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Abstract

In criminology, the real life CSI currently faces an interesting
phase, where mathematicians are entering the cold-blooded field of
forensics. Geographic profiling uses existing geocoded data to pre-
dict, solve and prevent crime. In this study, we examine probability
distance strategies and a Bayesian approach used to predict the res-
idential location of a serial offender. We compare different distance
decay functions used for estimating the probability density of the
residential location. Additionally, we derive a Bayesian approach for
predicting the next target location of the serial offender following
the formulation of O’Leary [2009].

For the measure of performance, we choose the search cost rank-
ing. The model is tested using the leave-one-out cross-validation with
a small example dataset that consists of serial murder cases. Differ-
ent strategies of combining the six different methods are discussed.
The tests suggest that the best predictions are achieved using the
Bayesian approach with exponential decay function. However, this
result is not statistically significant due to the lack of test data.
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1 Introduction

For the untrained eye, a set of crime sites of a serial killer might seem
totally random when visualized on a map. However, the behavior of the
serial killer usually has some underlying statistical regularities which can
be discovered by computerized data analysis. The same sort of behavior
can be found for all kinds of serial offenders: killers, rapists, burglars, etc.
This type of analysis is called geographic profiling.

Understanding the statistical regularities may help predicting the offender’s
anchor point (residence, workplace, etc.). This can be crucial for catch-
ing the offender before further crimes are committed. However, the ge-
ographic profiling methods usually neglect some essential pieces of in-
formation regarding the situation, such as that it is very unlikely to find
the offender’s residence from the middle of a lake. Therefore, geographic
profiling should be considered a decision support system rather than an
expert system [Canter et al., 2000].

In Section 2, we first present the spatial distribution strategies which are a
simple approach to the problem [Snook et al., 2005]. They predict the of-
fender’s anchor point by calculating, e.g., the centroid of the crime sites.
Another category of strategies is the probability distribution strategies which
are the most common way of addressing the problem of finding the an-
chor point. They rely on distance decay functions, which estimate the dis-
tribution of the distances the offender is willing to travel to the crime site.
Several studies that compare different decay functions exist [Levine, 2004,
Canter and Hammond, 2006, Snook et al., 2005].

In recent years, there has been a rise in the popularity of the Bayesian
approaches tackling the problem of locating the anchor point. This can be
seen in the number of papers published recently [O’Leary, 2009, Mohler
and Short, 2009, Levine, 2009]. Following O’Leary [2009], we derive the
probability density function (PDF) for the anchor point from the Bayes’
rule. We then discuss the assumptions behind the Bayesian formalism
and also address the question, how to measure the performance of the
prediction.

At the end of Section 2, we present methods for combining the predictions
of different methods. The most advanced combination methods can take
the different strengths of different models into account.
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A crime investigator might also be interested in knowing the next target
of the offender. Section 3 deals with this problem presenting a Bayesian
approach for estimating the PDF of the next crime site. O’Leary [2009]
shows how this approach comes almost free of charge after we have de-
rived the PDF for the anchor point.

Section 4 discusses the data used for testing the geographic profiling
methods. It also describes the leave-one-out cross-validation method, which
is a useful method for small data samples.

In Section 5 we present the results and some sensitivity analysis. After
drawing the conclusions in Section 6, we give a technical summary that
describes how a crime investigator can utilize the Bayesian approach for
locating the offender’s anchor point and the next target location.
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2 Predicting the Residential Location of the Of-
fender

Geographic profiling is used as a decision support system for locating
the anchor point (residence, workplace, etc.) of a serial offender [Canter
et al., 2000]. A prediction for the anchor point is given based on the of-
fender’s crime site locations. The prediction can be either a single spot
or a probability density. This criteria divides the prediction methods into
spatial distribution strategies and probability distance strategies [Snook et al.,
2005].

2.1 Spatial Distribution Strategies

Spatial distribution strategies calculate a central point of the crime site
locations. This point is an estimate of the anchor point. Various methods
for calculating the central point have been proposed. Snook et al. [2005]
compare 6 different spatial distribution strategies: centroid, centre of the
circle, median, geometric mean, harmonic mean and center of minimum distance.

The centroid method is the simplest of these strategies and it calculates
the mean of the x and y coordinates. Even this simple method can pro-
vide useful predictions, as in the case of the ”Yorkshire Ripper” where
the method was able to predict correctly the killer’s home town. Further-
more, Snook et al. [2005] suggest that complexity of the strategy does not
guarantee a better accuracy.

