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Optimal estimation problems arise in various different settings where in-
direct noisy observations are used to determine the underlying state of a
time-varying system. For systems with non-linear dynamics there exist var-
ious methods that extend linear filtering and smoothing methods to handle
non-linearities.

In this thesis the non-linear optimal estimation framework is presented with
the help of an assumed density approach. The Gaussian integrals that arise
in this setting are solved using two different cubature integration methods.

Cubature integration extends the weighted sum approach from univariate
quadrature methods to multidimensional cubature methods. In this thesis
the focus is put on two methods that use deterministically chosen sigma
points to form the desired approximation. The Gauss–Hermite rule uses a
simple product rule method to fill the multidimensional space with cubature
points, whereas the spherical–radial rule uses invariant theory to diminish
the number of points by utilizing symmetries.

The derivations of the Gauss–Hermite and spherical–radial rules are re-
viewed. The corresponding non-linear Kalman filter and Rauch–Tung–
Striebel smoother algorithms are presented. Additionally, the relation be-
tween the cubature rules and the unscented transformation is discussed. It
is also shown that the cubature Kalman filter can be interpreted as a refine-
ment of the unscented Kalman filter.
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Symbols and Abbreviations

Matrices are capitalized and vectors are in bold type. We do not generally
distinguish between probabilities and probability densities.

Operators and miscellaneous notation

1 : k 1, 2, . . . , k
p(x | y) Conditional probability density of x given y
xk|k−1 Conditional value of xk given values up to step k− 1
R The real numbers
R+ The positive real numbers
Γ(·) The gamma function
N (µ, Σ) Gaussian distribution with mean µ and covariance Σ

U (a, b) Uniform distribution between a and b
I Identity matrix
AT Matrix transpose
|A| Matrix determinant of A
chol(A) Cholesky decomposition: chol(A) = L, LLT = A
diag(a) A diagonal matrix with elements of a on its diagonal

General notation

x System state
y Observation
k Time step
T Final time step
qk Zero-mean (Gaussian) Process noise
rk Zero-mean (Gaussian) Measurement noise
Qk Process noise covariance
Rk Measurement noise covariance

Abbreviations

RTS Rauch–Tung–Striebel smoother
EKF Extended Kalman filter
ERTS Extended Rauch–Tung–Striebel smoother
UKF Unscented Kalman filter
URTS Unscented Rauch–Tung–Striebel smoother
GHKF Gauss–Hermite Kalman filter
GHRTS Gauss–Hermite Rauch–Tung–Striebel smoother
CKF Cubature Kalman filter
CRTS Cubature Rauch–Tung–Striebel smoother
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1 Introduction

The term optimal estimation refers to the methods used to estimate the
underlying state of a time-varying system of which there exist only indi-
rectly observed noisy measurements. These kinds of models can be found,
for example, in navigation, target tracking, biological processes, telecom-
munications, audio signal processing, stochastic optimal control, physical
processes, finance and learning systems. (see, e.g., Särkkä, 2006)

The celebrated Kalman filter (Kalman, 1960) provides a closed-form so-
lution to estimate the states of phenomena with linear underlying dy-
namics and linear observation models. Similarly the Rauch–Tung–Striebel
smoother (Rauch et al., 1965) provides the linear smoothing estimate.
Non-linear dynamics and observations require approximating as the non-
linearities do not preserve the Gaussian nature as such.

The extended Kalman filter (EKF) (Jazwinski, 1970) has been the de facto
method for non-linear Kalman filtering for decades. Even so, the EKF
has many undesired limitations. The linearization of the dynamical and
measurement models rely on their first order derivatives, which requires
the models to be continuous and differentiable and causes the Gaussian
approximation to be local. As a consequence the extended Kalman filter
does not work on considerable non-linearities.

Many refinements to the non-linear Gaussian approximation based filters
have been presented throughout the years. Of these methods in the scope
of this thesis are filter and smoother formulations that fall under the
category of assumed density and sigma point filters. An exemplar of this
category is the well-known unscented Kalman filter (UKF) (Julier and
Uhlmann, 1996).

In the first section of this thesis we will go through the formulation of
the linear Kalman filter and the Rauch–Tung–Striebel smoother and how
this is extended to the non-linear assumed density form. In the context
of assumed density filtering the Gaussian approximation falls back on
solving a set of Gaussian integrals.

In the second section, we study two different cubature integration
methods for solving the integrals. The first method extends the one-
dimensional Gauss–Hermite quadrature method to a multidimensional
cubature method. The second approach follows the derivation of
Arasaratnam and Haykin (2009) to form a spherical–radial rule based
cubature method.
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Combining the two cubature integration methods with the assumed
density filter and smoother formulation yields two different optimal
estimation tools: The algorithms for the Gauss–Hermite Kalman fil-
ter (GHKF) and the Gauss–Hermite Rauch–Tung–Striebel smoother
(GHRTS) together with the algorithms for the spherical–radial rule
based cubature Kalman filter (CKF) and cubature Rauch–Tung–Striebel
smoother (CRTS) are presented in the third section.

Two case studies are presented for demonstrating the characteristics of
the estimation methods. They employ the methods on a target tracking
problem and a neural network problem with an excessive number of
dimensions.

The main contributions of this thesis are to (i) verify previous work done
on the field, (ii) unify the formulation of different cubature and sigma
point filter approaches, and (iii) discuss the properties of the cubature
Kalman filter as a refinement of the unscented Kalman filter.
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2 Gaussian Approximation Based Estimation

2.1 Linear Estimation

We start by considering a linear stochastic state-space model of the form

xk = Ak−1xk−1 + qk−1

yk = Hkxk + rk,
(1)

where xk ∈ Rn is the state, yk ∈ Rm is the measurement of the state at
time step k, qk−1 ∼ N (0, Qk−1) is the i.i.d. Gaussian process noise of the
dynamic model, rk ∼ N (0, Rk) is the i.i.d. Gaussian noise process of the
measurement model, Ak−1 is the dynamic model translation matrix and
Hk is the measurement model matrix. (Kalman, 1960; Bar-Shalom et al.,
2001)

This is a special — but often encountered — case where the process and
measurement noises are purely additive. The state-space model in (1) is
said to be a discrete-time model because time is discretized. The time steps
k run from 0 to T, and at time step k = 0 only the prior distribution is
given, x0 ∼ N (m0, P0).

Prediction

Filtering

Smoothing

0 kk-1 T

Time steps

Measurements

Figure 1: This diagram demonstrates the fundamental difference between
prediction, filtering and (fixed interval) smoothing.

The dynamic model defines the system dynamics and its uncertainties as
a Markov sequence. The dynamics are defined as transitions from the pre-
vious state with the accompanying uncertainty coming from the Gaussian
term qk−1. The transitions may be modeled with the help of the transi-
tion distribution p(xk | xk−1). The measurement model maps the actual
states xk to measurements yk which contain Gaussian noise. The depen-
dency between the states and measurements can be shown in terms of a
probability distribution p(yk | xk).
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True states

Noisy measurements

Filter estimate

Filter variance

Smoother estimate

Smoother variance

Time step (k)

Figure 2: An illustrative example of the filtering and smoothing results for a
linear Gaussian random-walk model. The variances are presented with the
help of the 95 % confidence intervals.

The discrete-time state-space model presented in Equations (1) can be
written equivalently in terms of probability distributions as a recursively
defined probabilistic model of the form

p(xk | xk−1) = N (xk | Ak−1xk−1, Qk−1)

p(yk | xk) = N (yk | Hkxk, Rk).
(2)

The model is assumed to be Markovian in the sense that it incorporates
the Markov property, which means that the current state is independent
from the past prior to the previous state. Additionally all the measure-
ments of the separate states are assumed to be conditionally independent
of each other.

In this approach we bluntly divide the concept of Gaussian optimal es-
timation into three marginal distributions of interest (see, e.g., Särkkä,
2006):

Filtering distributions p(xk | y1:k) that are the marginal distri-
butions of current state xk given all previous measurements
y1:k = (y1, y2, . . . , yk).
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Prediction distributions p(xk+1 | y1:k) that are the marginal distri-
butions of forthcoming states.

Smoothing distributions p(xk | y1:T) that are the marginal distri-
butions of the states xk given measurements y1:T such that
T > k.

In Figure 1 the differences between optimal prediction, filtering and
smoothing are demonstrated with the help of a time line of measure-
ments. At time step k the prediction distribution utilizes less than k
measurements, whereas the filtering solution uses exactly k measure-
ments and the smoothing distribution more than k measurements.

An illustrative example of the differences between filtering and smooth-
ing is shown in Figure 2. The black solid line in the figure demonstrates
a realization of a Gaussian random walk process. The blue line together
with the bluish patch following the line show the filtered solution ob-
tained by using the noisy measurements in the figure. Similarly the red
line and the reddish patch depict the smoothed solution. As the smoother
has access to more measurements, it follows the original states more
strictly and has a smaller variance than the filtering solution.

