd, for index combinations (n1, n2, . . . , nd) ∈ Nd.

3.1.2 In an n-Dimensional Hypersphere

In the following sections we consider domains that are given in different

spherical coordinates: polar, angular and spherical polar. These solutions

are in general subject to more complicated structures and given in terms

of different orthogonal functions. However, they provide an effective basis

for real-world problems, as will be demonstrated further on. Details can be

found, for example, in Pivato (2010).

In Polar Coordinates

From Figure 4 we consider a circular disk in two dimensions given by Ω =

{(x, y) | x2 + y2 ≤ L2} ⊂ R2, where we choose the disk to have radius L.

We study the problem as earlier, subject to Dirichlet boundary conditions

f(x, t) = 0 for x ∈ ∂Ω = {(x, y) | x2 + y2 = L2}.
Polar coordinates give each point in a two-dimensional plane as a dis-

tance from a fixed point, typically origin, and an angle from a fixed direction.

The coordinates are given as a pair (r, θ), where r ∈ R+ is the radial coordi-

nate and θ ∈ [0, 2π) is the angular coordinate or azimuth. We use the same

notation in higher dimensions as well, as will be explained further on.

The relationship between Cartesian (x, y) and polar coordinates (r, θ)

is given by the trigonometric identities: x = r cos θ, y = r sin θ and r =√
x2 + y2, θ = arctan

( y
x

)
. Changing to polar coordinates yields the domain

Ω = {r | r ≤ L} and the Laplace operator can be given as (Arfken and

Weber, 2001)

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
. (26)

Solving the problem by assuming separable solutions ψ(r, θ) = R(r)Θ(θ),

yields the following parts: an angular part Θ(θ) and a radial part R(r). The
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angular part has the boundary condition Θ(0) = Θ(2π). If it satisfies the

Laplace’s equation ∇2ψ = 0 using Equation (26), it yields the angular part
d2

dθ2
Θ(θ) = −m2Θ(θ), which has solutions exp(miθ), where m ∈ Z is an

integer.

Bessel functions (Abramowitz and Stegun, 1964) arise as the solutions

R(r) , y(x) of the Bessel differential equation, x2 d2

dx2
y(x) + x d

dxy(x) +

(x2 −α2)y(x) = 0, and for different values of α ∈ C (the order of the Bessel

function). For integer orders α = m ∈ Z these solutions are commonly

denoted by Jm(x) and the Bessel functions called Bessel functions of first

kind.

A Bessel function of first kind, Jm(x), can be defined by its Taylor

expansion around x = 0,

Jm(x) =

∞∑
k=0

(−1)k

k! Γ(k +m+ 1)

(
1
2x
)2k+m

, (27)

where Γ(·) is the gamma function and can be replaced by the factorial

(k +m+ 1)! for functions of integer order. Another definition of the Bessel

functions of first kind is the integral definition (see, e.g., Abramowitz and

Stegun, 1964)

Jm(x) =
1

π

∫ π

0
cos(mθ − x sin θ) dθ.

The Bessel functions are not periodic, which also implies that their roots

are not periodic. However one can show that for the kth root αk,m of the

Bessel function Jm(x) it holds that αk,m ≈ (k + 1
2m −

1
4)π as k → ∞ (see,

e.g., Olver, 2012).

If we consider the radial part of the eigenvalue problem — which is

occasionally referred to by using the Helmholtz equation, ∇2ψ + k2ψ = 0

— the eigenfunctions are the Bessel functions of first kind Jm(αn,mr) and

the eigenvalues are the square of the positive zeros of the Bessel functions;

λn,m = α2
n,m, n = 1, 2, . . . and m = 0, 1, . . .. Taking the angular part into

account yields the polar eigenfunctions in a disk,

ψn,m(r, θ) =

Jm(αn,mr/L) cos |m|θ, when m = 0, 1, . . .

Jm(αn,mr/L) sin |m|θ, when m = −1,−2, . . .
(28)

for which the corresponding eigenvalues are λn,m = α2
n,m. A few of the first
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Table 1: Table of the six first positive roots αm,k, k = 1, 2, . . . , 6, of the
Bessel functions of first kind Jm(x) for m = 0, 1, . . . , 5. The roots have been
numerically solved, and more extensive tables can easily be found in literature.

αn,m Bessel function order m

nth root 0 1 2 3 4 5

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

6 18.0711 19.6159 21.1170 22.5827 24.0190 25.4303

roots αn,m are given in Table 1. The truncated expansion is in this work

given in terms of indices n = 1, 2, . . . , N and m = −M, . . . ,−1, 0, 1, . . . ,M .

In Spherical Coordinates

Spherical coordinates define a coordinate system, which can be seen as a

generalization of the polar coordinates to three dimensions. Each point in

R3 can be written with the help of two angles and a radial coordinate, the

Euclidean distance from origin (further interpretation can be found in, e.g.,

Arfken and Weber, 2001).

In notation, some care has to be taken, because different conventions

in denoting the angles is used in different fields of science. In this study,

we will use the notation x = (r, θ, φ), where θ is the azimuthal (longitudi-

nal) coordinate with θ ∈ [0, 2π), and φ the polar (colatitudal) coordinate,

φ ∈ [0, π], that ranges from the polar axis. This notation is often used in

mathematics, whereas physicists prefer the alternative notation, where θ and

φ are reversed, and θ is latitudal, ranging from the equator. For graphical

interpretation, refer to Figure 5.

The radial coordinate defines the distance from origin and is within

r ∈ [0, L], where L is the radius of the sphere. The domain Ω → R3 as

r → ∞. We may write the transformations between Cartesian coordinates
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m = 0 m = 1 . . . m = 4

n = 1

n = 2

...

Figure 6: Visualisations of a few first eigenfunctions of the Laplace operator
in a unit disc. The visualizations corresponding to negative values of m look
similar but are rotated by 90 degrees.

and spherical polar coordinates as:

x = r sinφ cos θ r =
√
x2 + y2 + z2

y = r sinφ sin θ θ = arctan
(y
x

)
z = r cosφ φ = arccos

(z
r

)
where one has to take the quadrant into account when taking the inverse

tangent. The volume element in spherical coordinates can be written as

dΩ = r2 sinφ dφ dθ dr.

We study a sphere of radius r = L, which we denote by Ω. We try define

the Diriclet problem in the sphere similarly as in the disk earlier. In this case

the Diriclet boundary condition defines that the function value f(r, θ, φ) on

the surface of the sphere ∂Ω (i.e. when r = L) to zero.

The Laplacian in spherical coordinates can be given as (see, e.g., Arfken

and Weber, 2001)

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin2 θ

∂2

∂φ2
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
(29)

The Helmholtz equation∇2ψ+k2ψ = 0 is separable in spherical coordinates.
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Table 2: Table of the six first positive roots σn,m, n = 1, 2, . . . , 6, of the
Spherical Bessel functions of first kind Sm(x) for m = 0, 1, . . . , 5. The roots
have been numerically solved, and more extensive tables can easily be found
in literature.