A restraint of the spatial distribution strategies is that they only provide
a single point as the prediction. If the offender is not found there, the sys-
tem does not give any advice for the crime investigator where to continue
the search.

2.2 Probability Distance Strategies

Probability distance strategies (PDS), also referred as journey-to-crime esti-
mation [Levine, 2004], create a geographical profile which is usually dis-
played on a map. The height of the profile indicates the likelihood of the
anchor point to be found on the corresponding place. Thus, PDS provide
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a prioritized search strategy which can give them a significant advantage
over the spatial distribution strategies [Snook et al., 2005].

PDS are based on distance decay functions that characterize the distribu-
tion of distances between the anchor point and the crime scenes. Com-
parison of different decay functions has been conducted by Levine [2004],
Canter and Hammond [2006] and Snook et al. [2005]. Popular decay func-
tions are: negative exponential, lognormal, normal, truncated negative exponen-
tial, and linear functions.

To create the geographical profile, we discretize the search area and go
through each point y. We calculate the overall effect of all the crime sites
xi on y and get the hit score S(y) as referred by O’Leary [2009]

S(y) =
n

∑
i=1

f (d(xi, y)) = f (d(x1, y)) + · · ·+ f (d(xn, y)). (1)

The distance function d can be selected, e.g., as the Euclidean or the Man-
hattan distance. In our analysis, we use the Euclidean distance. The hit
score gives a priority order to the search. Figure 1 shows an example
of a geographic profile regarding the case of serial killer Peter Sutcliffe,
the Yorkshire Ripper. Crime sites are marked with red circles and Sut-
cliffe’s residence with a black circle. The centroid point of the crime sites
is marked with a black cross.

A red value in the profile denotes a good chance of finding the anchor
point. We can see that the actual location of the residence — the anchor
point — is clearly in the red zone of the map, but the peak of the profile
is located somewhat away from the anchor point.

2.2.1 Distance Decay Functions

Distribution of the distances between the anchor point and the crime
scenes is characterized by a distance decay function [Canter and Ham-
mond, 2006]. Common choices for the decay function include: negative ex-
ponential, lognormal, normal, truncated negative exponential, and linear func-
tions. Comparison of different decay functions has been conducted by
Levine [2004], Canter and Hammond [2006] and Snook et al. [2005].
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Figure 1: A geographic profile regarding the case of serial killer Peter Sut-
cliffe, the Yorkshire Ripper. Crime sites are marked with red circles and
Sutcliffe’s residential location with a black circle. The centroid point of the
crime sites is marked with a black cross.

Decay functions usually give high values for low distances, i.e. the of-
fender is not willing to travel far to commit the crime. Lognormal and
truncated negative exponential functions also implement a buffer zone
which corresponds to the behavior that the offender might not feel com-
fortable committing a crime right next to their residence.

In this paper, we study three different decay functions: lognormal, neg-
ative exponential and gamma functions. All three are continuous and
differentiable probability density functions
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fLogN(d; µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , (2)

fExp(d; λ) = λe−λx, (3)

fGamma(d; µ, σ) = xk−1 e−x/θ

θkΓ(k)
. (4)

The gamma distribution is chosen since the exponential distribution is a
special case of it where k = 1. However, by increasing the k parameter a
buffer zone is created.

In Figure 2 we see the three decay functions fitted to real data.
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Figure 2: A histogram of normalized distances and the three different decay
functions that have been fitted to the data.

The parameters of the decay function are estimated using the maximum
likelihood estimation [Alpaydin, 2004, p. 62]. The advantage of this method
is that it gives confidence intervals for the parameters, which allow us to
assess the uncertainty in the predictions.
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2.3 A Bayesian Approach

O’Leary [2009] applies the Bayes’ rule to derive the probability distri-
bution P(z|x1, . . . , xn) for the anchor point z based on the crime sites
x1, . . . , xn

1.

The Bayes’ rule gives us

P(z|x1, . . . , xn) =
P(x1, . . . , xn|z)P(z)

P(x1, . . . , xn)
. (5)

The prior probability density function P(z) is set to the constant value 1
in our analysis. However, it could be straightforwardly included in order
to take the geographic properties of the search area into account. For
example, we could define

P(z) =

{
0 , when z ∈ uninhabitable areas
1 , when z /∈ uninhabitable areas

(6)

to exclude the uninhabitable from the search. Mohler and Short [2009]
have used this approach and merged the housing density into P(z).

