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Machine learning hydrogen adsorption on nanoclusters
through structural descriptors
Marc O. J. Jäger 1, Eiaki V. Morooka1, Filippo Federici Canova1,2, Lauri Himanen1 and Adam S. Foster 1,3,4

Catalytic activity of the hydrogen evolution reaction on nanoclusters depends on diverse adsorption site structures. Machine
learning reduces the cost for modelling those sites with the aid of descriptors. We analysed the performance of state-of-the-art
structural descriptors Smooth Overlap of Atomic Positions, Many-Body Tensor Representation and Atom-Centered Symmetry
Functions while predicting the hydrogen adsorption (free) energy on the surface of nanoclusters. The 2D-material molybdenum
disulphide and the alloy copper–gold functioned as test systems. Potential energy scans of hydrogen on the cluster surfaces were
conducted to compare the accuracy of the descriptors in kernel ridge regression. By having recourse to data sets of 91
molybdenum disulphide clusters and 24 copper–gold clusters, we found that the mean absolute error could be reduced by
machine learning on different clusters simultaneously rather than separately. The adsorption energy was explained by the local
descriptor Smooth Overlap of Atomic Positions, combining it with the global descriptor Many-Body Tensor Representation did not
improve the overall accuracy. We concluded that fitting of potential energy surfaces could be reduced significantly by merging data
from different nanoclusters.
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INTRODUCTION
Due to their remarkable properties, nanoclusters have gained
attention in heterogeneous catalysis.1–3 Nanoclusters differ from
bulk metal behaviour, and their catalytic properties are sensitive to
changes in size and morphology.4–7 For example, gold clusters
with a diameter of a few nanometres exhibit non-metallic
properties due to quantum size effects.8 Scientists have advanced
significantly in producing nanoparticles with defined composition,
size and morphology in the last decade.1,9–12 These developments
mean a tremendous combinatorial and structural space has
opened up for rational catalyst design, where nanoscale experi-
ments and computational screening can be used to optimize
catalyst design.13

In this context, the development of new materials for the
scalable production of hydrogen is a key challenge, with massive
impact in clean-energy technologies.14–16 At the cathode of
electrolytic water splitting into hydrogen and oxygen, the
hydrogen evolution reaction (HER) takes place. As part of the
process, the currently used expensive noble metals, especially
platinum group metals (PGM), categorised as critical by the
European Commission,17 need to be replaced to make the
production of hydrogen competitive to other energy storage
technologies. Some bimetallic alloy nanoclusters, such as
copper–titanium18 exhibit catalytic activity towards HER, thus
binary combinations of metals are of high interest, particularly if
the fraction of PGMs can be significantly reduced.19 Beyond
metals, one candidate to replace PGMs are MoS2 nanoclusters.
Recent studies of single-layer MoS2 have shown that its electronic
band structure can be fine-tuned at the nanoscale.20 On the
otherwise semiconducting material, the edges of triangular- to

hexagonal-shaped nanoclusters demonstrate metallic character
and these are likely to be the active site for HER.20–22

The configurational space offered by the wide variety of
nanocluster materials, active sites and environmental conditions
means that a conventional approach to catalyst optimization,
using ab initio methods, is particularly challenging. Hence, very
recently there has been a surge in attempts to apply machine
learning (ML) approaches to modelling catalytic systems.23–28

In this work, we begin by considering the latest developments
in descriptors for ML in materials science, as yet untested in
nanocatalytic systems, and compare them in terms of accuracy
and efficiency for characterizing a particular catalytic reaction,
HER:

Hþ þ e� ! 1
2
H2:

This stands out as a relatively simple reaction with one
intermediate state—adsorbed hydrogen on the catalyst surface.
The rate of the reaction on a catalyst surface (denoted below as *)
is determined by the hydrogen adsorption free energy ΔGH of the
elementary Volmer step:

Hþ þ e�þ� ! H�:

According to the Sabatier principle, hydrogen should neither
bind too weakly nor too strongly. This general principle explains
why ΔGH can reasonably describe catalytic activity. Optimally,
nanoclusters should have adsorption sites with ΔGH ≈ 0 to be
considered catalyst candidates.29,30 Since this quantity is acces-
sible by ab initio methods, directly from the adsorption energy of
hydrogen, materials can be pre-screened computationally. Our
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approach is to build a large data set of hydrogen adsorption
energies on a variety of nanoclusters, characterize this with
appropriate structural descriptors, and then train a model to
predict these energies for an arbitrary site based on its description.