2.1.1 Kalman Filter Equations

The Kalman filter is a closed-form solution to the linear filtering problem
in Equation (1) — or equivalently in (2). As the Kalman filter is condi-
tional to all measurements up to time step k, the recursive filtering algo-
rithm can be seen as a two-step process that first includes calculating the
marginal distribution of the next step using the known system dynamics
(see, e.g., Bar-Shalom et al., 2001). This is called the Prediction step:

mk|k−1 = Ak−1mk−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + Qk−1.

(3)

The algorithm then uses the observation to update the distribution to
match the new information obtained by the measurement at step k. This
is called the Update step:
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Sk = HkPk|k−1HT
k + Rk

Kk = Pk|k−1HT
k S−1

k

mk|k = mk|k−1 + Kk(yk −Hkmk|k−1)

Pk|k = Pk|k−1 −KkSkKT
k .

(4)

As a result the filtered distribution at step k is given by xk|k ∼
N (mk|k, Pk|k). The difference yk −Hkmk|k−1 in Equation (4) is called the
innovation or the residual. It basically reflects the deflection between the
actual measurement and the predicted measurement. The innovation is
weighted by the Kalman gain. This term minimizes the a posteriori error
covariance by weighting the residual with respect to the prediction step
covariance Pk|k−1 (see Maybeck, 1979; Welch and Bishop, 1995).

The linear Kalman filter solution coincides with the optimal least squares
solution which is exactly the posterior mean mk|k. For derivation and fur-
ther discussion on the matter see, for example, Kalman (1960), Maybeck
(1979) and Särkkä (2006).

2.1.2 Rauch–Tung–Striebel Smoother Equations

We take a brief look at fixed-interval optimal smoothing. The purpose of
optimal smoothing is to obtain the marginal posterior distribution of the
state xk at time step k, which is conditional to all the measurements y1:T,
where k ∈ [1, . . . , T] is a fixed interval.

Similarly as the discrete-time linear Kalman filter gives a closed-form fil-
tering solution, the discrete-time Rauch–Tung–Striebel Smoother (RTS) (see,
e.g., Rauch et al., 1965; Särkkä, 2006) gives a closed-form solution to the
linear smoothing problem. That is, the smoothed state is given as

p(xk | y1:T) = N (xk | mk|T, Pk|T).

The RTS equations are written so that they utilize the Kalman filtering
results mk|k and Pk|k as a forward sweep, and then perform a backward
sweep to update the estimates to match the forthcoming observations
(see, e.g., Särkkä, 2006). The forward sweep is already presented in Equa-
tions (3) and (4). The smoother’s backward sweep may be written as
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mk+1|k = Akmk|k

Pk+1|k = AkPk|kAT
k + Qk

Ck = Pk|kAT
k P−1

k+1|k

mk|T = mk|k + Ck(mk+1|T −mk+1|k)

Pk|T = Pk|k + Ck(Pk+1|T − Pk+1|k)C
T
k ,

(5)

where mk|T is the smoothed mean and Pk|T the smoother covariance at
time step k. The RTS smoother can be seen as a discrete-time forward–
backward filter, as the backward sweep utilizes information from the
forward filtering sweep. When performing the backward recursion the
time steps run from T to 0.

2.2 Non-Linear Kalman Filters

We now move to a more general form of stochastic state-space models,
where the dynamic and measurement model functions are not required
to be linear, but arbitrary non-linear functions. We consider a non-linear
stochastic state-space model of form

xk = f(xk−1) + qk−1

yk = h(xk) + rk,
(6)

where xk ∈ Rn is the state, yk ∈ Rm is the measurement of the state at
time step k, qk−1 ∼ N (0, Qk−1) is the additive Gaussian process noise of
the dynamic model, rk ∼ N (0, Rk) is the additive Gaussian noise of the
measurement model, f(·) : Rn 7→ Rn is the dynamic model function and
h(·) : Rn 7→ Rm is the measurement model function.

The linear Kalman filter is heavily founded on the fact that the linear
transform preserves the Gaussian nature of the probability distribution
throughout the filtering. It is clear that the non-linear transform makes
this impossible. There is absolutely no guarantee that the resulting distri-
bution will even faintly resemble anything Gaussian.

Formally this can be seen in the case of a Gaussian random variable
x ∼ N (m, P) and an arbitrary non-linear transformation y = g(x). If
g is invertible, the probability density of y is (Gelman, 2004)
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(a) Original.
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Figure 3: This figure illustrates the effect of making a non-linear transform
on a bivariate Gaussian distribution and approximating the resulting distri-
bution by a Gaussian.

p(y) = |J(y)| N (g−1(y) | m, P),

where |J(y)| is the determinant of the Jacobian matrix of the inverse trans-
form g−1(y). It is not generally possible to handle the resulting distribu-
tion p(y) directly. This implies that to find a practicable equivalent to the
linear Kalman filter in the case the model functions are non-linear, heavy
approximations are needed.

To use the theory of the linear Kalman filter and exploit the convenient
features of the Gaussian distribution, the family of non-linear Kalman
filters falls back on one basic approximation. All transformed probability
distributions are assumed to be approximately Gaussian, that is p(y) ≈
N (y | m′, P′).

Figure 3 presents an illustrative example of the effects of a non-
linear transformation. A bivariate normal distribution x =

[
r θ

]T ∼
N (
[
80 0.8

]T , diag(40, 0.4)) is transformed through the non-linear
transformation

f (x) =
[

r cos θ
r sin θ

]
,
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which corresponds to making a change of coordinates from radial to
Cartesian coordinates. As we see in Figure 3(b), the true distribution does
not resemble a Gaussian. Together with the real mean and confidence re-
gion a Gaussian approximation made using 2 000 Monte Carlo samples is
shown in the figure. The Gaussian captures the spirit of the true distribu-
tion but — obviously — fails to capture the non-linearities of the resulting
distribution.

Although the Gaussian approximation based approach is clearly rough,
it simplifies the formulation of non-linear filters. The basic idea of non-
linear filters is to form Gaussian approximations. How this is done in
practice varies a bit. Some well-known non-linear extensions to the classic
Kalman filter include: (for more alternatives see, e.g., Särkkä, 2006)

Extended Kalman filter (EKF) relies on the first-order linearization
obtained by a Taylor series expansion. EKF was the de facto
standard of non-linear Kalman filtering for decades (see
Jazwinski, 1970).

Statistically linearized Kalman filter (SLF) is a quasi-linear filter
where the Gaussian approximation is based on closed-form
computations of expected values (see Gelb, 1974).

Unscented Kalman filter (UKF) uses deterministically chosen
sigma points to approximate the non-linearities. (see Julier
and Uhlmann, 1996; van der Merwe, 2004)

Central difference Kalman filter (CDKF) uses Sterling’s poly-
nomial interpolation to approximate the distribution (see
Nørgaard et al., 2000).

Gauss–Hermite Kalman filter (GHKF) uses the Gauss–Hermite
quadrature rule to solve the Gaussian integrals that arise in
the context of filtering (see Ito and Xiong, 2000).

Cubature Kalman filter (CKF) uses a third-degree cubature ap-
proximation to solve the Gaussian integrals (see Arasaratnam
and Haykin, 2009).

2.3 Assumed Density Estimation

To unify many of the filter variants presented earlier, handling the non-
linearities may be brought together to a common formulation. In Gaus-
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sian optimal filtering — also called assumed density filtering — the fil-
tering equations follow the assumption that the filtering distributions are
indeed Gaussian (Maybeck, 1982; Ito and Xiong, 2000; Särkkä, 2010). The
Gaussian approximation is of the form

p(xk | y1:k) ≈ N (xk | mk|k, Pk|k),

where N (xk | mk|k, Pk|k) denotes the multivariate Gaussian distribution
with mean mk|k and covariance Pk|k.

The linear Kalman filter equations can now be adapted to the non-linear
state-space model of form (6). The prediction step of the non-linear filter
can be obtained through calculating the following integrals that approxi-
mate the mean mk|k−1 and covariance Pk|k−1 given the measurements up
to k− 1:

mk|k−1 =
∫

f(xk−1)N (xk−1 | mk−1|k−1, Pk−1|k−1) dxk−1

Pk|k−1 =
∫ (

f(xk−1)−mk|k−1

) (
f(xk−1)−mk|k−1

)T
×N (xk−1 | mk−1|k−1, Pk−1|k−1) dxk−1 + Qk−1

(7)

To form the update step the measurement mean, prediction covariance
and cross-covariance between the state and measurement have to be ap-
proximated by calculating the integrals

ŷ =
∫

h(xk)N (xk | mk|k−1, Pk|k−1) dxk

Sk =
∫

(h(xk)− ŷ) (h(xk)− ŷ)TN (xk | mk|k−1, Pk|k−1) dxk + Rk

Pxy =
∫
(xk −mk|k−1) (h(xk)− ŷ)TN (xk | mk|k−1, Pk|k−1) dxk.

(8)

Using the measurement mean ŷ and covariance Sk together with the
cross-covariance between the state and measurement Pxy the update step
may be written similarly as in the linear Kalman filter:

Kk = PxyS−1
k

mk|k = mk|k−1 + Kk(yk − ŷ)

Pk|k = Pk|k−1 −KkSkKT
k ,
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where Kk is the Kalman gain, mk|k is the filtered mean at time step k and
Pk|k is the respective covariance.