P(x1, . . . , xn) in Formula (5) can be ignored, since it is merely a scaling
factor that is independent of the anchor point z. Assuming that the crime
sites are statistically independent, we get

P(x1, . . . , xn|z) = P(x1|z) · · · P(xn|z). (7)

Thus we may write

P(z|x1, . . . , xn) ∝ P(x1|z) · · · P(xn|z). (8)

The term P(x1|z) depends on the distance decay function f (d) and the
prior probability density function of the crime sites P(x). The offender
might be prone to commit crimes, e.g., in the less populated areas. This

1O’Leary also includes an α parameter which defines the shape of the offender’s
distance decay function. However, we assume that the same shape parameters hold for
all offenders. We normalize the distances in order to take into account the individual
scales of the crime site distributions.
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behavior could be encoded in P(x). In our analysis, we restrict our focus
to the case P(x) = 1, and thus we get

P(xi|z) = f (d(xi, z)) (9)

and finally

P(z|x1, . . . , xn) ∝ f (d(x1, z)) · · · f (d(xn, z)). (10)

We notice that without the priors P(z) and P(x), we get almost the same
formula that is traditionally used (1). Only the summation is replaced by
multiplication.

The advantage of the Bayesian approach is that it is mathematically well-
founded given the assumptions it makes (see Section 2.3.1). It also pro-
vides a natural way to include information about geographical properties
of the area (e.g., by excluding uninhabitable areas from the search area).

2.3.1 Assumptions

The Bayesian approach makes the following assumptions

1. Independent crime sites: P(x1, . . . , xn|z) = P(x1|z) · · · P(xn|z)

The offender chooses the next crime site regardless of the previous
crime sites. This assumption is also made by O’Leary [2009] and
Mohler and Short [2009].

2. Distance decay function parameters are the same for all offenders

Warren et al. [1998] suggest that the distance travelled by a serial
rapist depends on the age and race of the rapist. To take this into
account, our model normalizes all distances by the mean inter-point
distances, as done by Canter et al. [2000]. However, Warren et al.
[1998] also suggest that the more rapes there are on the rapist’s
account, the farther the rapist tends to travel. Our model ignores
this possibility.

3. Uniform anchor point distribution: P(z) = 1
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Our analyses have been conducted giving the same prior probability
to all locations. This ignores the geographical properties, such as
uninhabitable areas and housing densities, which naturally affect
the distribution. However, these properties could be easily included
in our model, if there was access to relevant data of the search area.

4. Uniform crime site distribution: P(x) = 1

We do not make any prior assumptions of the crime site distribu-
tion. We reckon that for example for sexual offences very public
places are not as probable crime sites as more private ones. Again,
this information can be included in our model if the data is avail-
able.

2.3.2 Normalization

The average distance an offender is willing to travel to commit a crime
varies between individuals. Warren et al. [1998] suggest that these indi-
vidual differences can be explained by variables such as the offender’s
age and race.

Canter et al. [2000] describe two normalization methods for taking the
individual differences into account. The first method calculates the mean
inter-point distance (MID) between all offenses. When estimating the de-
cay function parameters or applying the decay function in Formula (10),
the distances are always normalized by dividing them by the MID.

The second method, called the QRange, calculates a linear regression of
the crime sites. Instead of the MID, the perpendicular distance from ev-
ery crime site to the regression line is calculated. This method takes into
account any linear structure in the crime site distribution which might
derive, e.g., from an arterial pathway.

In our analysis, the normalization is conducted with the MID metric.

2.3.3 Performance of the Prediction

To compare a variety of methods, we need a way to measure the effec-
tiveness of different techniques. Canter et al. [2000] propose that reducing
police resources would be a suitable objective. The potential search area
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is discretized to a grid. The cost of carrying out a search on a particular
spot (or cell in the grid) depends on the number of searched cells before.
The assumption is that the police start the search at the most probable
spot and move from spot to spot by decreasing probability.