σn,m Spherical Bessel function order m

nth root 0 1 2 3 4 5

1 3.1416 4.4934 5.7635 6.9879 8.1826 9.3558

2 6.2832 7.7253 9.0950 10.4171 11.7049 12.9665

3 9.4248 10.9041 12.3229 13.6980 15.0397 16.3547

4 12.5664 14.0662 15.5146 16.9236 18.3013 19.6532

5 15.7080 17.2208 18.6890 20.1218 21.5254 22.9046

6 18.8496 20.3713 21.8539 23.3042 24.7276 26.1278

That means that one may write the solution ψ(r, θ, φ) as a product of three

functions, ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ), where R(r) is a radial function, Θ(θ) is

a longitudal function, and Φ(φ) a function only depending on the colatitudal

polar coordinate.

The solutions for the Helmholtz equation corresponds to the solving the

eigenfunction of the negative Laplace operator in a three-dimensional sphere.

The radial part R(r) is determined by Spherical Bessel functions, such that

R(r) = Sm(σr/L), where σ is a zero of the function such that the boundary

condition R(L) = 0 is satisfied.

The Spherical Bessel function Sm of order m ≥ 0 is defined by the

formula (for definitions and more detailed discussion see, e.g., Abramowitz

and Stegun, 1964; Olver, 2012; Arfken and Weber, 2001)

Sm(x) =

√
π

2x
Jm+1/2(x), (30)

where Jm is the Bessel function of first kind as in Equation (27). Unlike the

Bessel functions of integer order, the spherical Bessel functions are elemen-

tary functions. For example the spherical Bessel function of order m = 0

is

S0(x) =
sinx

x
,

which means that the roots are evenly spaced at π, 2π, . . .. The higher order

spherical Bessel functions are given by the recurrence relation Sm+1(x) =

− d
dxSm(x) + m

x Sm(x) (Abramowitz and Stegun, 1964). Therefore the next
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three spherical Bessel functions are given by

S1(x) = −cosx

x
+

sinx

x2
,

S2(x) = −sinx

x
− 3 cosx

x2
+

3 sinx

x3
, and

S3(x) =
cosx

x
− 6 sinx

x2
+

15 cosx

x3
+

15 sinx

x4
.

Taking into account the homogeneous Dirichlet boundary conditions requires

the solution to be zero on the boundary. We use the zeros of the Spherical

Bessel functions to rescale the functions to meet this requirement. The

positive roots of the spherical Bessel function Sm(x) are denoted by σn,m,

where n denotes the nth positive root. These values satisfy Sm(σn,m) = 0,

for all n = 1, 2, . . . and m = 0, 1, . . ..

The angular part Θ(θ)Φ(φ) is given by the Laplace spherical harmon-

ics that are described in detail in the next section. We denote this part

as Θ(θ)Φ(φ) = Y k
m(θ, φ) for indices m = 0, 1, . . . ,M and k = −m, 1 −

m, . . . ,m− 1,m.

Now we may construct the separable eigenfunctions of the Helmholtz

equation by putting together the spherical harmonics and spherical Bessel

functions

ψn,m,k(r, θ, φ) = Sm(σn,mr/L)Y k
m(θ, φ) (31)

and corresponding eigenvalues

λn,m = σ2
n,m, (32)

for n = 1, 2, . . . , N , m = 0, 1, 2, . . . ,M and k = −m, . . . ,−1, 0, 1, . . . ,m.

For values of σn,m refer to Table 2, where some of the first are explicitly

shown. In this study the truncated expansion is given in terms of specifying

upper bounds for indices n and m by N and M , respectively. The number

of eigenfunctions is thus N(M + 1)2.

Spherical Harmonics

Spherical harmonics Y k
m(θ, φ) are the angular part of the solution to

Laplace’s equation in spherical coordinates; solutions to Laplace’s equa-

tion ∇2f = 0 are called ‘harmonic’ functions. The Laplace’s spherical

harmonics form an orthogonal basis, and are therefore an important tool
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in many fields of science. In this study spherical harmonics are used in

combination with other orthogonal functions to form the eigensolutions

to the Laplacian in n-dimensional spheres. They are however presented

separately, because solving systems on the surface of a 2-sphere S2, where

Sn = {x ∈ Rn+1 | ‖x‖ = L}, is useful as well. In Laplace’s equation (or

Helmholz’s for that matter) the angular dependencies come entirely from

the Laplacian operator, and by using the definition of the Laplacian in

spherical coordinates — see Equation (31) — the solution can be given as

(Arfken and Weber, 2001)

Θ(θ)

sinφ

d

dφ

(
sinφ

dΦ(φ)

dφ

)
+

Φ(φ)

sin2 φ

d2Θ(θ)

dθ2
+m(m+ 1)Φ(φ)Θ(θ) = 0, (33)

where m is an integer.

The reader is reminded that here the notation defines θ ∈ [0, 2π] as the

azimuthal coordinate and φ ∈ [0, π) as the colatitudal polar coordinate,

which differs from, for example, the notation in Arfken and Weber (2001).

Visual interpretation can be found in Figure 4.

Separation of variables yields for the azimuthal part

1

Θ(θ)

d2Θ(θ)

dθ2
= −m2,

with solutions Θ(θ) = exp(imθ), where m is an integer. This defines the

solutions to be complex-valued and also features the complex conjugates for

each solution. We can also define real solutions that are Θ(θ) = sinmθ and

Θ(θ) = cosmθ, where m is an integer as earlier. To ease the notation we

use the following indexing of the real solutions

Θm(θ) =

cos |m|θ, for non-negative m

sin |m|θ, for negative m

where m ∈ Z.

The remaining polar angle (φ) dependence in Equation (33) leads to

the general Legendre differential equation, (1 − x2) d2

dx2
y(x) − 2x d

dxy(x) +(
m(m+ 1)− k2

1−x2

)
y(x) = 0. Solutions to this equation are the associated

Legendre polynomials P km(x) : [−1, 1]→ R (Abramowitz and Stegun, 1964),
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which means that the polar solution can be given as

Φm,k(φ) = P km(cosφ),

where m and k are integers such that −m ≤ k ≤ m.

Strictly speaking, the solutions of the Legendre differential equation are

polynomials only for those with k = 0. The first few associated Legendre

functions are

P 0
0 (x) = 1 P−2

2 (x) =
1

24
P 2

2 (x)

P−1
2 (x) = −1

6
P 1

2 (x)

P−1
1 (x) = −1

2
P 1

1 (x) P 0
2 (x) =

1

2
(3x2 − 1)

P 0
1 (x) = x P 1

2 (x) = −3x(1− x2)1/2

P 1
1 (x) = −(1− x2)1/2 P 2

2 (x) = 3(1− x2)

Now the functions Θm(θ) (the sines and cosines) are orthonormal with

respect to azimuthal angle θ, and the function Φm,k(φ) (the associated

Legendre functions) are orthonormal with respect to the polar angle φ,

if the normalization of the functions is chosen accordingly. The spherical

harmonics are defined by combining the two angular parts Θ(θ) and Φ(φ)

and applying the normalization. The complex-valued spherical harmonics

can be given as

Y k
m(θ, φ) =

√
2m+ 1

4π

(m− k)!