Similarly as the assumed density filtering equations, the Rauch–Tung–
Striebel smoother presented in Equation (5) can be generalized to an
assumed density form (see Särkkä, 2010; Särkkä and Hartikainen, 2010).
The recursion steps for the discrete-time fixed-interval Gaussian assumed
density smoother can be written in the form, where we first calculate the
Gaussian integrals

mk+1|k =
∫

f(xk)N (xk | mk|k, Pk|k) dxk

Pk+1|k =
∫ (

f(xk)−mk+1|k

) (
f(xk)−mk+1|k

)T
N (xk | mk|k, Pk|k) dxk + Qk

Dk, k+1 =
∫ (

xk −mk|k

) (
f(xk)−mk+1|k

)T
N (xk | mk|k, Pk|k) dxk

(9)

and then the gain term Ck together with the smoothing result at step k
can be calculated as in the linear case (see Equations (5))

Ck = Dk, k+1P−1
k+1|k

mk|T = mk + Ck(mk+1|T −mk+1|k)

Pk|T = mk + Ck(Pk+1|T − Pk+1|k)C
T
k .

The integrals in the filter and smoother equations, (7), (8) and (9), can
be solved with basically any suitable analytical or numerical integration
method. The contributions on this field have produced a number of filter
variations that use different numerical integration methods, for example
the Gauss–Hermite Kalman filter (Ito and Xiong, 2000), the Monte Carlo
Kalman filter (Kotecha and Djuric, 2003) and the cubature Kalman filter
(Arasaratnam and Haykin, 2009), just to mention the most well-known
ones.

In the next section we shall take a closer look at numerical integration
methods regarding the type of Gaussian integrals that have arisen in the
context of assumed Gaussian optimal estimation.
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3 Gaussian Cubature Methods

We now consider a multi-dimensional integral of the form

I(f) =
∫
D

f(x)w(x) dx, (10)

where f(·) is a Lebesque integrable arbitrary function, D ⊆ Rn is the
region of integration, and w(x) is the known non-negative weighting
function w : D 7→ R+. In a Gaussian weighted integral, the weight w(x)
is a Gaussian density in D = Rn, and thus it satisfies the non-negativity
condition in the entire region.

The integrals that arose in the previous section are of this form. Com-
monly the closed-form solution to Equation (10) is difficult to obtain, and
some numerical approximation method is chosen to calculate the solu-
tion. Here we consider a numerical method which tries to find a set of
points xi, i ∈ {1, . . . , m} and corresponding weights wi that approximates
the integral I(f) by calculating the value of a weighted sum

I(f) ≈
m

∑
i=1

wif(xi). (11)

The methods of finding an appropriate approximation are divided into
product rules and non-product rules. Of these two the former is presented
with an emphasis on the Gauss–Hermite cubature rule and the latter with
focus on the spherical–radial cubature rule.

3.1 The Gauss–Hermite Quadrature Rule

The Gauss–Hermite quadrature rule (see, e.g., Abramowitz and Stegun,
1964) is a one-dimensional weighted sum approximation method for solv-
ing special integrals of form (10) with a Gaussian kernel, with an infinite
domain, D = R. More specifically the Gauss–Hermite quadrature can be
applied to integral approximations of form

∫ ∞

−∞
f (x) exp(−x2) dx ≈

m

∑
i=1

wi f (xi), (12)
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Figure 4: The first six Hermite polynomial curves around origin.

where xi are the sample points and wi the associated weights to use for
the approximation. The sample points xi, i = 1, . . . , m, are roots of special
orthogonal polynomials called Hermite polynomials. Here we use the
so called physicists’ Hermite polynomials. The Hermite polynomial of
degree p is denoted with Hp(x) (see Abramowitz and Stegun (1964) for
details) and can be written as

Hp(x) = p!
bp/2c

∑
m=0

(−1)m

m!(p− 2m)!
(2x)p−2m,

where p is the degree and b·c denotes the floor operator. The first six
Hermite polynomials are shown in Figure 4. The weights wi are given by

wi =
2p−1p!

√
π

p2[Hp−1(xi)]2
.

The univariate integral approximation needs to be extended to be able
to suit the multivariate case. As Wu et al. (2006) argue, the most natural
approach to grasp a multiple integral is to treat it as a sequence of nested
univariate integrals and then use a univariate quadrature rule repeatedly.
To extend this one-dimensional integration method to multi-dimensional
integrals of form

∫
Rn

f (x) exp(−xTx) dx ≈
m

∑
i=1

wi f (xi), (13)
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we first simply form the one-dimensional quadrature rule with respect to
the first dimension, then with respect to the second dimension and so on
(Cools, 1997). We get the multidimensional Gauss–Hermite cubature rule
by writing

∑
i1

wi1

∫
f (xi1

1 , x2, . . . , xn) exp(−x2
2 − x2

3 . . .− x2
n) dx2 . . . dxn

= ∑
i1,i2

wi1wi2

∫
f (xi1

1 , xi2
2 , . . . , xn) exp(−x2

3 . . .− x2
n) dx3 . . . dxn

= ∑
i1,i2,...,in

wi1wi2 · · ·win f (xi1
1 , xi2

2 , . . . , xin
n ),

which is basically what we wanted in Equation (13). This gives us the
product rule that simply extends the one-dimensional quadrature point
set of p points in one dimension to a lattice of pn cubature points in n
dimensions. The weights for these Gauss–Hermite cubature points are
calculated by the product of the corresponding one-dimensional weights.

Finally, by making a change of variable x =
√

2
√

Σ+µ we get the Gauss–
Hermite weighted sum approximation for a multivariate Gaussian inte-
gral, where µ is the mean and Σ is the covariance of the Gaussian. The
square root of the covariance matrix, denoted

√
Σ, is a matrix such that

Σ =
√

Σ
√

Σ
T

.∫
Rn

f(x)N (x | µ, Σ) dx ≈ ∑
i1,i2,...,in

wi1,i2,...,in f
(√

Σ ξi1,i2,...,in +µ
)

, (14)

where the weight wi1,i2,...,in = 1
πn/2 wi1 · wi2 · · ·win is given by using the

normalized one-dimensional weights, and the points are given by the
Cartesian product ξi1,i2,...,in =

√
2 (xi1 , xi2 , . . . , xin), where xi is the ith one-

dimensional quadrature point.

The extension of the Gauss–Hermite quadrature rule to an n-dimensional
cubature rule by using the product rule lattice approach yields a rather
good numerical integration method that is exact for monomials ∏n

i=1 xki
i

with ki ≤ 2p− 1 (Wu et al., 2006). However, the number of cubature points
grows exponentially as the number of dimensions increases. Due to this
flaw the rule is not practical in applications with many dimensions. This
problem is called the curse of dimensionality. The exponentially growing
number of evaluation points has been illustrated in Figure 5 where the
point lattice for dimensions n = 1, 2, 3 is shown.
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n=1 n=2 n=3

Figure 5: This figure shows the lattice in dimensions n = 1, 2, 3 required to
perform the p = 6 point product rule integral approximation in the Gauss–
Hermite cubature rule. The color marks the weight of the cubature point.

3.2 The Spherical–Radial Cubature Rule

The curse of dimensionality causes all product rules to be highly inef-
fective in integration regions with multiple dimensions. To mitigate this
issue, we may seek alternative approaches to solving the integral of form
(10). The non-product rules differ from product based solutions by choos-
ing the evaluation points directly from the domain of integration. That is,
the points are not simply duplicated from one dimension to multiple di-
mensions, but directly chosen from the whole domain.

The field of non-product rule based integration methods has spawned
many well-known approaches, some of which are: (see Cools, 1997;
Arasaratnam, 2009)

Randomized Monte Carlo methods evaluate the integral using a
set of equally weighted random points.

Quasi-Monte Carlo methods use deterministically defined meth-
ods to provide a hyper-cube region from which the points are
randomly drawn.

Lattice rules transform the evaluation point grid to better fit the in-
tegration domain and thus diminish the ill-behavior of product
rules.

Sparse grids combine a univariate quadrature routine for high-
dimensional problems to concentrate most cubature points to
areas of interest.
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Monomial-based cubature rules are constructed so that they are
exact for monomials of a certain degree.

The quest for finding a good integration method comes to setting the
balance of choosing a method that (i) yields reasonable accuracy, (ii)
requires a small number of function evaluations, and (iii) is easily ex-
tendable to high dimensions. The spherical–radial cubature rule to be
presented incorporates aspects of all these. The derivation of the third-
degree spherical–radial cubature rule mostly follows Arasaratnam (2009)
and Wu et al. (2006).