RESULTS
Potential energy scan of sample clusters
As initial data sets, we started by mapping out the energy
landscape of hydrogen adsorbed on the surface of one sample
cluster for each system, MoS2 and AuCu.
The two nanoclusters were fully scanned with respect to the

hydrogen position and are depicted in Fig. 1. Figure 1a shows a
potential energy scan of a triangular-shaped sample MoS2 cluster
with molybdenum-terminated edges (Fig. 1b). The cluster
Au40Cu40-H had a flatter potential energy surface (Fig. 1c) than
MoS2-H and no patterns were clearly apparent. On the other hand,
MoS2-H had three distinct global minima at the edges where
hydrogen bound to molybdenum. Since the cluster had a near-C3-
symmetry the local environments of the 3 minima were
equivalent. When hydrogen was bound at corner-sites, ΔEH
increased, while the highest energy positions were observed on
the surface sulphur atoms. Even though the C3-symmetry of the
cluster was broken, ΔEH remained similar at different edges and
corners.

Machine learning on single clusters
The data sets MoS2(single) and Au40Cu40(single) contained 10,000
DFT-based ΔEH single-point calculations of hydrogen positioned
on the surface of the same cluster. We were interested in how
many points were needed to predict the potential energy surface
by interpolation. However, we did not conduct this interpolation
in real space, but feature space with KRR. Thus, two points far
away from each other in real space were close in feature space if
the structures were similar. The feature space was spanned by the
descriptors Atom-Centered Symmetry Functions (ACSF), Many-
Body Tensor Representation (MBTR) or Smooth Overlap of Atomic
Positions (SOAP). The goal was to reach an accuracy of 0.1 eV,
which would allow us to make reasonable predictions of ΔEH for
an arbitrary system.
Figure 2a shows learning curves predicting ΔEH at random

positions around the triangular MoS2 cluster (Fig. 1b). In this
example only, we included the results for the Coulomb Matrix
(CM) descriptor in order to see how it fares with respect to
adsorption energy prediction. As we transformed the global

descriptor into a local CM, we observed an improved accuracy.
This was due to the strong dependence of ΔEH on the local
environment. In general, the CM had a significantly higher MAE,
which might be due to its values ranging over many orders of
magnitude,31 see also Fig. 3. To do justice to CM, it is possible to
increase the accuracy a bit by randomly sorting it, and thus
smoothening the feature space.32 ACSF performs comparably to
ACSFH and MBTR with a training set larger than 3000, and reached
the threshold of 0.1 eV at about 900 training points. ACSFH
required only about 400 training points. SOAP and MBTR, on the
other hand, had a MAE of 0.1 eV with only 300 training points,
while SOAP also performed best at large training set sizes.
Figure 2b shows learning curves predicting ΔEH at random

positions around a medium-sized AuCu cluster. SOAP and MBTR
again performed equally well reaching the threshold of 0.1 eV with
about 300 training points. Remarkably, ACSFH reached 0.1 eV MAE
with only 100 training points, but it exhibited a shallow learning
curve. Although ACSF had a lower accuracy with small training set
sizes, it overtook ACSFH and MBTR with a training set larger than
3000. The low error with a large training set makes ACSF an
excellent choice for Molecular Dynamics simulations where high
accuracy is needed, for example simulations over many time steps
where even small errors can propagate rapidly. A machine
learning potential fitted to a large DFT data set provides energies
close to the reference method.31 SOAP showed a similarly steep
learning curve compared to ACSF, however was offset to a lower
accuracy at all training set sizes.
To summarise the results for both test systems, ACSF needed a

large training set, but then it was as good or even better than
MBTR. This was due to the many symmetry functions used. If
symmetry functions were eliminated by feature selection the
performance of ACSF at lower training set sizes would likely be
better.
Indeed, a principal component analysis revealed that 130

components for both data sets could explain 99% of the variance.
A sensible choice was to restrict the features to ACSFH, the local
version of ACSF. Expectedly, ACSFH performed better than global
ACSF for smaller training set sizes. Systematic feature selection
using e.g., mutual information could further reduce the MAE for
small training set sizes. Eventually, ACSFH, MBTR and SOAP
showed comparable MAE with smaller training set sizes.