Different decay functions can this way be compared by their cost-effectivity.
This measure reflects the ability of a method to prioritize a cell and iden-
tify the location of the anchor point. A search area is estimated by calcu-
lating the mean inter-point distance, in a Manhattan sense, between crime
sites with respect to the x coordinates

xm =
1

n(n− 1)

n

∑
i=1

n

∑
j=1
|xi − xj|. (11)

and y coordinates

ym =
1

n(n− 1)

n

∑
i=1

n

∑
j=1
|yi − yj|. (12)

separately. Rossmo [1995a] introduces the concept of a rectangular search
area — also called the hunting area. The rectangle is fitted to the farthest
extent of the known linked crime sites, and it is extended by half of the
mean Manhattan distance xm on the horizontal axis and half the ym on
the vertical axis in all directions. We use this approach, but we extend the
search area by the mean value in every direction, i.e. by 2xm horizontally
and 2ym vertically.

The effectiveness of the search of the rectangular area is calculated by
assigning each point on the grid a weighting indicating the likelihood of
residence. Canter et al. [2000] use this method so that the weightings are
used to calculate a search cost rank index for each grid cell. These search
cost rank indexes are derived from the decay function that the method
uses.

Each cell point inside the array is then searched for the anchor point, start-
ing from the highest rank index. When the anchor point cell is reached,
the search is terminated and a search cost value is calculated. This value
reflects the proportion of the rectangle that has been searched before ter-
mination. A search cost value of 0 would indicate that the criminal was
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found in the first cell (i.e. the cell with the highest priority). If the search
is terminated without reaching the known location of the criminal, the
anchor point was not within the search area. This means that the method
was a failure.

2.4 Combining Models

Different decay functions give different geographical profiles. Calculating
an ensemble of these profiles can make the predictions more accurate and
more stable. Finding the underlying profile can be seen as a regression
problem and thus, we have a regression ensemble problem, as referred in
the machine learning community.

Alpaydin [2004] shows several simple strategies for calculating the en-
semble, two of which are the average and median strategies. The aver-
age strategy iterates over the search area and at each point it calculates
the average height of the profiles given by different models. The median
strategy takes the median of the heights. According to Alpaydin [2004],
the sum strategy is the most widely used in practice. The advantage of
the median strategy is that it is more robust to outliers.

Several studies about more advanced regression ensemble methods ex-
ist (see e.g. Brown et al. [2005]; Rätsch et al. [2002]). The more advanced
methods take into account the strengths and weaknesses of different mod-
els. For example, one method can give more accurate predictions in the
cases where the mean inter-point distance (MID) of the offences is high,
whereas another one is more suitable for cases with a low MID.

A straightforward strategy for exploiting the different strengths of the
models is to divide the range of the MID values into n intervals. For each
interval, we calculate which model gives the best results for the cases
within that interval. When we get a new case, we calculate the new MID,
and then check which interval the new MID goes into and let the best
model within that interval calculate the geographic profile.

In our case, the decay functions tested did not give statistically different
results due to limited amount of test data. Therefore, no ensemble meth-
ods were tested in our study. To adapt the models to different types of
offenders, bagging or boosting methods could be adopted, as described
in [Alpaydin, 2004, pp. 430–434].
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3 Predicting the Next Target Location

Usually, geographic profiling is used merely for estimating the offenders
residential location — the anchor point. However, it might as well be to
the authorities interest, to predict the target location of the next offense
in order to prevent it and catch the offender red-handed.

3.1 A Bayesian Approach

Formally the task is to calculate the conditional probability density dis-
tribution P(xnext|x1, . . . xn). The peak of this distribution gives the most
probable location of the next offense. O’Leary [2009] points out that the
Bayesian approach for the anchor point prediction also gives an estimate
for the next target location. This is achieved by calculating the posterior
predictive distribution

P(xnext|x1, . . . xn) =
∫∫

P(xnext|z)P(z|x1, . . . , xn)dzxdzy. (13)

Using the notation of Section 2.3 and formula (10) we get

P(xnext|x1, . . . xn) =
∫∫

f (d(xnext, z)) f (d(x1, z)) · · · f (d(xn, z))dzxdzy.

(14)

In practice, we discretize the search space, which transforms the integrals
into summations

P(xnext|x1, . . . xn) = ∑
zx

∑
zy

f (d(xnext, z)) f (d(x1, z)) · · · f (d(xn, z))dzxdzy,

(15)

where zx and zy, denoting the coordinates of the anchor point, range from
−∞ to ∞. To calculate this in a computer program, we must choose some
threshold distance (from the crime sites to z) beyond which there is no
need to go since the product of functions f is practically zero.
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Figure 3 shows an example of the next target’s estimated probability den-
sity function based on the previous offenses. The figure is read similarly
to the geographical profiles, i.e. the next target is likely to be found in the
red area.