3.2.1 Monomial-Based Cubature Approximations

Hereafter we are only interested in integrands of form non-linear function
× Gaussian. However, the focus is first constrained to an integral of the
form

I(f) =
∫

Rn
f (x) exp(−xTx) dx. (15)

In Equation (15) the integration domain is defined in Cartesian coordi-
nates. We make a change of variable from x ∈ Rn to spherical coordinates
defined by the radius scalar r and the direction vector y ∈ Rn−1. Let
x = ry with yTy = 1, so that xTx = r2 for r ∈ [0, ∞). The integral can
now be written in the spherical–radial coordinate system

I(f) =
∫ ∞

0

∫
Sn

f (ry) exp(−r2) rn−1 dσ(y) dr. (16)

Here Sn is the surface of the sphere defined by Sn = {y ∈ Rn | yTy = 1}
and σ(·) the spherical surface measure of the area element of Sn. We may
now write (16) as a radial integral

I(f) =
∫ ∞

0
S(r) rn−1 exp(−r2) dr, (17)

where S(r) is defined by the spherical integral

S(r) =
∫

Sn
f (ry) dσ(y). (18)
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The spherical integral (18) can be seen as a spherical integral with the
unit weighting function w(y) ≡ 1. Now the spherical and radial integral
may be interpreted separately and computed with the spherical cubature
rule and the Gaussian quadrature rule respectively.

3.2.2 Spherical Cubature Rule

A cubature rule is said to be fully symmetric if (i) x ∈ D implies x̃ ∈ D,
where x̃ is any point obtainable from x by sign change and permutations
of the coordinates of x, and (ii) the points yield the same weight value,
w(x) = w(x̃) (Arasaratnam, 2009; Cools, 1997).

In other words, in a fully symmetric cubature point set equally
weighted points are symmetrically distributed around origin. A point
u is called the generator of such a set, if for the components of
u =

[
u1, u2, . . . , ur, 0, . . . , 0

]
∈ Rn, ui ≥ ui+1 > 0, i = 1, 2, . . . , (r− 1). The

point set defined by the generator is denoted [u]. For example, we may
denote [1] ∈ R2 to represent the cubature point set

{[
1
0

]
,
[

0
1

]
,
[
−1
0

]
,
[

0
−1

]}
,

where the generator is
[
1 0

]T.

We now take a look at Equation (11) in the case where f(·) is monomial-
based. Here the term monomial means a product of powers of variables
such that the powers are constrained to positive integers. To calculate
the integral, a set of cubature points is chosen so that the cubature rule
is exact for the degree d or less (for a proof, see Arasaratnam, 2009), as
defined by

∫
D

P(x)w(x) dx =
m

∑
i=1

wiP(xi),

where P represents a polynomial, or in this case more specifically a
monomial P(x) = xd1

1 xd2
2 · · · x

dn
n with dj being non-negative integers and

∑n
j=1 dj ≤ d. In other words, the degree d defines the accuracy of the

approximation; the higher the degree, the more accurate the sum.

To find the unknowns of a cubature rule of degree d, a set of moment
equations have to be solved. This, however, may not be a simple task with
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increasing dimensions and polynomial degree. An m-point cubature rule
requires a system of (n+d)!

n! d! moment equations to be solved. (Arasaratnam,
2009) For this system to have at least one solution, m must be chosen so
that m ≥ (n+d)!

(n+1)! d! . This means that, for example, a cubature rule of de-
gree three in an integration domain of 10 dimensions entails 26 weighted
cubature points and yields solving a system of 286 equations.

To reduce the size of the system of equations or the number of needed
cubature points Arasaratnam and Haykin (2009) use the invariant theory
proposed by Sobolev (see Cools, 1997). The invariant theory discusses
how to simplify the structure of a cubature rule by using the symmetries
of the region of integration. The unit hypercube, the unit hypersphere
and the unit simplex all contain some symmetry.

Due to invariance theory (Cools, 1997) the integral (18) can be approxi-
mated by a third-degree spherical cubature rule that gives us the sum

∫
Sn

f (ry) dσ(y) ≈ w
2n

∑
i=1

f([u]i). (19)

The point set [u] is invariant under permutations and sign changes, which
means that a number of 2n cubature points are sufficient to approximate
the integral. For the above choice, the monomials yd1

1 yd2
2 · · · y

dn
n , with the

sum ∑n
i=1 di being an odd integer, are integrated exactly.

To make this rule exact for all monomials up to degree three, we have to
require the rule to be exact for the even dimensions ∑n

i=1 di = {0, 2}. This
can be accomplished by solving the unknown parameters for a monomial
function of order n = 0 and equivalently for a monomial function of
order n = 2. We consider the two functions f(·) to be of form f(y) = 1,
and f(y) = y2

1. This yields the pair of equations (Arasaratnam, 2009)

f(y) = 1 : 2nw =
∫

Sn
dσ(y) = An

f(y) = y2
1 : 2wu2 =

∫
Sn

y2
1 dσ(y) =

1
n

An,

where An is the surface area of the n-dimensional unit sphere. Solving
these equations yields u2 = 1 and w = An

2n . Therefore the cubature points
can be chosen so that they are located at the intersection of the unit sphere
and its axes.
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3.2.3 Radial Cubature Rule

We now concentrate on the radial integral defined in Equation (17).
This integral can be transformed to a familiar Gauss–Laguerre form (see
Abramowitz and Stegun, 1964) by making another change of variable,
t = r2, which yields

∫ ∞

0
S(r) rn−1 exp(−r2) dr =

1
2

∫ ∞

0
S̃(t) t

n
2−1 exp(−t) dt, (20)

where S̃(t) = S(
√

t). This integral may be approximated by the Gauss–
Laguerre quadrature by

1
2

∫ ∞

0
S̃(t) t

n
2−1 exp(−t) dt =

m

∑
i=1

wi S̃(ti), (21)

where ti is the ith root of Laguerre polynomial Lm(t) and the weights wi are
given by (Abramowitz and Stegun, 1964)

wi =
ti

(m + 1)2(Lm+1(ti))2 .

A first-degree Gauss–Laguerre rule is exact for S̃(t) = {1, t} (or equiv-
alently S(r) = {1, r2}). It is not exact for S(r) = {r, r3}, but due to the
properties of the spherical cubature rule presented in the previous sec-
tion, the combined spherical–radial rule vanishes by symmetry for all
odd degree polynomials. Hence, to have the spherical–radial rule to be
exact for all polynomials up to degree three in x ∈ Rn it is sufficient to
use the first degree Gauss–Laguerre rule of the form (Arasaratnam, 2009)

∫ ∞

0
S̃i(t) t

n
2−1 exp(−t) dt = w1 S̃i(t1), i = {0, 1},

where S̃0(t) = 1 and S̃1(t) = t. Now by solving the moment equations we
get

S̃0(t) = 1 : w1 =
∫ ∞

0
t

n
2−1 exp(−t) dt = Γ(

n
2
)

S̃1(t) = t : w1t1 =
∫ ∞

0
t

n
2 exp(−t) dt =

n
2

Γ(
n
2
).
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The first-degree Gauss–Laguerre approximation is constructed using the
point t1 = n

2 and the weight w1 = Γ(n
2 ), where Γ(·) is the Gamma func-

tion. The final radial form approximation can be written using Equa-
tion (20) in the form

∫ ∞

0
S(r) rn−1 exp(−r2) dr ≈ 1

2
Γ
(n

2

)
S
(√

n
2

)
. (22)

3.2.4 Combining the Spherical and Radial Rules

We now again consider the integral

I(f) =
∫

Rn
f(x) exp(−xTx) dx. (23)

Now we have an approximation for the spherical integral in Equation (19),
where the third-degree rule is acquired by the cubature point set [1] and
weight An

2n . Here the surface area An of the n − 1 hypersphere equals
2 πn/2

Γ(n/2) , where Γ(·) is the Gamma function.

By applying the results derived for the spherical and radial integral, we
may combine Equations (19) and (22) to construct a third-degree cubature
approximation for (23), which yields the elegant solution

I(f) ≈
√

πn

2n

2n

∑
i=1

f
(√

n
2
[1]i

)
.

Next we may consider the problem of numerically computing a standard
Gaussian integral of form

IN(f) =
∫

Rn
f(x)N (x | 0, I) dx, (24)

where N (x | 0, I) is the zero-mean Gaussian normal distribution with
unit covariance. Per definition of the Gaussian density function,

N (x | µ, Σ) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2
(x−µ)TΣ−1(x−µ)

)
,



21

we can get a third-degree approximation for Equation (24) by adding the
scaling factor (2π)−n/2 to the previously acquired approximation. Thus
we get the approximation for (24)

IN(f) ≈
1

2n

2n

∑
i=1

f
(√

n[1]i
)

.

Finally, by making a change of variable x =
√

Σy + µ we get the ap-
proximation of an arbitrary integral that is of form non-linear function ×
Gaussian. It can be written as

∫
Rn

f(x)N (x | µ, Σ) dx ≈
2n

∑
i=1

wif
(√

Σ ξi +µ
)

,

where the cubature points are ξi =
√

n[1]i, the corresponding (equal)
weights wi = 1

2n and the points [1]i from the intersections between the
Cartesian axes and the n-dimensional unit hypersphere.
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4 Cubature Optimal Estimation

Previously we have defined a way of forming Gaussian approximation
based Kalman filters through non-linear transformations. Additionally,
two different cubature integration rules have been presented for calculat-
ing the integrals needed for solving the approximate Gaussian.

4.1 Transformations

In practice both the Gauss–Hermite and the spherical–radial cubature
rule fall into the category of sigma point based transforms — and the cor-
responding filters into the category of sigma point filters (van der Merwe,
2004). The sigma point approach means that the resulting approximation
is formed with the help of a few well-chosen points that are propagated
through the non-linear transformation and then used to match the Gaus-
sian to.
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Figure 6: An illustrative example of the sigma point way of forming ap-
proximations. Here the cubature rule forms an approximation based on four
sigma points.