(m+ k)!
P km(cosφ)eikθ (34)

or similarly the real spherical harmonics

Y k
m(θ, φ) =

√
2m+ 1

2π

(m− k)!

(m+ k)!

P
|k|
m (cosφ) cos |k|θ, for k ≥ 0

P
|k|
m (cosφ) sin |k|θ, for k < 0

(35)

where the real form only requires associated Legendre functions P km(x) of

non-negative |k|. The corresponding eigenvalues for the negative Laplace

operator on the surface of a sphere are thus λm,k = m(m+ 1).

The normalization is chosen so that functions of two angles, θ ∈ [0, 2π)

and φ ∈ [0, π], and two indices m, k ∈ N0 and −m ≤ k ≤ m, are orthonormal

Solin AH



Approximative Numerical Solutions 37

k = −3 . . . k = 0 . . . k = 3

m = 0

m = 1

...

Figure 7: An illustrative visualization of the first few spherical harmonics
Y k
m. The figure visualizes |Y k

m(θ, φ)| in the case of the real spherical harmonics.
The green regions are positive values and the red ones correspond to negative
function values. The view angle is the same in each, but the scaling is not.

over the surface of a sphere. The orthogonality condition is satisfied by∫ 2π

0

∫ π

0
Y k
m(θ, φ)Y k′

m′(θ, φ) sinφ dφ dθ = δm,m′δk,k′ , (36)

where δi,j denotes the Kronecker delta function that is one if the indices i

and j are equal and zero otherwise. The above equation holds for the real

spherical harmonics, whereas in the case of the complex spherical harmonics,

one of the spherical harmonics has to be the complex conjugate Y
k
m.

Sometimes an extra (−1)k is included in the definition of the spherical

harmonics. This does not actually affect their properties, but can be useful in

certain applications in quantum mechanics in physics. The coefficient (−1)k

is called the Condon–Shortley phase factor (Arfken and Weber, 2001). We

ignore the Condon–Shortley phase in this study.

A visual demonstration of the first few spherical harmonic functions is

shown in Figure 7. The plots have different interpretations depending on

whether we consider the real or complex spherical harmonics. For complex-

valued Y k
m(θ, φ) from Equation (34) the negative ks show the real part of

the spherical harmonics r = Re
[
Y k
m

]
, and for non-negative k the plots are
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of the imaginary part r = Im
[
Y k
m

]
.

An alternative interpretation of Figure 7 is available for the real spherical

harmonics. Now the spherical figure is given by r = |Y k
m(θ, φ)|. The green

and red coloring denotes the sign of the value, red being negative and green

positive. As can be seen, the spherical harmonics for positive and negative

k are alike, but rotated by 90◦ with respect to the azimuthal coordinate θ.

We introduced spherical harmonics originally as a part of the solution of

the Helmholtz equation in a sphere. However, the spherical harmonics can

be used on their own. The Sturm–Liouville form of the Laplace’s equation

provides the completeness property, which leads to the fact that any function

with sufficient continuity properties evaluated over the surface of a sphere

can be expanded in a uniformly convergent series of spherical harmonics

(Arfken and Weber, 2001). Such a Laplace’s series can be given by

f(θ, φ) =
∑
m

m∑
k=−m

am,kY
k
m(θ, φ), (37)

where f is the function and am,k are the representation in the new basis. if

f(θ, φ) is known, the coefficients can be evaluated by

am,k =

∫ 2π

0

∫ π

0
Y k
m(θ, φ)f(θ, φ) dφ dθ, (38)

for each (m, k).

Higher-Dimensional Polar Coordinates

The polar coordinate system in two-dimensional and the spherical coordi-

nates in three-dimensional Euclidean space can be extended to a coordinate

system in an n-dimensional Euclidean space, in which Ω ⊂ Rn. The coor-

dinates consist of a radial coordinate, r ∈ [0, R] ⊂ R, and n − 1 angular

coordinates φ1, φ2, . . . , φn−1 where φn−1 ranges over [0, 2π) radians and the

other angles range over [0, π] radians. If xi are the Cartesian coordinates,
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we may compute x1, . . . , xn from r, φ1, . . . , φn−1 with:

x1 = r cos(φ1)

x2 = r sin(φ1) cos(φ2)

x3 = r sin(φ1) sin(φ2) cos(φ3)

...

xn−1 = r sin(φ1) · · · sin(φn−2) cos(φn−1)

xn = r sin(φ1) · · · sin(φn−2) sin(φn−1).

The polar and spherical coordinates in Sections 3.1.2 and 3.1.2 can be seen

as special cases of the above for n = 2 and n = 3. The inverse transformation

can be similarly given as:

r =
√
xn2 + xn−1

2 + · · ·+ x2
2 + x1

2

φ1 = arccot
x1√

xn2 + xn−1
2 + · · ·+ x2

2

φ2 = arccot
x2√

xn2 + xn−1
2 + · · ·+ x3

2

...

φn−2 = arccot
xn−2√

xn2 + xn−1
2

φn−1 = 2 arccot

√
xn2 + xn−1

2 + xn−1

xn

where if xk 6= 0 for some k but all of xk+1, . . . , xn are zero then φk = 0 when

xk > 0, and φk = π radians when xk < 0. There are some special cases

where the inverse transform is not unique; φk for any k will be ambiguous

whenever all of xk, xk+1, . . . , xn are zero; in this case φk may be chosen to

be zero.

The Laplacian in n-dimensional spherical coordinates can be given as

(see, e.g., Chavel, 1984)

∆ =
1

rn−1

∂

∂r

(
rn−1 ∂

∂r

)
+

1

r2
∆Sn−1 , (39)

where the angular part is called the Laplace–Beltrami operator that is given
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recursively as

∆Sn−1 = sin2−n φ
∂

∂φ

(
sinn−2 φ

∂

∂φ

)
+ sin−2 φ∆Sn−2 , (40)

where φ is an angular coordinate. Again, the polar and spherical Laplace

operators can be seen as special cases of the general n-dimensional case.

Eigenfunctions of the general case could be formulated by assuming separa-

ble solutions, but these are omitted here, as they are not of primary interest

in this work.

3.2 Numerical Evaluation of Infinite-Dimensional Filtering

In Section 2.4 we saw how the infinite-dimensional Kalman filter could be

seen as the optimal filtering solution of linear evolution equations written

in terms of linear operators. This theoretical backdrop can now be com-

bined with a more practical approach in this section. We consider the

eigenfunction expansion of the linear operator and combine it with the

infinite-dimensional framework. By truncating the expansion, we get a

finite-dimensional approximative solution that can be evaluated.