Machine learning on multiple clusters
In the next step, we were interested if it was possible to
interpolate between hydrogen adsorption sites on different

Fig. 1 a Hydrogen position scan on the surface of a triangular-shaped MoS2 cluster (b). c Hydrogen position scan on the surface of a Au40Cu40
cluster (d)
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clusters. The data sets MoS2(multi) and AuCu(multi) contained
around 10,000 DFT-based ΔEH single-point calculations. The data
set MoS2(multi) consisted of hydrogen positioned on the surface
of 91 MoS2 clusters. A total of 110 points were randomly chosen
for each cluster.
Figure 2c shows the learning curve predicting ΔEH at random

positions around multiple MoS2 clusters. The descriptor SOAP
reached a MAE of 0.1 eV with a training set size of 4000 (or 44 per

cluster). It was estimated before that learning on the potential
energy surface of a single cluster required 300 training points
(MoS2(single)). This comparison clarified that learning on different
clusters simultaneously was beneficial and interpolation in
compound space was possible with similar nanoclusters. MBTR
got as low as 0.13 eV with a training set size of 9000. The size of
ACSF depended on the number of atoms in the system. Since the
nanoclusters had different sizes and different compositions, it did
not make sense to compare atoms other than hydrogen with each
other. Hence, the local version of ACSF, ACSFH was taken. Similar
to MBTR it did not reach the threshold of 0.1 eV, but got as close
as 0.11 eV with 9000 training points. Since SOAP (here a local
descriptor) and MBTR (here a global descriptor) were designed in
such a way that they might contain information which the other
did not, we tried to combine both. In this case, however, the
combined and equally weighted features of MBTR and SOAP did
not improve the overall accuracy.
To verify that the results were independent of the system, we

repeated the analysis with the data set AuCu(multi) containing
24 small copper–gold clusters with a fixed size of 13 atoms, but
different compositions. A total of 420 hydrogen positions were
randomly chosen on the surface of each cluster.
Figure 2d shows the learning curve predicting ΔEH at random

positions around multiple AuCu clusters. A MAE of around 0.11 eV
was reached at 9000 training points with MBTR and ACSFH. With
SOAP, only 2000 training points or 80 per cluster were needed to
achieve a MAE lower than 0.1 eV. It was estimated before that
learning on the potential energy surface of a single-copper–gold
cluster required around 300 training points. Again, this

Fig. 3 Mean of data point pairs on the axes of Δ(ΔEH) and (dis)
similarity defined by d= Descriptork k2 within bins of size 0.1. The
coloured area highlights the standard deviation in those bins. The
data set MoS2(multi) was used to compare the descriptors CM (cyan,
offset 1.0 eV), SOAP (red, offset 0.7 eV), MBTR (blue, offset 0.3 eV)
and ACSF (green)

Fig. 2 Learning curves for different data sets show the MAE for different training set sizes. The descriptors CM, SOAP, MBTR and ACSF were
used as features in KRR to predict ΔEH. The following data sets were used: a MoS2(single), b Au40Cu40(single), c MoS2(multi), d AuCu(multi)
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comparison confirmed that learning on different clusters was
possible, which indicated that it should be possible on any
nanocluster system. Furthermore, the fact that MBTR and SOAP
combined did not improve the overall accuracy, strongly suggests
that the relevant information is contained around the adsorption
site. Since SOAP outperformed the other descriptors even though
it only contained information about the local environment around
hydrogen, it became apparent that size effects of nanoclusters
play a minor role (<0.1 eV in our model) in defining ΔEH.
The log–log plots of Fig. 2 emphasize the empirical linear

relationship log(MAE)= a–b log(N) for large N in agreement with
ref. 33. The linear relationship of our data sets started at around N
= 500–2000 where different error decay rates became apparent.
The global descriptor ACSF and SOAP displayed their superiority
over ACSFH and MBTR in this regime.
The purpose of the above data sets was to compare descriptors