Figure 3: A profile of the next target of Peter Sutcliffe. Crime sites are marked
with red circles and Sutcliffe’s residential location with a black circle. A red
value indicates high probability density.

3.2 Assumptions

We make the same assumptions that were presented and discussed in
Section 2.3.1. Again, we assume that the offenses are statistically inde-
pendent meaning that the predictions are invariant to the order — and
time — of the offenses.
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3.3 Performance of the Prediction

The search cost approach, described in Section 2.3.3, can be utilized in this
case with some minor modifications. Instead of calculating the search cost
of the anchor point, we calculate it for some of the previous crime sites.
This crime site is left out from the calibration phase.

Calculating the profile for the next target is very similar to calculating the
geographic profile for the anchor point. However, the time complexity
grows from O(n) to O(n2), where n is the number of cells in the grid. In
consequence, calculating the next target profile takes approximately one
hour with a 100x100 grid on an average desktop computer.
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4 Experiments

4.1 Data

Both the spatial distribution strategies and the probability distance strate-
gies described earlier are applicable to any data series of activity that in-
cludes geographical locations. Snook et al. [2005], Gorr [2004], Rossmo
[1995b] and many more have used sample datasets of solved serial crime
to validate and test their models. Most of these datasets are either classi-
fied or kept out of public for some other reason.

Our small test dataset consists of six cases of serial crime, some of which
have gained notable public attention. These datasets are used for param-
eter estimation and cross validation of the models. The cases included are
named after convicted criminals, which are Peter “The Yorkshire Ripper”
Sutcliffe [Wikipedia], Chester Turner [Iniguez, L.], Gary “Green River
Killer” Ridgway [Nowlin M. and Chaumont K., 2003], John Allen “the
Beltway Sniper” Muhammad [Wikipedia, 2010], Steve “the Suffolk Stran-
gler” Wright [Harris, 2008] and Terry Blair [News, 2004]. These cases are
shortly introduced in table 1. In addition to the location data regarding
victims, also a residential home location (an anchor point) of the convict
was part of every case.

Table 1: The six cases of serial murder used for validating and testing.

Dataset Name of Criminal Datapoints Years active Country

Sutcliffe2 Peter Sutcliffe 18 1975-80 UK
Turner Chester Turner 12 1987–98 US
Ridgway Gary Ridgway 30 1982–90 US
Muhammad3 John Allen Muhammad 15 2002 US
Wright Steve Wright 5 2006 UK
Blair Terry Blair 5 2004 US

2The dataset Sutcliffe includes four datapoints of attempted murder.
3In the Muhammad set, the home location is specified by the place of arrest, due to

the fact that Muhammad lived in his van.



Team number: #8215 Page 18 of 27

4.2 Calibration and Validation

We use datasets from table 1 to get a number of training and validation set
pairs. The purpose is to train the method using a dataset X (after having
left out some part as the test set). The small dataset limits the effective use
of this method. Repeated use of the same data split differently corrects
some drawback. This method is called cross-validation. In K-fold cross-
validation, the dataset X is divided randomly into K equal-sized parts,
Xi, i = 1, ..., K. To generate the pairs, we keep one of the K parts out as
the validation set and use the remaining K − 1 parts as the training set.
Doing this K times — each time leaving out a different part — we get K
parts. [Alpaydin, 2004, pp-486-7]

With a small dataset the only practical option is the extreme case of K-
fold cross-validation called leave-one-out, where only one part is left out
as the validation set and training uses the N − 1 remaining parts. This
way we get N separate pairs by leaving out a different instance at each
iteration. [Alpaydin, 2004, p. 487]
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5 Results

Our approach uses three different decay functions: lognormal, negative
exponential and the gamma function. To compare the results each of de-
cay function, we use the cross-validation method of leave-one-out to esti-
mate the decay functions’ parameters from five datasets and then predict
the anchor point in the sixth dataset. The results of the different cases are
compared with the help of a [0, 1] scaled search cost estimate, where a
zero cost is optimal.

In addition to the three different decay functions, we compare the Bayesian
approach (equation 5) and the traditional summation method (equation
1).

(a) Bayesian Approach. (b) Summation method.

Figure 4: Predictions for the sutcliffe dataset which has been calibrated with
the other five sets. The search area is marked with a dotted rectangle. Crime
sites are marked with red circles, the location of residence with a black circle,
and the center of mass is marked with a black cross.