Each of the domains considered in Section 3.1 — i.e. the n-cube and

n-sphere — was combined with the Laplace operator subject to Diriclet

boundary conditions. This resulted in each case in an eigenfunction equation

of form ∇2ψn(x) = λnψn(x), where ψn(x) is an eigenfunction and λn the

corresponding eigenvalue for each n and spatial coordinate x ∈ Ω. The

eigenfunctions form an orthonormal basis in each of the cases, and we may

use the Hilbert space methods considered at the very beginning of this study

in Section 2.1 to make the computations feasible. Our solution f(x, t) will

be transformed to a new basis that is given by the eigendecomposition of

the linear operator in Ω. This new basis decodes the spatial structure so

that we are only left with f̃(t), a finite-dimensional approximation of f(x, t).

3.2.1 Finite-Dimensional Approximation of Dynamics

Let us now consider an s × s -matrix of linear operators F such that each

linear operator can be given in terms of the Laplace operator, meaning

the eigenfunctions ψn(x) of ∇2 are also eigenfunctions of each operator in

F . Say, one of the operators is some operator A. Then the corresponding
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eigenvalues λn of A are solved such that Aψn(x) = λnψn(x) holds for all n.

Following the derivation in the supplementary material of Särkkä and Har-

tikainen (2012), we go through the procedure here. A change of basis yields

that the evolution is not subject to an infinite-dimensional Hilbert space

but to a (truncated) finite-dimensional space defined by the orthonormal

basis {ψ1(x), ψ2(x), . . . , ψN (x)}. This transforms the stochastic evolution

equation in Equation (16) to

df̃(t)

dt
= F f̃(t) dt+ L w̃(t)

yk = H̃k f̃(t) + rk,

where f̃ is an sN -dimensional state vector — s being the dimension of

the operator matrix and N the number of eigenvalues in the eigenfunction

expansions of all the linear operators in F . This means that we have

expanded the process values fj(x, t), each component j = 1, 2, . . . , s in

f(x, t), such that it can be given as

fj(x, t) =
∑
n

f̃j,n(t)ψn(x).

The evolution matrix F can be formed simply by using the eigenfunction

expansion of the s × s matrix of linear operators combined by the change

of basis, which yields a block-diagonal matrix F of size sN × sN , where the

operators are replaced by their eigenvalue counterparts.

A formal series expansion of the noise term w(x, t) can now be given as

w(x, t) =
∑
n

w̃n(t)ψn(x) and w̃n(t) =

∫
Ω
w(x, t)ψn(x) dx. (41)

The joint spectral density Q̃ for the process noise can be derived as follows

by taking the expectation

E[w̃n(t)w̃m(s)] = E

[∫
Ω

∫
Ω
w(x, t)ψn(x)w(x′, s)ψm(x′) dx dx′

]
=

∫
Ω

∫
Ω
ψn(x)E

[
w(x, t)w(x′, s)

]
ψm(x′) dx dx′

=

∫
Ω

∫
Ω
ψn(x)Qc(x− x′)ψm(x′) dx dx′ δ(t− s), (42)
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where δ(·) denotes the Dirac delta function. This means that the spectral

density can be given as

Q̃nm =

∫
Ω

∫
Ω
ψn(x) LQc(x− x′) LTψm(x′) dx dx′ (43)

The observation model matrix H̃k ∈ Rdk×sN evaluates the obser-

vations at each xobs
i , i = 1, 2, . . . , dk. This means H̃k is a matrix of

(ψ1(xi), ψ2(xi), . . . , ψN (xi)) ⊗ h, where ⊗ denotes the Kronecker product

and the vector h is a vector of ones and zeros defining which component to

observe.

3.2.2 Time Discretization

Now we need to reconsider the time discretization step we presented for the

infinite-dimensional evolution equation in Section 2.4.1. The operator ex-

ponential that defines the discrete-time dynamic evolution operator matrix

was given as

U(t) = exp (∆tF) .

Now that we have made the change of basis and replaced the operator

matrix F with the block-diagonal eigenfunction expansion counterpart F,

we can write the operator exponential function as a matrix exponential

A(∆t) = exp (∆F) =


exp (∆tF1)

exp (∆tF2)

. . .

exp (∆tFN )

 ,

where the evaluation of the matrix exponential has been broken down to

being evaluated separately for each N blocks in the block-diagonal matrix

F. Consequently A(∆t) is a square matrix of size sN × sN .

The discrete process noise covariance matrix Q̃(t, s) is given by the inte-

gral Q̃(t, s) =
∫ t
s A(t−τ) L QcL

T AT(t−τ) dτ . In numerical implementation

the matrix fraction decomposition (Grewal and Andrews, 2001) can be used

for efficiency.

In other words, we have formed the discrete-time mild solution (in terms

of A(tk+1 − tk), Q̃(tk+1, tk) and H̃k) to the stochastic differential equation
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which is a projection of the original SPDE of interest. Now the estimation

can be accomplished by the Kalman filtering equations in Section 2.3.3 —

Equations (13–15). This is now comparable to doing the infinite-dimensional

estimation which is set up by the Equations (19–21).

3.2.3 Connection to GP Models

The formulation of infinite-dimensional Kalman filtering started by consid-

eration of GP models in Section 2.2. This connection can now be restated in

terms of the approximative solution. The covariance function of the model

in terms of the new basis can be written as

Cf (t) = E
[
f(t)fT(t+ τ)

]
=

C∞AT(τ), for τ ≥ 0

A(τ) C∞, for τ < 0,
(44)

where C∞ is the solution to the Riccati equation as in Section 2.2.3.

Let us also consider the change of basis that gives us the values

of the actual state f(x, t) =
∑

n f̃n(t)ψn(x) = ψT(x) H f̃(t), where

ψ(x) = (ψ1(x), ψ2(x), . . . , ψN (x)) and H is a matrix with elements picking

out the desired components.

The covariance with respect to both spatial and temporal variables is

thus

E
[
f(x, t)f(x + x′, t+ τ)

]
= E

[
ψT(x) H f̃(t)ψT(x + x′) H f̃(t+ τ)

]
= ψT(x) H E

[
f̃(t)ψT(x + x′)

]
H f̃(t+ τ)

= ψT(x) H Cf (τ) HTψ(x + x′). (45)

Given this, we can approximate the covariance function Cf (x, t) ≈
ψT(0) H Cf (t) HTψ(x) (see Särkkä and Hartikainen, 2012, for details).
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4 Case Studies

In this section we present a spatio-temporal resonator model that can be for-

mulated in terms of a continuous-time linear infinite-dimensional state space

system that fits under the infinite-dimensional Kalman filtering framework.

We then apply the model to three real-world datasets in order to demon-

strate the methods from the previous sections.

In the first demonstration we use hourly temperature measurements

around the globe and model the short-term variation of temperature by

a spatio-temporal resonator model with constant frequencies on the two-

dimensional surface of a sphere. In the second and third demonstration we

model cardiac- and respiration-induced periodic noise in brain data. We

use the same spatio-temporal resonator model, but in these two cases with

time-varying frequencies. The model is constructed in a two-dimensional

polar slice and in spherical polar coordinates for the whole head.