as well as to investigate the benefit of merging data from diverse
structures. The generalization error of the best performing
descriptor should be estimated higher, though only slightly, since
the test sets acted as validation sets to pick the best descriptor. An
estimate of the generalization error will be presented for MoS2 in
Fig. 5.
To visualise that similar local environments indeed do not give

vastly different ΔEH, 1000 data point pairs were selected with the
lowest (dis)similarity d= Descriptork k2, descriptor being SOAP,
MBTR or ACSF. In Fig. 3, a histogram plot shows pairs of local
environments at a certain (dis)similarity d (taken from the data set
MoS2(multi)) and the mean of their difference in energy Δ(ΔEH).
The mean difference in ΔEH at any given d increased mono-
tonously. As depicted by the increasing standard deviation, the
more dissimilar the data points were the wider the spread of ΔEH,
which indicated that the property changed smoothly in feature
space. On average, MBTR had a slightly higher Δ(ΔEH) than SOAP
or ACSF. For comparison, CM exhibits a much less smooth feature
space. In summary, SOAP outperformed MBTR and ACSFH and the
information to explain adsorption energies is contained in the
local environment. The property of interest, ΔEH, changed
smoothly in feature space spanned by SOAP even though clusters
of different sizes were present.
As depicted in Fig. 3 similar adsorption sites have similar ΔEH. In

order to achieve predictive power with as few training points as
possible, clustered data points should be avoided, but instead
selected as such that they are approximately evenly spaced. The
data set MoS2(single) is a good example to show that the accuracy
depends on whether the training points are chosen randomly or
are identically distributed. Since significantly more data points
were sampled on the sulphur surface of MoS2 than on its Mo-
terminated edges we suspected a biased data set. Descriptors can
be used to select an identically distributed data set with respect to
feature space (spanned by the descriptor).
The greedy algorithm farthest point sampling (FPS) was exerted

to get a set of the most dissimilar training points.34 In Fig. 4, the
MAE of random training and test sets were plotted and contrasted
against FPS-sampled training and test sets. Using FPS improved
the overall accuracy significantly at smaller training set sizes but
the effect soon became less apparent. The choice of the test set
did not significantly affect the MAE. At a large enough training set
size of 500–1500, selecting training points did not make a
difference any more. However, when the training set size was in
the range of interest (MAE around 0.1 eV) the difference was
significant. We interpreted this result as such that the randomly
selected data set was biased and not identically distributed. In
order to reduce data set size, descriptors could be used to scan
local environments and represent them evenly without bias
towards more abundant structural patterns.

Prediction of energy distribution of potential energy scan
Next, we investigated to which degree the potential energy
surface of a single cluster can be inferred from a data set of
multiple clusters. The data set MoS2(multi) was used as a training
set to predict ΔEH on the surface of the sample cluster
MoS2(single), where a large test set was available. It should be
mentioned that the sample MoS2 cluster was part of the data set
MoS2(multi) with 110 data points.
Figure 5a shows the parity plot of ΔEH of the test set

MoS2(multi). Here, SOAP was chosen as the descriptor. An overall
MAE of 0.13 eV was reached. In the sparsely sampled high-energy
region, the error was significantly higher than average. In the
sparsely sampled low-energy region, however, the error was much
lower. Since stable adsorption sites will not be found in the high-
energy region, the accuracy of predictions could further be
improved by sampling more in the low-energy region. As can be
seen from the dashed line errors introduced predicting ΔEH with
descriptors were statistical and not systematic since the predic-
tions were centered around y= x. Figure 5a also shows the
distribution of ΔEH of the test set MoS2(multi). When focusing on
global rather than local properties, the MAE does not have to be
as low as 0.1 eV rather should the energy distribution be predicted
accurately. The predicted energy distribution was in good
agreement with the DFT energy distribution. Depending on the
desired accuracy, smaller data sets than the ones we used might
be enough to reliably predict the energy distribution.
Finally, we tested whether ΔGH of local minima on the potential

energy surface could be predicted accurately from single-point
calculations only going from ΔEH to ΔGH by adding a constant
shift. Hydrogen on top of around 1000 MoS2 surface atoms of the
data set MoS2(multi) was relaxed while the cluster itself was kept
frozen. SOAP descriptors were created at the relaxed positions.
The data set MoS2(multi) was used as a training set to predict ΔGH