In Figure 6 an illustrative example of the spherical–radial cubature trans-
formation is presented. The non-linear transformation is the same as pre-
sented earlier in Section 2.2. The sigma points, or actually the cubature
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EKF UKF

GH−3 CKF

Figure 7: This figure illustrates the differences between the extended trans-
formation, unscented transformation (α = 0.5, β = 2, κ = 1), the 3rd degree
(p = 3) Gauss–Hermite transformation and the cubature transformation.
The thin solid blue circle in each figure is the exact normal approximation.

points, are drawn from the intersection points of the unit circle and the
axes, and they have then been transformed to match the mean and co-
variance of the original Gaussian as presented in Section 3.2.

The four points are propagated through the transformation. The result
can be seen in Figure 6(b). The arithmetic mean or point of mass of the
cubature points return an approximation of the Gaussian mean. This was
defined in Equation (7) in Section 2.3. Similarly the covariance can be
calculated by evaluating the second integral.

Of the earlier presented filtering algorithms the unscented Kalman filter
(UKF) is perhaps the most well known sigma point method. Therefore we
compare the Gauss–Hermite (GH) and cubature methods (CKF) against
the unscented Kalman filter. For comparison reasons, also the local lin-
earization approach of the extended Kalman filter (EKF) is provided. For



24

brevity the transformations are entitled with the abbreviation of the cor-
responding filter.

Figure 7 shows four approximations of the exact Gaussian fit. The local
approach of the EKF clearly differs from the three others. Here the un-
scented transform is done using parameter values α = 0.5, β = 2 and
κ = 3− n, where n = 2 (see Wan and van der Merwe, 2001). GH-3 refers
to the third-degree Gauss–Hermite rule.

4.2 Spherical–Radial Optimal Estimation

4.2.1 Cubature Kalman Filter

We now once more turn our interest back to the non-linear optimal esti-
mation problem. Previously, in Section 2.3, we went through the assumed
density approach to estimating the filtering and smoothing solution. In
the context of assumed density estimation several integrals need to be
solved to be able to form the needed approximations for the non-linear
transformations.

Two cubature based numerical integration methods were presented in
Section 3. Earlier we also briefly reviewed the transformations accom-
plished by these methods.

Now, to form the cubature Kalman filter (CKF) algorithm we need to
combine the assumed density equations with the spherical–radial cuba-
ture rule. The algorithm is presented in Listing 1. The CKF algorithm
follows the description by Arasaratnam and Haykin (2009).

The recursive iteration starts at step k = 0 with a prior distribution x0 ∼
N (m0|0, P0|0). The cubature points are drawn with the generator [1] and
then propagated with the help of prior mean and covariance. The matrix
square root is the lower triangular Cholesky factor, so that chol(A) = L,
where LLT = A. The predictive distribution is calculated by solving two
integrals from Equations (7).

The update step is calculated similarly as the prediction step. The inte-
grals that are evaluated are presented in Equations (8). The measurement
at step k is denoted yk.
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Listing 1: The cubature Kalman filter (CKF) algorithm. At time k =
1, . . . , T assume the posterior density function p(xk−1 | yk−1) =
N (mk−1|k−1, Pk−1|k−1) is known.

Prediction step:

1. Draw cubature points ξi, i = 1, . . . , 2n
from the intersections of the
n-dimensional unit sphere and the
Cartesian axes. Scale them by

√
n. That

is

ξi =

{√
n ei , i = 1, . . . , n
−
√

n ei−n , i = n + 1, . . . , 2n

2. Propagate the cubature points. The
matrix square root is the lower
triangular cholesky factor.

Xi,k−1|k−1 =
√

Pk−1|k−1ξi + mk−1|k−1

3. Evaluate the cubature points with the
dynamic model function

X∗i,k|k−1 = f(Xi,k−1|k−1).

4. Estimate the predicted state mean

mk|k−1 =
1

2n

2n

∑
i=1

X∗i,k|k−1.

5. Estimate the predicted error covariance

Pk|k−1 =
1

2n

2n

∑
i=1

X∗i,k|k−1X∗Ti,k|k−1

−mk|k−1mT
k|k−1 + Qk−1.

Update step:

1. Draw cubature points ξi, i = 1, . . . , 2n
from the intersections of the
n-dimensional unit sphere and the
Cartesian axes. Scale them by

√
n.

2. Propagate the cubature points.

Xi,k|k−1 =
√

Pk|k−1ξi + mk|k−1

3. Evaluate the cubature points with the
help of the measurement model
function

Yi,k|k−1 = h(Xi,k|k−1).

4. Estimate the predicted measurement

ŷk|k−1 =
1

2n

2n

∑
i=1

Yi,k|k−1.

5. Estimate the innovation covariance
matrix

Sk|k−1 =
1

2n

2n

∑
i=1

Yi,k|k−1YT
i,k|k−1

− ŷk|k−1ŷT
k|k−1 + Rk.

6. Estimate the cross-covariance matrix

Pxy,k|k−1 =
1

2n

2n

∑
i=1

Xi,k−1|k−1YT
i,k|k−1

−mk|k−1ŷT
k|k−1.

7. Estimate the Kalman gain
Kk = Pxy,k|k−1S−1

k|k−1.

8. Estimate the updated state
mk|k = mk|k−1 + Kk(yk − ŷk|k−1).

9. Estimate the error covariance
Pk|k = Pk|k−1 −KkSk|k−1KT

k .
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4.2.2 Cubature Rauch–Tung–Striebel Smoother

The fixed-interval cubature Rauch–Tung–Striebel smoother uses the as-
sumed density equations similarly as the cubature Kalman filter. The in-
tegrals that need to be evaluated were presented in Equations (9). List-
ing 2 presents the spherical–radial based cubature Rauch–Tung–Striebel
smoother algorithm.

The backward iteration of the algorithm starts at step k = T where the fil-
tering and smoothing results coincide. Hereafter the recursion progresses
through all time steps using both the filtering solution and the informa-
tion from the already smoothed steps.

Listing 2: The cubature Rauch–Tung–Striebel smoother (CRTS) algorithm.
Assume the filtering result mean mk|k and covariance Pk|k are known to-
gether with the smoothing result p(xk+1 | y1:T) = N (mk+1|T, Pk+1|T).

1. Draw cubature points ξi, i = 1, . . . , 2n
from the intersections of the
n-dimensional unit sphere and the
Cartesian axes. Scale them by

√
n. That

is

ξi =

{√
n ei , i = 1, . . . , n
−
√

n ei−n , i = n + 1, . . . , 2n

2. Propagate the cubature points

Xi,k|k =
√

Pk|kξi + mk|k.

3. Evaluate the cubature points with the
dynamic model function

X∗i,k+1|k = f(Xi,k|k).

4. Estimate the predicted state mean

mk+1|k =
1

2n

2n

∑
i=1

X∗i,k+1|k.

5. Estimate the predicted error covariance

Pk+1|k =
1

2n

2n

∑
i=1

X∗i,k+1|kX∗Ti,k+1|k

−mk+1|kmT
k+1|k + Qk.

6. Estimate the cross-covariance matrix

Dk,k+1 =
1

2n

2n

∑
i=1

(
Xi,k|k −mk|k

)
(
X∗i,k+1|k −mk+1|k

)T.

7. Estimate the gain term
Ck = Dk,k+1P−1

k+1|k.

8. Estimate the smoothed state mean
mk|T = mk|k + Ck(mk+1|T −mk+1|k).

9. Estimate the smoothed state covariance
Pk|T = Pk|k + Ck(Pk+1|T − Pk+1|k)C

T
k .
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Listing 3: The Gauss–Hermite Kalman filter (GHKF) algorithm of degree p.
At time k = 1, . . . , T assume the posterior density function p(xk−1 | yk−1) =
N (mk−1|k−1, Pk−1|k−1) is known.

Prediction step:

1. Find the roots xi, i = 1, . . . , p, of the
Hermite polynomial Hp(x).

2. Calculate the corresponding weights

wi =
2p−1 p!

p2[Hp−1(xi)]2
.

3. Use the product rule to expand the
points to a n-dimensional lattice of pn

points ξi, i = 1, . . . , pn, with
corresponding weights.

4. Propagate the cubature points. The
matrix square root is the lower
triangular cholesky factor.

Xi,k−1|k−1 =
√

2Pk−1|k−1ξi + mk−1|k−1

5. Evaluate the cubature points with the
dynamic model function

X∗i,k|k−1 = f(Xi,k−1|k−1).

6. Estimate the predicted state mean

mk|k−1 =
pn

∑
i=1

wiX∗i,k|k−1.

7. Estimate the predicted error covariance

Pk|k−1 =
pn

∑
i=1

wiX∗i,k|k−1X∗Ti,k|k−1

−mk|k−1mT
k|k−1 + Qk−1.