4.1 Spatio-Temporal Resonator Model

The recent article ‘Dynamic Retrospective Filtering of Physiological Noise

in BOLD fMRI: DRIFTER’ by Särkkä et al. presented a method for elim-

inating periodic noise induced by respiration and cardiac activity. The

formulation of DRIFTER is based on presenting the dynamic phenomena

as a superposition of several resonators with known angular velocities ωj

(i.e. frequencies), but unknown phases and amplitudes. These were mod-

elled as spatially independent realisations of stochastic processes. The sum∑N
j=1 fj(x, t) of the oscillatory components fj(x, t) can be defined through

separate state space models. In Särkkä et al. (2012a) this was presented as

a partial differential equation

∂2fj(x, t)

∂t2
+ γj

∂fj(x, t)

∂t
+ ω2

j fj(x, t) = ξj(x, t), (46)

where ξj(x, t) is spatially and temporally white noise. The above formulation

also features a damping factor γj that was assumed zero in the article. A

straightforward way to extend this formulation to also account for spatial

structure, is to assume that the local derivative depends not only on time,

but also on surrounding data through some spatial linear operator. By
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including such arbitrary linear operators affecting both the oscillation and

damping, we get

∂2fj(x, t)

∂t2
+Aj

∂fj(x, t)

∂t
+ Bjfj(x, t) = ξj(x, t). (47)

This model features three types of spatial dependency. Choosing operators

Aj and Bj suitably defines spatial coupling through the first and second tem-

poral derivative. We can also assume some spatial and temporal structure

in the process noise term ξj(x, t) through a correlation structure

Cj(x,x
′) = E[ξj(x, t)ξj(x

′, t′)] = Cξ,j(x,x
′) δ(t− t′). (48)

4.1.1 Choosing Spatial Operators

If we assume the operators Aj and Bj translation and time invariant, we can

calculate the corresponding transfer functions Aj(iνx) and Bj(iνx). Taking

both spatial and temporal Fourier transforms of Equation (47) leaves us

with

(iνt)
2Fj(iνt, iνx)+(iνt)Aj(iνx)Fj(iνt, iνx)+Bj(iνx)Fj(iνt, iνx) = Ξj(iνt, iνx).

By solving Fj from above we get

Fj(iνt, iνx) =
Ξj(iνt, iνx)

(iνt)2 + (iνt)Aj(iνx) +Bj(iνx)
,

which corresponds to the spectral density

Sj(iνt, iνx) =
Qj(νx)

[(iνt)2 + (iνt)Aj(iνx) +Bj(iνx)][(iνt)2 + (iνt)Aj(iνx) +Bj(iνx)]∗
,

where Qj(νx) = |Ξj(iνt, iνx)|2 is the spectral density of ξj . If we assume that

the operators Aj and Bj are formally hermitian (bounded and symmetric),

the identities Aj(iνx) = Aj(−iνx) and Bj(iνx) = Bj(−iνx) hold, which

simplifies the spectral density to

Sj(iνt, iνx) =
Qj(νx)[

ν2
t −Bj(iνx)

]2
+ ν2

tA
2
j (iνx)

.

The divisor derivative zeros of the system suggest that the system has a
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temporal resonance of ν2
t = Bj(iνx)− A2

j (iνx)/2. We include the temporal

oscillation with angular velocity of ωj by setting Bj(iνx) = A2
j (iνx)/2 +ω2

j .

This gives us a spectral density of form

Sj(iνt, iνx) =
Qj(νx)

(ν2
t −A2

j (iνx)/2− ω2
j )

2 + ν2
tA

2
j (iνx)

.

According to Bochner’s theorem (see Section 2.2.2) every positive definite

function is the Fourier transform of a positive finite Borel measure. This

requires the spectral density to be positive everywhere (in order to be a

valid Fourier transform of a covariance function). This condition is fulfilled

if Qj(νx) is a positive function (i.e. a valid spectral density). To ensure the

causality and stability of the system we have to choose Aj(iνr) such that it

is a positive function, which corresponds to the operator Aj being positive

(semi)definite. We as well choose the operator Bj to be positive, which gives

us the condition A2
j (iνx)/2 + ω2

j ≥ 0. This holds, if Aj is real and positive.

Zero values in the spectrum corresponds to infinite peaks. However, this

does not seem a problem, because if both the operators are zero the model

falls back to a spatially independent model, where the only spatial structure

comes from the process noise term ξ(x, t).

To actually make the model useful, some choices have to be made. The

operator Aj has to be positive semidefinite. Examples of such operators

are the identity operator I and the negative Laplacian −∆ = −∇2. We

therefore consider the following operator structure

Aj = γjI − χj∇2

Bj =
γ2
j

2
− γjχj∇2 +

χ2
j

2
∇4 + ω2

j

=
1

2
(γj − χj∇2)2 + ω2

j ,

(49)

where γj , χj ≥ 0 are some non-negative constants and ∇4 is the so-called

biharmonic operator. These choices define the following resonator model

∂2fj(x, t)

∂t2
+ γj

∂fj(x, t)

∂t
− χj∇2∂fj(x, t)

∂t
+
γ2
j

2
fj(x, t)

− γjχj∇2fj(x, t) +
χ2
j

2
∇4fj(x, t) + ω2

j fj(x, t) = ξj(x, t). (50)
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We have to decide a covariance function for ξj(x, t) which can be virtually

any spatial stationary covariance function Cξ,j(r) for which

E[ξj(x, t)ξj(x
′, t′)] = Cξ,j δ(t− t′).

The covariance functions of the Matérn class, that were presented earlier in

Section 2.2.2, are useful in this context and will be used in the demonstra-

tions.

4.1.2 Modeling Spatio-Temporal Data

Combining all the components in the model gives us the solution as a su-

perposition of all the oscillator components f(x, t) =
∑N

j=1 fj(x, t). The

oscillator component fj(x, t) is defined by a stochastic partial differential

equations with Dirichlet boundary conditions

∂2fj(x, t)

∂t2
+Aj

∂fj(x, t)

∂t
+ Bjfj(x, t) = ξj(x, t) (x, t) ∈ R+ × Ω

fj(x, t) = 0 (x, t) ∈ R+ × ∂Ω

for all j = 1, 2, . . . , N . We define the state of the system as a combination

of the periodic oscillating fields and their first temporal derivatives

f(x, t) =
[
f1(x, t) ∂

∂tf1(x, t) . . . fN (x, t) ∂
∂tfN (x, t)

]T
.

This leads us to the linear state space model that can be written in the

following form

∂f(x, t)

∂t
= F f(x, t) + L ξ(x, t)

yk = Hkf(x, tk) + rk,

(51)

where F is a block-diagonal matrix of linear operators such that each i

blocks consist of a 2× 2 matrix of linear operators and L is a block-column

matrix such that

F j =

 0 I

−Bj −Aj

 and Lj =

0

1

 .
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Figure 8: Spatial locations of the 11 344 weather observation stations all over
the globe.

We define the measurement model by defining a linear operator Hk

through which the model is observed at discrete time steps tk and known

locations xobs
i ∈ Ω, i = 1, 2, . . . , dk. The measurement noise term rk ∼

N (0,Rk) in Equation (51) is a Gaussian random variable of dimension dk.