Figure 4(a) shows the search cost on a map with the help of a color map.
The more red a particular spot, the better the search cost. The dotted
rectangle depicts the search area. Crime sites are marked with red circles,
the location of residence with a black circle, and the centroid spot, “the
center of mass”, is marked with a black cross. To clarify the effect of rising
search costs some contour lines are shown on the map.
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Figure 4(a) uses the lognormal decay function and the Bayesian approach.
Figure 4(b) uses the summation method. Differences between these two
methods are marginal, although the coloring varies. By calculating the
search cost rank index, we are only interested in the order of the cell list
(See Section 2.3.3). The effect of the lognormal buffer zone can be seen as
holes around the crime sites.

In Table 2, the search costs are calculated for each case and method
with the help of cross validation. The value reflects the proportion of the
search area that has been searched before termination at the murderer’s
doorstep.

Table 2: Search cost values calculated with the help of cross-validation. The
value reflects the proportion of the search area that has been searched before
termination at the murderer’s doorstep.

Exp Gamma LogN
Dataset Bayes Sum Bayes Sum Bayes Sum

Sutcliffe 0.0235 0.0297 0.0275 0.0355 0.0835 0.0895
Blair 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Wright 0.3998 0.4983 0.3738 0.4629 0.3777 0.5112
Ridgway 0.0304 0.0137 0.0913 0.0566 0.1335 0.1187
Muhammad 0.5222 0.4984 0.5220 0.4977 0.5062 0.5039
Turner 0.0887 0.0982 0.0855 0.0960 0.0737 0.0863

Average 0.3441 0.3564 0.3500 0.3581 0.3624 0.3849

The search area in the blair dataset fails to include the real spot, so the
search is terminated without success. This can be seen in Table 2 as a
row of ones. This can also be confirmed by looking at the Figure 5(d). By
comparing the search cost values, we see that in most cases the Bayesian
approach scores better than the summation method. In addition, we note
that the negative exponential decay function seems to have better results
than the other two.

To check the hypothesis that the Bayesian approach with exponential de-
cay function scores better than the others, we use the paired difference
test (Student’s t-test). The test gives each pair the same result; there are
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no significant differences between the methods in our datasets. The null
hypothesis of equal means is confirmed.

In Figures 5(a) and 5(c) we see the results of the wright and turner datasets.
In these two cases the home location of the criminal is consistent with
the predicted anchor point. In addition, we notice that even the center
of mass succeeds well in predicting the location. On the other hand, in
Figures 5(b) and 5(d), where we see the results of the muhammad and blair
datasets, the model is not quite successful. In fact — as noted before —
the model terminates without any success in the blair dataset.
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Figure 5: Predicting the residence location in different solved crimes by
cross-validating the model with the other models. All these results use the
inverse exponential decay function and the Bayesian approach.



Team number: #8215 Page 23 of 27

5.1 Sensitivity Analysis

The decay function parameter selection may affect our measure of per-
formance, the search cost. The parameters are estimated from the data
sample and since the sample size is very small (n = 6), there is a lot of
uncertainty in the parameters.

As an example, we take the Sutcliffe case that use the exponential decay
function, and we examine how much the uncertainty in the parameter λ

affects the resulting geographic profile and the search cost. Our maximum
likelihood estimate (MLE) with 95 % confidence intervals is λ̂ = 1.3746,
λL = 1.0969 and λU = 1.7738. These intervals are presented in Figure 6.
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Figure 6: Our maximum likelihood estimate for the parameter λ and the
95 % confidence intervals.

Figure 7 shows the geographical profile using λL (Fig. 7(a)) and λU (Fig. 7(b)).
We notice that λL gives a wider peak which is intuitively correct since the
plot of the Exp(λL) is also wider. The peaks are small compared to the
other figures since linear instead of logarithmic normalization is used.
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Figure 7: Geographical profile of the Sutcliffe case using the MLE confidence
intervals λL (left) and λU (right). Linear normalization for the color map is
used.

An interesting result is that using the exponential decay function, the
search cost does not seem to change even though the geographical profile
probability density does. That is, the absolute values of the geographical
profile height in different grid cells change but their order of magnitude
remains the same.
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6 Conclusions

Over several decades, the probability distance strategies (PDS) have been
the de facto method for predicting an offender’s anchor point. In the recent
years, however, the Bayesian approach has gained more popularity. Given
certain assumptions, it turns out that the Bayesian approach reduces into
a PDS with only a summation replaced by multiplication.