Update step:

1. Repeat steps 1–3 from earlier to get the
pn cubature points and their weights.

2. Propagate the cubature points.

Xi,k|k−1 =
√

2Pk|k−1ξi + mk|k−1

3. Evaluate the cubature points with the
help of the measurement model
function

Yi,k|k−1 = h(Xi,k|k−1).

4. Estimate the predicted measurement

ŷk|k−1 =
pn

∑
i=1

wiYi,k|k−1.

5. Estimate the innovation covariance
matrix

Sk|k−1 =
pn

∑
i=1

wiYi,k|k−1YT
i,k|k−1

− ŷk|k−1ŷT
k|k−1 + Rk.

6. Estimate the cross-covariance matrix

Pxy,k|k−1 =
pn

∑
i=1

wiXi,k−1|k−1YT
i,k|k−1

−mk|k−1ŷT
k|k−1.

7. Estimate the Kalman gain
Kk = Pxy,k|k−1S−1

k|k−1.

8. Estimate the updated state
mk|k = mk|k−1 + Kk(yk − ŷk|k−1).

9. Estimate the error covariance
Pk|k = Pk|k−1 −KkSk|k−1KT

k .
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4.3 Gauss–Hermite Optimal Estimation

Listing 3 shows the Gauss–Hermite Kalman filter algorithm that uses
Hermite polynomials to solve the Gaussian integrals. The degree of ap-
proximation can be controlled by choosing the number of the Gauss–
Hermite quadrature points p.

The algorithm is very similar to the cubature Kalman filter algorithm
presented in Listing 1. The only disparities come from the differences
between the Gauss–Hermite and spherical–radial integral evaluation. The
Gauss–Hermite rule was presented in Section 3.

The Gauss–Hermite Rauch–Tung–Striebel smoother algorithm is pre-
sented in Listing 4. The assumed density form Gaussian integrals from
Equations (9) are evaluated with the Gauss–Hermite rule.

Listing 4: The Gauss–Hermite Rauch–Tung–Striebel smoother (GHRTS) al-
gorithm of degree p. Assume the filtering result mean mk|k and covari-
ance Pk|k are known together with the smoothing result p(xk+1 | y1:T) =
N (mk+1|T, Pk+1|T).

1. Repeat steps 1–3 in Listing 3 to get the
pn cubature points and their weights.

2. Propagate the cubature points

Xi,k|k =
√

2Pk|kξi + mk|k.

3. Evaluate the cubature points with the
dynamic model function

X∗i,k+1|k = f(Xi,k|k).

4. Estimate the predicted state mean

mk+1|k =
pn

∑
i=1

wiX∗i,k+1|k.

5. Estimate the predicted error covariance

Pk+1|k =
pn

∑
i=1

wiX∗i,k+1|kX∗Ti,k+1|k

−mk+1|kmT
k+1|k + Qk.

6. Estimate the cross-covariance matrix

Dk,k+1 =
1

2n

2n

∑
i=1

(
Xi,k|k −mk|k

)
(
X∗i,k+1|k −mk+1|k

)T.

7. Estimate the gain term
Ck = Dk,k+1P−1

k+1|k.

8. Estimate the smoothed state mean
mk|T = mk|k + Ck(mk+1|T −mk+1|k).

9. Estimate the smoothed state covariance
Pk|T = Pk|k + Ck(Pk+1|T − Pk+1|k)C

T
k .
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5 Case Studies

5.1 Target Tracking of a Maneuvering Target

Target tracking applications are often used to demonstrate the effect of
Kalman filtering. This comes natural as the states of the dynamic system
are easy to associate with physical properties like position and velocity.
In this example we consider a coordinated turn model where we track
a maneuvering target on a two-dimensional plane with the help of two
sensors.

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

1.5

θ

θ
1

2

Figure 8: A sketch of the experiment setting used by the coordinated turn
model with bearings only tracking. The actual trajectory of the vehicle is
shown in dashed blue. The towers illustrate the sensor positions.

Figure 8 shows the basic test setup. We have a vehicle and its trajectory on
a plane. Two sensors track the position of the vehicle by returning noisy
measurements of angular direction of the target. As each sensor return
only an angle θi the tracking model is called a bearings only tracking model
(Bar-Shalom et al., 2001).

The dynamic model is a coordinated turn model. These types of models are
often used in air traffic control as civilian aircraft have two basic modes of
flight: (i) Straight flight with constant speed and course, (ii) Maneuvering,
when the course is changed by turning. (Bar-Shalom et al., 2001) For
brevity and easing illustrative representation we consider a case where
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the vehicle is constrained to move on a two-dimensional plane — as
shown in Figure 8.

The dynamic model of the coordinated turn model (Bar-Shalom et al.,
2001) is

xk =


1 0 sin(ω∆t)

ω −
(

1−cos(ω∆t)
ω

)
0

0 1 1−cos(ω∆t)
ω

sin(ω∆t)
ω 0

0 0 cos(ω∆t) − sin(ω∆t) 0
0 0 sin(ω∆t) cos(ω∆t) 0
0 0 0 0 1

 xk−1 + qk−1, (25)

where the state of the target is x =
[
x1 x2 ẋ1 ẋ2 ω

]T. The coordinates
are (x1, x2), the velocities (ẋ1, ẋ2) and the turn rate is ω. The additive
noise of the dynamic model is qk−1 ∼ N (0, Qk−1). The coordinated turn
model is necessarily non-linear if the turn rate is not a known constant. A
similar model is used by Särkkä and Hartikainen (2010) and Arasaratnam
and Haykin (2009).

The observations of the state are obtained through two sensors that mea-
sure the angles θi between the target and the sensor. The non-linear mea-
surement model for each sensor i can be written (Särkkä and Hartikainen,
2010) as

θi
k = arctan

(
x2,k − si

y

x1,k − si
x

)
+ ri

k, (26)

where (si
x, si

y) is the position of the sensor i, and ri
k ∼ N (0, σ2

θ ) is the
measurement noise.

5.1.1 Experiment Settings

Both the dynamic and the measurement models are non-linear. We use
four different non-linear filters and smoothers to track the movement
of the vehicle: the extended Kalman filter (EKF), the unscented Kalman
filter (UKF), the third-degree Gauss–Hermite Kalman filter (GHKF) and
the spherical–radial rule based cubature Kalman filter (CKF). We also
compare smoothing results for the four RTS smoothers corresponding to
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the filters. The unscented Kalman filter parameters are α = 0.5, β = 2 and
κ = 3− n, where n = 5 (see Wan and van der Merwe, 2001).

The simulated route is discretized into 500 time steps with ∆t = 0.01. The
dynamic model noise covariance is

Qk−1 =


qc∆t3/3 0 qc∆t2/2 0 0

0 qc∆t3/3 0 qc∆t2/2 0
qc∆t2/2 0 qc∆t 0 0

0 qc∆t2/2 0 qc∆t 0
0 0 0 0 0.01

 , (27)

where qc = 0.1. The measurement noise of the angular measurement was
assumed to be σθ = 0.05. The two sensors tracking the movement are
positioned at (−1, 0.5) and (1, 1).

5.1.2 Results

The filters and smoothers were compared by running them over 100 in-
dependent simulations. The comparison was done by calculating the root
mean square error (RMSE) for the position, velocity and angular compo-
nents separately and averaging them over all the runs. In addition, the
number of function evaluations used by each method gives a rough esti-
mate of the computational effectiveness of each algorithm.

Table 1: This table shows the RMSE values calculated by averaging the re-
sults of 100 independent runs. The error is separately shown for position,
velocity and turn rate components. Additionally, the number of required
function evaluations is shown on far right.

Position Velocity Turn rate Function
Filter Smoother Filter Smoother Filter Smoother evaluations

EKF 0.0696 0.0237 0.5099 0.1262 42.0297 22.1552 6
UKF 0.0669 0.0233 0.4939 0.1234 41.8408 22.1308 11
GHKF 0.0669 0.0233 0.4939 0.1234 41.8330 22.1266 243
CKF 0.0669 0.0233 0.4943 0.1235 41.8406 22.1263 10

Figure 9 shows a realization of the true trajectory (in dashed black) to-
gether with the CKF filter and smoother estimates (in solid blue and red)
of the trajectory. The uncertainty of the estimate is illustrated with the
help of the 95 % confidence regions of the estimates. The results of other
filters are not shown as the results are practically identical.
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Figure 9: A realization of the tracking problem. The colored patches repre-
sent the 95 % confidence intervals.

Table 1 contains the averaged RMSE values. As can be seen, the local
linearization used by EKF causes it to be slightly less accurate than the
other three filters and smoothers. Notably the results of UKF, GHKF and
CKF are practically equally good.

The main difference between these three methods is the execution time.
Table 1 shows the number of function evaluations per filter. It is clearly
visible that the Gauss–Hermite Kalman filter requires tens of times more
execution time than the other three filters. This is due to the curse of
dimensionality. GHKF requires 35 = 243 function evaluations on each
integral calculation, which is a lot compared to UKF (2 · 5 + 1 = 11 eval-
uations) and CKF (2 · 5 = 10 evaluations). EKF requires only one eval-
uation together with the evaluation of its n-dimensional Jacobian matrix
(1 + n = 6 evaluations).
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5.2 Training a MLP Neural Network

Singhal and Wu (1989) present an interesting application for multilayer
perceptron (MLP) neural networks. They use a global extended Kalman
filter (GEKF) approach to train a neural network so that it identifies
shapes of four different colors in a rectangular region. The four-region
classification problem has since often (see, e.g., Wan and van der Merwe,
2001; van der Merwe, 2004) been used as an example of Kalman filter
based training and to help comparing different training methods.
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Figure 10: The shape consisting of four regions that Singhal and Wu used.
In this figure the square has been discretized to a 100× 100 lattice.