On step k the observed values are yk ∈ Rdk . For notational convenience, we

have omitted the possibility of F depending on time. However, this will be

the case in the two latter demonstrations, where the oscillation frequencies

ωj(t) change over time.

The presented spatio-temporal resonator model can be solved by apply-

ing the numerical evaluation techniques presented in Section 3.2. We apply

the eigenfunction expansion theorem to the operators Aj and Bj , do the time

discretization step, and apply the finite-dimensional Kalman filter to the re-

sulting state space model. The time variant case is done by considering the

dynamics piece-wise constant, and doing the eigenfunction decomposition

from scratch on each time step.

4.2 Spatio-Temporal Oscillation of Temperatures

We present an illustrative example of a two-dimensional application of the

oscillator model by applying it to temperature data. Different types of

Kalman filtering approaches exist for weather prediction, and here this idea
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M = 3 M = 6 M = 12

Figure 9: This illustration shows how the number of basis functions affects
the smoothness of the temperature surface. The temperatures correspond to
the day mean of July 8, 2011.

is presented only with interest in demonstrating the oscillator model on the

surface of a sphere. We use hourly observations of temperature readings

in centigrades that were collected worldwide by National Environmental

Satellite, Data, and Information Services (NESDIS). The dataset is available

for download through U.S. National Climatic Data Center1.

We consider a subset of the data that consists of hourly temperature

measurements for one month (July, 2011) resulting in a time series of 745

temporal points. The temperatures were recorded at 11 344 different spatial

locations, of which the longitudinal and latitudinal coordinates are known

and assumed exact. The locations of the stations are shown in Figure 8.

However, not all stations provide hourly measurements and there are al-

together only 5 637 501 measurements, meaning a proportion of 33.3 % of

missing values. About half of the time series are complete with 24 measure-

ments a day, and the second most common observation rate is three times

per day.

We use the oscillator model that was introduced in the previous section

to model the daily variation of the temperature. We use a three-component

setup, where the first component, a bias term, accounts for the slow drifting

of the mean temperature, and the other two are oscillatory components

for the daily variation of temperature. The first oscillator oscillates at the

constant base frequency of f2 = 1/day, and the other is the first harmonic

(f3 = 2f2). The bias term is constructed as an oscillator with zero frequency,

which can be seen as a spatio-temporal Wiener velocity model.

1http://www7.ncdc.noaa.gov/CDO/cdoselect.cmd (accessed December 12, 2011)
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Figure 10: Three one-week time series of temperatures in Helsinki, Tokyo
and Washington DC. The estimate mean is shown in blue, and the shaded
patch shows the 95 % confidence interval. The measurements during the 8th
of July were excluded from the estimation and shown here by crosses.

This test setup is subject to many simplifications and assumptions that

affect the results; the surface of the earth is actually not a symmetric sphere

and we disregard the evident fact that the fluctuation covariance structure

is not stationary. Furthermore, in this demonstration we are not concerned

with finding the best possible parameters for the model. Therefore we just

choose appropriate values for the parameters. For each of the components in

the model we used the same number of eigenfunctions in the eigenfunction

expansion, M = 24. Figure 9 shows how the number of eigenfunctions in the

expansion affects the spatial resolution for M = 3, 6, and 12. The damping

constants in the model were fixed to γ1 = [M(M + 1)]−1 = .0017 (from the

eigenvalues) and χ1 = 1 for the bias and γ2,3 = .0017 and χ2,3 = 1 for the

oscillators.

We chose to use the squared exponential covariance function to model the

spatial correlation of the dynamic noise term. The distances were calculated

as great circle distances on the surface of the sphere in degrees. Exploratory

analysis on the data suggested that the scale parameter would be l = 1◦

(approx. 111 km). The magnitude was fixed to σ = 0.3 for the bias and
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σ = 0.003 for the oscillators.

We present the results for a test setup where we exclude all measure-

ments for the 8th of July. The goal is to estimate these measurements using

the remaining data. The results show that the root-mean-square error for all

temperature observations during July 8th was 2.81 ◦C (mean error 2.00 ◦C).

The results for three observations stations in Helsinki, Tokyo and Wash-

ington DC are shown in Figure 10. The uncertainty is visualized by blue

shading, but the envelope widths are dependent on the choice of parameters.

As can be seen in Figure 10 the results are not exactly following the ob-

served values. The smoothness of the estimated surface makes it difficult to

account for local jitter. Making the model actually useful for weather predic-

tion and analysis would require the parameters to be tuned. Additionally,

altitude, terrain and other properties affecting the local climate could be

included. These could perhaps be encoded partly through a non-stationary

covariance function. However, even with this simplified weather model, the

results indicate that a spatio-temporal resonator model can provide an easy-

to-understand and very efficient way to model the hourly weather around

the globe.

4.3 Spatio-Temporal Modeling of One Slice of fMRI Data

The next two demonstrations of spatio-temporal modeling using infinite-

dimensional Kalman filtering are both concerned with separation of oscilla-

tory noise from functional brain imaging data. The rapidly evolving method-

ology of functional magnetic resonance imaging (fMRI, Ogawa et al., 1990;

Belliveau et al., 1991; Kwong et al., 1992) techniques calls for means to re-

strain noise levels and improve sampling rates. In Särkkä et al. (2012a) it

was shown that eliminating oscillating physiological noise components could

be done by using a resonator model setup combined with Kalman filtering.

This method was named DRIFTER.

DRIFTER relies on modeling each voxel signal as an independent time

series, which leads to an effective implementation and little risk of the model

based approach interfering with the data too much. The problem is that the

sampling rate of each voxel needs to be high in order to not hit the Nyquist

frequency of the signal. In most fMRI studies the main interest is in the

spatial coverage of the data, which leads to slow temporal sampling rates.
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Figure 11: The head profile and brain image segmented from the anatomical
MRI images and two overlays showing the orientation of the fast-sampled two
fMRI slices.

The idea in DRIFTER was to use fast-sampled reference signals to find

the time-dependent frequencies of heart beats and respiration cycles. This

information provides a remedy to the separation of physiological noises in

fMRI data. However, as was presented by Särkkä et al. (2012b), the resulting

cardiac- and respiration induced noise estimates also feature clear spatial

structure. This suggests that the estimation and separation of physiological

noises could be included by extending the DRIFTER method to spatio-

temporal modeling.

We consider two runs of empirical functional magnetic resonance

imaging (fMRI) data. The first of these is fast-sampled data of one slice

which we use to demonstrate the spatio-temporal resonator model in

two-dimensional polar-coordinates. The second run of data comprises

29 slices (the whole brain) and is used in demonstrating the method in

spherical three-dimensional coordinates. The runs are the same as the ones

labelled ‘11’ and ‘12’ in Särkkä et al. (2012a).

This fMRI data, together with anatomical images, for one volunteer was

obtained with a 3.0 T scanner (Signa HDxt; General Electric) located at

the Advanced Magnetic Imaging Centre (AMI) of Aalto University School

of Science using an 8-channel (MRI Devices Corporation) receive-only head

coil. For the functional imaging, the major parameters were two different
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repetition times (TR) 100 ms and 1800 ms; echo time (TE) 20 ms; flip angle

(FA) 60◦; field-of-view (FOV) 20 cm; and matrix size 64×64. The visual

stimuli were presented with a 3-micromirror data projector (Christie X3;

Christie Digital Systems) using the Presentation software (Neurobehavioral

Systems).

