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Dynamical statistical modeling of physiological noise for fast BOLD fMRI 
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INTRODUCTION 
The recent developments in fast acquisition methods for BOLD fMRI such as dynamical magnetic resonance Inverse Imaging (InI) [1,2] offer whole-brain 
coverage with sampling rates up to 100 milliseconds. In addition to more accurate temporal estimation of the hemodynamic responses, this allows also 
potentially more accurate modeling and removal of physiological noise such as cardiac and respiratory cycles, which are adequately sampled to prevent 
considerable aliasing. The fast sampling methods are typically used with event-related fMRI paradigms [3], and therefore accurate modeling is important for 
best possible separation of the stimulus related BOLD signal from the physiological noise to obtain maximal benefits from the high temporal resolution. In 
this work, we propose a method for physiological noise modeling and removal, which allows dynamical tracking of variations in the cardiac and respiratory 
frequencies during the data acquisition by using an Interacting Multiple Model (IMM) Kalman Filter (KF) approach [4].       
METHODS 
A quasi-periodic physiological oscillation pattern c(t), such as heartbeat, can be modeled with a “stochastic harmonic oscillator” or “stochastic resonator” 
d2c(t)/dt2 = −(2πj fc(t))2c(t) + nc(t), where fc(t) is the time-varying frequency and nc(t) is a white noise process. In the estimation, we treat the signals c(t) and 
the derivatives dc(t)/dt as unknowns at each voxel, which is equivalent to estimation of the unknown phases and amplitudes of the signal at the voxels. The 
slower “bias” components such as the BOLD signal can be modeled using a simple short-time linear model, which can be represented as Wiener velocity 
model d2b(t)/dt2 = nb(t), where nb(t) is a white noise process. This model is common in target tracking applications [4] and simply assumes that the signal b(t) 
is smooth and low frequency dominated. If the frequency fc(t) is constant or known, the estimation problem is linear and can be effectively solved by the KF. 
Typically, the heartbeat and respiration frequencies vary over the data acquisition period, and the related signals can be acquired by external measurement 
systems. Consequently, we first estimate the time-varying frequencies from the external cardiac and respiratory measurements separately by using the 
IMM method as follows. The ranges of possible cardiac and respiratory frequencies are suitably discretized, such as fc(t)∈(40,41,…,90) beats per minute 
(bpm) and fr(t)∈(15,16,…,35) bpm. At each time, the signal is assumed to consist of a fundamental frequency with two additional harmonics, and a bias 
term. The IMM approach allows probabilistic jumps between the models with different discrete frequencies, thereby capturing the time-varying 
characteristics of these quantities. To obtain a benchmark data for testing the model and against which the accelerated methods could be evaluated, we 
collected standard EPI data with spatial coverage limited to three slices placed over calcarine sulcus. The sequence parameters were TR: 200.00 msec, TE: 
30.00 msec, flip angle: 30 degrees, image matrix: 64x64, voxel size: 4 mm isotropic and the data was acquired on a Siemens 3T Tim Trio scanner using a 
32 channel head coil. The visual stimulation paradigm consisted of three conditions, where either both visual hemifields were stimulated simultaneously or 
one hemifield stimulus was followed by the other with a lag of 200 msec. The inter-stimulus interval was 500 msec. Subject’s heartbeats were recorded by 
using electrocardiogram and respiration was measured with a pneumatic belt around the chest.     
RESULTS 
The time courses of the IMM estimated frequencies demonstrate the capability of the method in following the temporal changes in the physiological signals. 
The estimated respiratory and cardiac frequencies varied within ranges of 24-27 and 67-72 bpm, respectively. The EPI signal time courses show drastically 
different noise characteristics depending on the spatial location. The more medial example voxel in Figure 1 shows moderate cardiac and respiratory 

fluctuations, which are effectively cleaned by the filter. 
The more lateral voxel, which appears to be located on 
the surface of the brain, shows highly prominent 
respiratory oscillations. These could be due to 
perturbations in B0 caused by variations of bulk 
susceptibility or air volume in the thorax, or related to 
bulk movement of the head with the respiration not 
completely eliminated by the motion correction. For this 
location, the proposed method attenuated the 
respiratory peak at the power spectrum by a factor of 
~10.               

Figure 1 (Left panel) Spectrograms of the 
external respiration and cardiac measurements, along 
with the IMM time-varying frequency estimates. (Right 
panel) EPI slice with two example voxels marked with 
black squares and the corresponding original and 
filtered signal time courses.  
 

DISCUSSION 
Modeling of the physiological noise will most likely play an important role in analysis of rapidly sampled BOLD fMRI data. In addition to increasing the 
sensitivity of the event-related hemodynamic response estimation, characterization of noise will be an important factor in analysis of resting state fMRI, as 
the obvious confounds these signals can produce in functional connectivity studies. Moreover, in higher field strengths these effects will be even more 
pronounced. As the proposed filtering method yields both the amplitudes and phases of the physiological signals at each voxel, it offers a direct way to 
quantify phase lags between different brain areas with respect to the reference signal. Because the methodology is based on efficient tracking algorithms, 
is also allows for real time implementation for online applications.         
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