The four-region classification problem relates to a figure where a square-
formed area is divided in two and a couple of interlocked circular regions
are attached to the figure. These geometrical shapes have been illustrated
in Figure 10. The shapes can be seen as a function that maps x and y
co-ordinates to a color between 1–4 by returning a binary vector.

The classification problem is to train a 2-10-10-4 feedforward MLP neu-
ral network with the help of the Figure 10 to return a figure with the
same shapes. The network has two input nodes, the co-ordinates (x, y) ∈
[−1, 1]× [−1, 1]. In addition, the input layer has one bias term. The net-
work uses two hidden layers with 10 nodes each. The network has four
output nodes. For in-depth explanations of a MLP neural network struc-
ture see, for example, Haykin (1999).
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Figure 11: This figure shows an example of network output after training
the network with 5000 random samples. The true figure is illustrated by the
outlines.

5.2.1 Experiment Settings

The network contains 170 weights altogether, which defines the dimen-
sion of the dynamic model. The estimation problem may be written with
similar notation as the previously discussed filtering problems. The state
space representation is

wk+1 = wk + qk

dk = h(xk, wk) + rk,

where the weights wk ∈ R170 correspond to a stationary process. The de-
sired output dk ∈ R4 corresponds to a non-linear observation on wk. The
dynamic model function is linear but the measurement model function is
non-linear. We use non-linear tanh activation as the activation function of
the MLP neural network.

The square is discretized into a 100× 100 uniform grid. From this grid a
number of ns = 5000 random samples are drawn for training. The initial
state is drawn from a uniform distribution, w0 ∼ U (−2, 2). The initial
covariance is set to a diagonal matrix with σ = 0.01 along the diagonal.
The diagonal noise term covariances are set to the values Q0 = 10−5 I
and R0 = 10−3 I. They are exponentially annealed toward the values
Qns = 10−9 I and Rns = 10−7 I respectively as the training progresses
(Wan and van der Merwe, 2001).

We use three different non-linear Kalman filters for parallel training: EKF,
UKF and CKF. All filters use the same initial states and samples during
the training steps. For the unscented Kalman filter we use parameter
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Figure 12: The learning curve averaged over 50 independent runs shows
small variation between the methods. Each run consisted of 5000 samples to
teach the network (1 epoch = 100 random samples).

values α = 0.5, β = 2 and κ = 3− n, where n = 170 (see Wan and van der
Merwe, 2001). Notably this is not an optimized method for training MLP
neural networks, but a challenging estimation problem for non-linear
Kalman filters.

5.2.2 Results

By running the three parallel Kalman filters over 5000 samples the net-
work weights converge on average to a solution that is able to return a
representation of the four region problem that is accurate up to about
93 %. An example of the network outputs after the training is presented
in Figure 11.

The random samples and the initial state cause variation in the perfor-
mance of the three filters. The parallel training of the three neural net-
works was run 50 times and the average convergence was studied. Fig-
ure 12 shows the average convergence properties of the three different fil-
tering methods. The left vertical axis shows the accuracy of the returned
network output after a certain number of samples. The right axis shows
the standard deviation of the result.

The EKF and UKF solutions resemble each other, whereas the CKF so-
lution converges a bit slower but results in a good solution with small
variance.
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6 Discussion

The two experiment cases that were presented in the previous section
bring forth the most notable properties of the cubature optimal estimation
methods studied in this thesis.

As the results in the target tracking example suggest, the differences
between the UKF, GHKF and CKF methods are small or non-existent
in practical examples. The local linearization approach used by EKF is
clearly good enough for this particular estimation problem, but it does
not preserve the Gaussian nature of the approximation — as seen in
Section 4.1.

The Gauss–Hermite Kalman filter (GHKF) and the similarly formulated
smoother suffer from the curse of dimensionality. This was shown in Sec-
tion 3.1. Consequently it requires a magnitude of function evaluations
that makes it impossible to implement in cases with many dimensions.
The tracking example shows that the GHKF is clearly slow and the exces-
sive number of calculations do not yield any improvements in the results.

The curse of dimensionality is even clearer in the four region classifi-
cation problem, as the third-degree Gauss–Hermite rule would require
3170 ≈ 1081 function evaluations making it impossible to implement. Yet,
the Gauss–Hermite method makes it easy to control the degree of ap-
proximation. The number of one-dimensional quadrature points defines
the degree.

The spherical–radial rule provides the cubature Kalman filter (CKF) with
the accuracy of the GHKF but less computational complexity. With 2n
function evaluations it is a clear rival of the unscented Kalman filter
(2n + 1 evaluations). In fact, it can be shown that the CKF falls back to a
special case of the UKF with parameters α = 1, β = 0 and κ = 0. This is
shown in Appendix A.

Additionally, Wan and van der Merwe (2001) show a relation between
the GHKF and the UKF. For the scalar case the unscented transform with
α = 1, β = 0 and κ = 2 coincides with the three-point Gauss–Hermite
quadrature rule.

The cubature Kalman filter shares many of the good properties of the
unscented Kalman filter. They both are derivative-free as no closed-form
derivatives are required or continuity requirements are set.
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The spherical–radial rule that was derived in this thesis is a third-degree
rule. Arasaratnam and Haykin (2009) discuss the need for higher-degree
cubature rules. A higher-degree rule yields more accuracy only if the in-
tegrand is well-behaved in the sense of approximations of higher-degree
polynomials, and the weighting function follow the Gaussian density ex-
actly. Arasaratnam and Haykin (2009) state that the use of higher-degree
cubature rules in the design of the CKF may often sabotage its perfor-
mance.
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7 Conclusions

In this thesis the non-linear optimal estimation framework was presented
with the help of an assumed density approach. The Gaussian integrals
that arise in this setting were solved using two different cubature integra-
tion methods.

Both of these methods use deterministically chosen sigma points to form
the desired approximation. The Gauss–Hermite rule used a simple prod-
uct rule method to fill the multidimensional space with cubature points,
whereas the spherical–radial rule uses invariant theory to diminish the
number of points by utilizing symmetries.

The most important remarks regarding the Gauss–Hermite rule based
filter (GHKF) and smoother (GHRTS) and the spherical–radial rule based
cubature Kalman filter (CKF) and smoother (CRTS) are:

• Both the Gauss–Hermite and the spherical–radial cubature rule are
derivative free. No closed-form representations or continuity re-
quirements are needed. This is desirable in problems with consider-
able non-linearities.

• The Gauss–Hermite cubature rule suffers from the curse of dimen-
sionality as it entails pn cubature points, where n is the state-vector
dimension. Even though, in problems with only a few state-space
dimensions the ease of controlling the degree of the Gaussian ap-
proximation makes the Gauss–Hermite method appealing.

• The spherical–radial rule uses 2n cubature points. As this is the the-
oretical lower bound of points for a third-degree rule, the spherical–
radial rule based cubature Kalman filter may be considered as an
optimal approximation to the non-linear Bayesian filter under the
Gaussian assumption.

• The spherical–radial cubature rule can be seen as a special case of
the unscented transform with parameters α = 1, β = 0 and κ = 0.
Yet the well-justified numerical properties of the cubature Kalman
filter make it a new and welcomed refinement to the unscented
transform.

All in all the cubature integration methods provide a different perspective
to existing methods and justify the use of certain parameters in the UKF
setting.
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Appendix A:
The Spherical–Radial Rule as a Special Case of the Un-
scented Transform

The unscented transform uses a fixed number of deterministically chosen
sigma points to capture the mean and covariance of the distribution to be
approximated. The unscented transform to form the Gaussian approxima-
tion is done the following way (Wan and van der Merwe, 2001; Särkkä,
2006):

1. Form the matrix of sigma points

X =
[
m . . . m

]
+
√

n + λ
[
0
√

P −
√

P
]

,

where λ is a scaling parameter which is defined in terms of the
parameters α and κ as

λ = α2(n + κ)− n.

2. Propagate the sigma points through the non-linear function f(·)

Yi = f(Xi), i = 1, . . . , 2n + 1,

where Xi and Yi denote the ith column of matrices X and Y respec-
tively.

3. Estimates of the mean m̂ and covariance P̂ of the transformed vari-
able can be acquired through evaluating the following sums

m̂ =
2n+1

∑
i=1

W(m)
i−1 Yi

P̂ =
2n+1

∑
i=1

W(c)
i−1(Yi − m̂)(Yi − m̂)T,

where the constant weights W(m)
i and W(c)

i are defined as
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W(m)
0 = λ/(n + λ)

W(c)
0 = λ/(n + λ) + (1− α2 + β)

W(m)
i = 1/{2(n + λ)}, i = 1, . . . , 2n

W(c)
i = 1/{2(n + λ)}, i = 1, . . . , 2n.