The stimuli consisted of 50 achromatic photographs of familiar objects

presented in the center of the visual field of the volunteer at a distance of

37 cm from the eyes. The stimulus condition was contrasted with fixation

alone. The runs, both roughly 240 seconds in length, comprised of simi-

lar blocks (∼15 s of stimulus-on and ∼7 s of stimulus-off). The heart and

respiratory signals were recorded time-locked to the fMRI data during the

runs. The measurements were done as part of AMI Centre’s local technical

methods development research and conformed to the guidelines of the Dec-

laration of Helsinki. The research was approved by the ethical committee in

the Hospital District of Helsinki and Uusimaa.

Figure 11 shows the orientation of two slices of fast-sampled fMRI data

overlaid atop of head and brain profiles that were segmented from the

anatomical MRI data. The orientation of the slices was chosen so that

they cut through the high-order object sensitive visual cortex, where the

stimulus response is expected evident. In this study we put little interest

in the stimulus, the main interest is in demonstrating that the physiological

oscillations can be modelled using spatio-temporal state space models.

The oscillation frequency of the physiological noise components are

not exactly periodic, but quasi-periodic, which means that the frequencies

change over time. We use external reference signals with the interacting

multiple model (IMM) approach presented in Särkkä et al. (2012a) to

estimate the frequency time series of the heart beats and respiration cycles.

The cardiac frequency alternates between 65–80 bpm and the respiratory

frequency between 12–24 cycles per minute.

We use only one slice of fast-sampled fMRI data. The sampling interval

(TR) is 0.1 s and we observe the whole 64×64 matrix at each time step. We

consider a two-dimensional disk from Section 3.1.2 with radius L ≈ 155 mm.

The observed values are assumed to be measured in a square that is centered

in the disk. The disk boundary was extended to 110 % of the observed

point with largest radius. This ensures that the boundary effects will not

practically affect the estimation result.
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Figure 12: Mean amplitude maps for both the cardiac- and respiration-
induced noise components. In both cases the left side figure shows the mean
amplitude field with an anatomical contour and the right side figure the same
field overlaid atop of the corresponding anatomical slice.

We use a spatio-temporal resonator model with three components. The

first is the slowly moving cleaned brain (blood-oxygen-level-dependent,

BOLD) signal — that also includes scanner drift and other slow phenomena

— which is modeled using a spatio-temporal Wiener velocity model. This

is done, as in the temperature example in the previous section, by including

an oscillator model with zero frequency. The two remaining components

are space–time resonators oscillating at the time-dependent cardiac and

respiratory frequencies, respectively. Here we only include resonators for

the base frequencies, and more complex signals could be accounted for by

including harmonics. For all three components, we use an eigenfunction

decomposition with N = 12 and M = 12 (refer to Section 3.1.2 for details).

By studying estimation results from DRIFTER we come up with param-

eters for the spatial process noise covariance functions. We use the squared-

exponential covariance function. In the slow moving cleaned BOLD signal

the parameters were σ1 = 10−7 and l1 = 2 mm, and for both the oscillators

σ2,3 = 10−8 and l2,3 = 2 mm. The units for magnitude parameter σj are

arbitrary, as the scaling of the fMRI signal affects the value. However, the

length scale parameter lj has a clear interpretation of correlation length scale

(given in millimeters here). We assume no coupling between the derivatives

(damping) by putting γj = χj = 0 for all three j.

The estimation results in four components — the cleaned BOLD, cardiac-

and respiration-induced noises, and a measurement noise estimate — all of

which are four-dimensional. To assess the estimation outcome we therefore

calculate and show the mean amplitudes with respect to time of the spatio-
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Figure 13: The head profile and brain image segmented from the anatomical
MRI images and 29 overlays showing the orientation of the whole-brain fMRI
slices.

temporal oscillator fields. Figure 12 shows mean amplitude maps for both

the heart beat and respiration related signals in the fMRI data. Both the

maps are presented as such and overlaid on an anatomical slice image. The

scale has been normalized to one.

The amplitude maps shows virtually no contribution of the physiological

noises outside the head, which is clearly desired in this case. Furthermore,

the results in Figure 12 are very similar to the ones presented in Särkkä et al.

(2012b), where the oscillators were treated as spatially independent and only

the final results were spatially smoothed. This suggest that the method is

able to capture the space–time structure of the oscillations.

4.4 Spatio-Temporal Modeling of the Whole Head

In the previous section we demonstrated that the spatio-temporal model

shows prominent ways in modelling periodic noise structures in the brain.

However, the perusal was limited to one slice only, and therefore the spatial

effects that could be accounted for were restricted to two dimensions. In

this section we use the second run of fMRI data that was presented in the

previous section. The data consists of 29 slices with matrix size 64×64 that

were acquired with TR = 1800 ms. The slice orientations are visualized in

Figure 13.
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Figure 14: Three-dimensional amplitude density maps for both respiration-
and cardiac-induced noise. The viewport is the same as in the previous figures
and the amplitudes are shown on a logarithmic scale.

Accurate modeling of physiological oscillations in fMRI with slow TR is

difficult. As discussed by Särkkä et al. (2012a), the sampling theorem by

Nyquist and Shannon (see, e.g., Oppenheim et al., 1999) states that recon-

structing a signal is only possible if the sampling frequency is at least twice

the fundamental frequency of the resonator. For a typical 72 bpm cardiac

signal this would be roughly 400 ms. The theorem is actually more of a lim-

itation only in the frequency estimation stage, but slow TRs cause aliasing

that makes it difficult to distinct between several oscillatory components in

the fMRI data.

A remedy to the problems related to the slow sampling rate can be

found in the spatial correlation between voxels. Even though the whole

brain is observed only every 1.8 s, the consecutive slices are observed with

∆t = 1.800 s/29 ≈ 0.062 s. Thus, we can apply the infinite-dimensional

filtering approach to identify the spatio-temporal oscillators from the fMRI

data. The slice observations are interleaved so that odd slices are observed

first and thereafter the even-numbered.

Similarly as in the previous section, we use a spatio-temporal resonator

model with three components. The cardiac and respiratory frequency tra-

jectories are again estimated using the IMM approach (heart beat rate 64–
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79 bpm, respiration cycles 10–21 cpm). The data has now three spatial di-

mensions, so we use spherical polar coordinates, with the boundary radius

L ≈ 165 mm. The boundary is extended by adding 10 % the farthest data

point from origin. For all three components, we use an eigenfunction decom-

position with N = 8 and M = 8 (refer to Section 3.1.2 for details), which

results in a total of N(M + 1)2 = 648 eigenfunctions in each expansion. For

the process noise we use the squared exponential covariance function. In

the slow moving cleaned BOLD signal the parameters were σ1 = 10−7 and

l1 = 4 mm, and for both the oscillators σ2,3 = 10−8 and l2,3 = 4 mm. Again,

we assume no coupling between the derivatives by putting γj = χj = 0 for

all three j.