We have compared the PDS and the Bayesian approach varying the decay
function used in both. The Bayesian approach gives consistently better re-
sults measured by the search cost and the leave-one-out cross-validation.
Of the three tested decay functions, the negative exponential function
gives the best results. Yet, the Student’s t-test reveals that the differences
are not statistically significant. This is an expected result since our dataset
consists of only 6 serial killers.

Even though we are not able to determine which approach is better, we
find the Bayesian approach more suitable for this problem. The Bayesian
approach provides a natural way of handling the prior distributions of
anchor points and offenses. Thus, it is able to, e.g., exclude all the un-
inhabitable areas from the potential anchor points if provided with the
appropriate geographical data.

The Bayesian approach also provides a way of predicting the offender’s
next target based on the previous crime sites. However, the calculation
becomes computationally expensive, which is why we are not able to sys-
tematically assess the prediction performance. One of the limitations of
the model is that it assumes the previous crime sites statistically indepen-
dent. In practice, this means that the model neglects the time dimension
of the previous offenses.



Team number: #8215 Page 26 of 27

References

D. Canter, T. Coffey, M. Huntley, and C. Missen. Predicting serial killers’
home base using a decision support system. Journal of Quantitative Crim-
inology, 16(4):457–478, 2000.

B. Snook, M. Zito, C. Bennell, and P.J. Taylor. On the complexity and
accuracy of geographic profiling strategies. Journal of Quantitative Crim-
inology, 21(1):1–26, 2005.

N. Levine. Chapter 10: Journey to Crime Estimation. CrimeStat III: A Spa-
tial Statistics Program for the Analysis of Crime Incident Locations. Houston:
National Institute of Justice, 2004.

D. Canter and L. Hammond. A comparison of the efficacy of different de-
cay functions in geographical profiling for a sample of US serial killers.
Journal of Investigative Psychology and Offender Profiling, 3(2):91–103, 2006.

M. O’Leary. The mathematics of geographic profiling. Institute for Pure
and Applied Mathematics, 2009.

G.O. Mohler and M.B. Short. Geographic profiling from kinetic models
of criminal behavior. Preprint. Retrieved June, 15:2009, 2009.

N. Levine. Introduction to the special issue on Bayesian journey-to-crime
modelling. Journal of Investigative Psychology and Offender Profiling, 6(3),
2009.

E. Alpaydin. Introduction to machine learning. The MIT Press, 2004.

J. Warren, R. Reboussin, R.R. Hazelwood, A. Cummings, N. Gibbs, and
S. Trumbetta. Crime scene and distance correlates of serial rape. Journal
of Quantitative Criminology, 14(1):35–59, 1998.

D.K. Rossmo. Geographic profiling: Target patterns of serial murderers. PhD
thesis, Simon Fraser University, 1995a.
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Appendix A:

Technical Summary for a Crime Investigator

Predicting the Residential and Next Target Location

Our method can be used to predict the residential location and the next
target location of a suspected serial offender. The idea is to narrow down
the area where the investigation is carried out. The prediction is based
on the location information about earlier victims associated with the of-
fender, e.g., body dump site locations. This location information can be
obtained by using a handheld GPS device on the location or web mapping
services, such as Google Maps.

From the given victim information, an investigation priority map is cal-
culated and drawn over a regular street map. In Figure 8(a), the red area
is where the investigation should begin. The more red a particular spot,
the higher it should be priorized.

Figure 8: Examples of residential location (left) and next target (right) pre-
dictions. Victim locations are visualized with bright red circles. A red value
suggests a high priority and blue a low priority.
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Similarly, known victim locations can be also used to predict the next
target location of the suspected serial offender. The most probable next
target area is painted in red and the least probable with blue. See Fig-
ure 8(b) for an example.

Important Remarks

Geographical information in the maps is not taken into account by the
method. This means that the red area might be above a sea, a lake or oth-
erwise uninhabitable area, and this needs to be taken into account when
prioritizing the search. In these cases, the investigation should concen-
trate on the inhabitable areas near the red or yellow areas. Also, if the
previous offenses have clearly occurred on same geographical line, such
as in Figure 5(d), the prediction can be rather unreliable. The predications
produced by the method are meant to support the investigation process,
but not control it.