If we require the scaling parameter λ to be equal to zero, we have to
choose the other parameters to be α = ±1 and κ = 0. Now the sigma
points used by the unscented transform are equivalent to the spherical–
radial rule cubature points except that instead of 2n points there are
2n + 1 points. The additional point is located exactly at the mean m.

If we set the parameter β = 0, the additional mean point is zero-weighted
and can be discarged. Now the remaining 2n points are equally weighted
with the weights W(m)

i = W(c)
i = 1/2n, which is exactly the case in the

spherical–radial rule based cubature transformation.

This means that the cubature transform coincide with the unscented
transform when the unscented transform is done with parameters
α = ±1, β = 0 and κ = 0.
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Appendix B:
Suomenkielinen yhteenveto

Kubatuuri-integrointimenetelmien käyttö epälineaarisessa Kalman-
suodatuksessa ja silotuksessa

Optimaalinen estimointi tarkoittaa dynaamisen järjestelmän todellisen ti-
lan hakemista käyttäen kohinaisia ja mahdollisesti epäsuorasti saatuja
mittaustuloksia. Sovelluskohteita löytyy runsaasti eri aloilta. Optimaa-
lisen estimoinnin suodatus- ja silotusmenetelmiä hyödynnetään muun
muassa navigoinnissa (GPS-paikannus), signaalinkäsittelyssä, taloudessa
ja koneoppimisessa (ks. esim. Särkkä, 2006).

Tässä työssä tarkastellaan diskreettiaikaisia dynaamisia systeemejä, jotka
voidaan esittää tilayhtälömallina

xk = f(xk−1) + qk−1

yk = h(xk) + rk,
(1)

jossa xk ∈ Rn on tila ja yk ∈ Rm on mittaus aika-askeleella k = 1, . . . , T.
Mallin dynamiikka tulee kuvauksesta f(·) : Rn 7→ Rn ja havain-
not mittausmallista h(·) : Rn 7→ Rm. Mallin normaalijakautuneeksi
oletettu kohina on puhtaasti additiivista. Prosessikohina on muotoa
qk−1 ∼ N (0, Qk−1) ja mittauskohina rk ∼ N (0, Rk). (Kalman, 1960;
Bar-Shalom ym., 2001)

Termi suodatus tarkoittaa aika-askeleella k tilan xk marginaalijakauman
selvittämistä annettuna kaikki aikahetkeen mennessä saadut mittaukset
y1:k. Tätä jakaumaa voidaan merkitä p(xk | y1:k). Silotus puolestaan viit-
taa tilanteeseen, jossa käytettävissä on myös aika-askeletta k seuraavia
mittauksia. Marginaalijakaumaa voidaan tällöin merkitä p(xk | y1:T), jos-
sa T > k.

Tilanteissa, joissa yhtälöt (1) ovat lineaarisia, suodatusongelma voidaan
ratkaista suljetussa muodossa käyttäen Kalman-suodinta (Kalman, 1960),
ja vastaavalle silotusongelmalle saadaan ratkaisu käyttäen Rauch–Tung–
Striebel (RTS) -silotusta (Rauch ym., 1965).

Epälineaarinen tiladynamiikka- ja mittausmalli hankaloittavat tilannet-
ta, sillä kuvaukset eivät tällöin säilytä jakaumien gaussista luonnetta.
Epälineaarisia suotimia on vuosien varrella esitelty useita. Näistä tun-
netuin on ensimmäisen asteen derivaattojen antamaan linearisaatioon
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perustuva laajennettu Kalman-suodin (Extended Kalman filter, EKF) (ks.
Jazwinski, 1970). Muita tunnettuja lähestymistapoja tarjoavat esimerkiksi
tilastollisesti linearisoitu Kalman-suodin (Statistically linearized Kalman fil-
ter, SLF) (ks. Gelb, 1974) sekä deterministisesti valittuihin sigma-pisteisiin
nojaava hajustamaton Kalman-suodin (Unscented Kalman filter, UKF) (ks.
Julier ja Uhlmann, 1996; van der Merwe, 2004).

Monien epälineaaristen suotimien esittäminen matemaattisesti voidaan
yhtenäistää kirjoittamalla ne oletetun tiheyden muotoon (Assumed den-
sity filtering, ADF), jossa suodatus- ja silotusyhtälöt kirjoitetaan olettaen,
että estimoitava jakauma todella noudattaisi gaussista normaalijakaumaa
(Maybeck, 1982; Ito ja Xiong, 2000; Särkkä, 2010). Gaussinen approksi-
maatio on tällöin muotoa

p(xk | y1:k) ≈ N (xk | mk|k, Pk|k),

jossa N (xk | mk|k, Pk|k) on moniulotteinen normaalijakauma keskiarvol-
la mk|k ja kovarianssilla Pk|k. Käyttämällä tätä muotoa suodatus- ja silo-
tusyhtälöiden ratkaiseminen kiteytyy muutaman integraalin laskemiseen.
Näissä integraaleissa integroitava funktio on käytännössä epälineaarisen
funktion ja normaalijakauman tulo eli niin sanottu gaussinen integraali.

Suodatus- ja silotusyhtälöissä esiintyvät gaussiset integraalit voidaan
ratkaista millä tahansa analyyttisellä tai numeerisella integrointimene-
telmällä. Yksi monista lähestymistavoista integraalien ratkaisemiseen on
kubatuurisääntöjen käyttö. Moniulotteinen kubatuurisääntö yleistää yk-
siulotteiset kvadratuurisäännöt useaan ulottuvuuteen. Kubatuurisäännöt
pyrkivät approksimoimaan integraalia painotetulla summalla

∫
Rn

f(x)w(x) dx ≈
m

∑
i=1

wi f(xi),

jossa f(·) on epälineaarinen kuvaus, w(·) : Rn 7→ R+ painofunktio ja
wi diskreetit painot. Yksiulotteinen Gauss–Hermite-kvadratuurisääntö
soveltuu gaussisten integraalien ratkaisemiseen yhdessä ulottuvuudessa.
Tämä kvadratuurisääntö voidaan laajentaa n-ulotteiseksi kubatuu-
risäännöksi ottamalla n-kertainen karteesinen tulo yksiulotteisesta
kvadratuuripistejoukosta. (Wu ym., 2006) Tätä kutsutaan tulosäännöksi,
ja sen huonona puolena on kubatuuripisteiden määrän eksponentiaa-
linen kasvu ulottuvuuksien määrän kasvaessa, mikä tunnetaan myös
dimensionaalisuuden kirouksena. Gauss–Hermite-kubatuurisäännön
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käyttäminen vaatii siis pn kubatuuripistettä, missä p on yksiulotteisen
Gauss–Hermite-kvadratuurisäännön pisteiden määrä ja n ulottuvuuksien
määrä.

Tapa välttää tarvittavien pisteiden määrän kasvua on hyödyntää in-
tegrointialueen symmetriaa. Käyttämällä Sobolevin invarianssiteoriaa
voidaan kubatuuripisteiden määrää vähentää (ks. Cools, 1997). Ara-
saratnamin ja Haykinin (2009) esittelemä pallo- ja sädesymmetrinen
kubatuurisääntö perustuu integraalin jakamiseen kahtia; sisäkkäiset
pallonkuoret ja säteittäinen integraali ratkaistaan erikseen. Yhdistämällä
nämä säännöt saadaan kolmannen asteen monomien mielessä optimaa-
linen integrointisääntö, jossa 2n samoin painotettua kubatuuripistettä
on valittu yksikköpallon ja karteesisten akselien risteymäkohdista ja
skaalattu ulottuvuuksien määrän neliöjuurella.

ADF-yhtälöiden esitystapaa käyttäen voidaan Gauss–Hermite-säännön
ja pallo–säde-symmetrisen säännön avulla muodostaa Gauss–Hermite-
Kalman-suodin (GHKF) sekä (pallo–säde-symmetrinen) kubatuuri-
Kalman-suodin (CKF). Vastaavasti voidaan muotoilla näitä kahta
integrointisääntöä hyödyntävät silotusmenetelmät.

Kubatuuri-Kalman-suodin jakaa hajustamattoman Kalman-suotimen
kanssa joukon ominaisuuksia. Kummatkin nojaavat deterministisiin
sigma-pisteisiin, vaativat ulottuvuuksien määrään suoraan verrannol-
lisesti evaluointipisteitä (UKF: 2n + 1, CKF: 2n), eivätkä ne kaipaa
derivaattoja suljetussa muodossa. Itse asiassa liitteessä A osoitetaan, että
CKF palautuu UKF-suotimeksi, jossa on käytetty parametreja α = 1,
β = 0 ja κ = 0.

Työssä tehdyissä simulaatioissa näkyy, että käytännössä eri suotimien
erot jäävät hyvin pieniksi. Esitellyistä menetelmistä voidaan todeta, että
laskennallisesti raskaan GHKF:n etuna on sen tarjoama helppo tapa kont-
rolloida approksimaation astetta. CKF puolestaan perustelee tiettyjen pa-
rametrien valintaa UKF:ssä ja tarjoaa uuden näkökulman sigma-pisteiden
valitsemiseen.
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