In the two-dimensional example we studied the mean amplitudes of the

physiological noise signals by visualizing them in the slice. Figure 14 shows

similar visualization, but now the amplitudes constitute a three-dimensional

amplitude field. The field is actually visualized by slice planes cutting

through the density, which causes some bulkiness. In general, the results

seem to match the one-slice example in the previous section, but further

research is still needed to confirm the accuracy of the method.
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5 Discussion and Conclusions

In this thesis infinite-dimensional Kalman filtering was presented through

Gaussian process regression and Hilbert space valued stochastic processes.

This resulted in infinite-dimensional state space models. These linear op-

erator equations were applied to the infinite-dimensional Kalman filtering

theory in the same manner as linear matrix equations are applied in the

traditional Kalman filtering scheme. This resulted in an elegant infinite-

dimensional formulation of the Kalman filter, even though the derivation

was not entirely rigorous.

However, the main interest in this thesis was to use the infinite-

dimensional Kalman filtering formulation in practice. We used the

truncated eigenfunction expansion of the Laplace operator to form a

finite-dimensional basis over the spatial domain, which enabled us to revert

to the traditional Kalman filtering scheme. The eigenfunction expansions of

the Laplace operator in n-dimensional spherical and Cartesian coordinates

were presented.

The final step was to bring the methods to an application level, which

was done by deriving a spatio-temporal resonator model and applying it

to real-world datasets. The three case studies showed how the space–time

structure of temperature variation on the earth’s surface and physiological

noise in brain data could be modeled. The case studies acted only as proof

of concept examples, and many interesting questions remain unanswered in

each of the applications.

For example, the results in the temperature example suggested that the

lack of short-scale variability was a problem. The basis function approach

tend to make the model spatially smooth, a problem which has been tackled

in many ways under the GP regression scheme before (see, e.g., Rasmussen

and Williams, 2006; Vanhatalo and Vehtari, 2008). Several methodological

extensions could be considered as well, such as the possibility of including

non-stationary covariance functions to the process noise model. Efficient

parameter estimation under the infinite-dimensional Kalman filtering per-

spective also remains an open question, and is of great interest even tough

it was outside the scope of this study.

The spatio-temporal resonator model has prospects. The two short

demonstrations showed promising results of the identification of physiolog-
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ical noise components in fMRI data. In brain imaging applications, the

method is perhaps overly complex for physiological noise elimination alone,

but it might be beneficial when combined with inversion based fMRI meth-

ods (Lin et al., 2006, 2008), or further extensions of the DRIFTER method

as discussed in Särkkä et al. (2012a).

We have showed that the rather complex infinite-dimensional Kalman

filtering framework provides an efficient tool for future applications, and

that the methodology calls for further improvements and extensions to meet

up with the need for spatio-temporal modeling tools.
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Jazwinski, A. (1970). Stochastic Processes and Filtering Theory. Academic

Press.

Kaipio, J. and Somersalo, E. (2004). Statistical and Computational Inverse

Problems. Number 160 in Applied Mathematical Sciences. Springer.

Kalman, R. (1960). A new approach to linear filtering and prediction prob-

lems. Journal of Basic Engineering, 82(1):35–45.

Kreyszig, E. (1978). Introductory Functional Analysis with Applications.

John Wiley & Sons, New York.

Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff,

R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., and

Turner, R. (1992). Dynamic magnetic resonance imaging of human brain

Solin AH



REFERENCES 62

activity during primary sensory stimulation. Proceedings of the National

Academy of Sciences of the United States of America, 89(12):5675–5679.

Lin, F.-H., Wald, L. L., Ahlfors, S. P., Hämäläinen, M. S., Kwong, K. K.,

and Belliveau, J. W. (2006). Dynamic magnetic resonance inverse imaging

of human brain function. Magnetic Resonance in Medicine, 56:787–802.

Lin, F.-H., Witzel, T., Mandeville, J. B., Polimeni, J. R., Zeffiro, T. A.,

Greve, D. N., Wiggins, G., Wald, L. L., and Belliveau, J. W. (2008).

Event-related single-shot volumetric functional magnetic resonance in-

verse imaging of visual processing. NeuroImage, 42:230–247.

Matérn, B. (1960). Spatial variation: stochastic models and their applica-

tions to some problems in forest surveys and other sampling investigations.

Meddelanden fr̊an statens skogsforskningsinstitut, 49:1–144.

Maybeck, P. S. (1979). Stochastic Models, Estimation and Control, volume 1.

Academic Press.

Maybeck, P. S. (1982). Stochastic Models, Estimation and Control, volume 2.

Academic Press.

Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W. (1990). Brain mag-

netic resonance imaging with contrast dependent on blood oxygenation.

Proceedings of the National Academy of Sciences, 87(24):9868–9872.

O’Hagan, A. (1978). Curve fitting and optimal design for prediction. Journal

of the Royal Statistical Society. Series B (Methodological), 40(1):1–42.

Øksendal, B. (2003). Stochastic Differential Equations: An Introduction

with Applications. Springer-Verlag, sixth edition.

Olver, P. J. (2012). Introduction to Partial Differential Equations. Book

draft available online: http://www.math.umn.edu/~olver/pdn.html

(accessed January 1, 2012).

Omatu, S. and Seinfeld, J. H. (1989). Distributed Parameter Systems: The-

ory and Applications. Clarendon Press / Ohmsha.

Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (1999). Discrete-Time

Signal Processing. Prentice Hall, second edition.

Solin AH

http://www.math.umn.edu/~olver/pdn.html


REFERENCES 63

Pikkarainen, H. K. (2005). A Mathematical Model for Electrical Impedance

Process Tomography. Doctoral dissertion, Helsinki University of Technol-

ogy.

Pikkarainen, H. K. (2006). State estimation approach to nonstationary in-

verse problems: discretization error and filtering problem. Inverse prob-

lems, 22:365–379.

Pivato, M. (2010). Linear Partial Differential Equations and Fourier Theory.

Cambridge University Press.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for

Machine Learning. The MIT Press.

Rauch, H., Tung, F., and Striebel, C. (1965). Maximum likelihood estimates

of linear dynamic systems. AIAA journal, 3(8):1445–1450.

Robinson, J. C. (2001). Infinite-Dimensional Dynamical Systems: An Intro-

duction to Dissipative Parabolic PDEs and the Theory of Global Attrac-

tors, volume 28 of Cambridge Texts in Applied Mathematics. Cambridge

University Press.

Showalter, R. (1977). Hilbert Space Methods for Partial Differential Equa-

tions, volume 1. Pitman Publishing London.

Shubin, M. A. (1987). Pseudodifferential Operators and Spectral Theory.

Springer Series in Soviet Mathematics. Springer-Verlag.

Solin, A. (2010). Cubature Integration Methods in Non-Linear Kalman Fil-

tering and Smoothing. Bachelor’s thesis, Faculty of Information and Nat-

ural Sciences, Aalto University, Finland.
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