of the relaxed hydrogen adsorption sites. Figure 5b shows the
resulting parity plot. Again, an overall MAE of 0.12 eV was reached.
However, it showed several outliers. This was probably due to the
fact that local environments of the low-energy region were under-
represented in the data set MoS2(multi). Higher sampling in the
region of interest could alleviate the probability of outliers and
further reduce MAE.
Figure 5b also shows the distribution of ΔGH of the sampled

hydrogen adsorption sites. The predicted energy distribution was
in good agreement with the DFT energy distribution. There
seemed to be no systematic over- or under-estimation of the
property. KRR failed to predict the lowest-energy adsorption sites
under ΔGH=−0.4 eV. This was again due to poor sampling in the

Fig. 4 The data set MoS2(single) was sampled randomly or with FPS
in SOAP feature space, and the mean absolute error compared.
Random training and testing is shown in red whereas FPS-sampled
training and testing or random testing is shown in green or blue,
respectively
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low-energy region. Even though only random positions were
taken on the surface of several nanoclusters, a combined database
could extrapolate to the local minima with a satisfactory accuracy.
A smarter selection of points in feature space spanned by a
descriptor opens up a new way of finding adsorption sites on
similar systems.
To show the limitation of this method, we greedily extrapolated

from the data set AuCu(multi), containing 13-atom clusters to
predict ΔEH on the surface of the sample cluster Au40Cu40. Figure 6
shows a parity plot using the previously best performing
descriptor SOAP.
SOAP showed learning tendency with a slight under-estimation.

However, the MAE at 0.25 was too high, especially due to the
under-estimation of the high-energy regime. Also, it can be noted
that the parity plot featured two clusters which indicated that only
part of the local environments of Au40Cu40 were represented in
the training set.

DISCUSSION
We analysed the performance of state-of-the-art atomic structural
descriptors (SOAP, MBTR and ACSF) when used to predict the
hydrogen adsorption (free) energy on the surface of nanoclusters.
As expected, we found that none of the descriptors which had
been designed for molecules and crystals are optimized for
nanoclusters. In general, we observed that learning on one cluster
at a time required unnecessarily large training sets to achieve
good accuracy—this can be improved by merging data from
many different nanoclusters in the training set. Since SOAP
performed significantly better, we deem it a good choice for
adsorption energy predictions. Our data sets did not make it
necessary to include global information as could be seen upon the
combination of SOAP and MBTR, so the local environment
dominates the influence on the adsorption energy. It is, however,
possible that a global addition improves the learning when e.g.,
dopants or defects are added. Descriptor improvements might be
possible by combining other descriptors, optimising the weighting
functions or other parameters of MBTR and SOAP, or even by
constructing a new descriptor encompassing the special structural
features of nanoclusters like size, shape and surface morphology.
Recently, a multi-scale SOAP kernel has been developed which
could incorporate missing information while still retaining the
local nature of the descriptor.34 This new approach will be subject
to future work. Nevertheless, given sufficient training, all
descriptors except CM performed satisfactorily when used as
features in KRR.
We identified a few shortcomings of ACSF, MBTR and SOAP with

respect to the description of nanoclusters. SOAP in the
implementation used here only considers the local environment
of hydrogen within a certain cutoff. There are, however, global
SOAP descriptors which take into account local environments of
all atoms—its performance on nanoclusters will be investigated in
the future. ACSF, in order to be size-consistent, was feature
selected to be a local descriptor ACSFH, and the accuracy improves
slowly with increasing training set size. Better performance with
smaller training set sizes could be achieved by feature-selecting
symmetry functions. MBTR as a global, size-consistent descriptor
could not exhibit its conceptual advantage over the local
descriptors, the local environment mostly determined ΔEH.
Many interesting studies could build upon the presented

results. In the future, we plan to make more complex databases
where the compound space is enlarged by defects or dopants.
Ternary metallic clusters, with increased compositional space are

Fig. 6 Parity plot of predicted against calculated ΔEH together with
a histogram of predicted (red) and calculated (black) energy
distributions. The data set of multiple clusters AuCu(multi) was
used as a training set and the data set Au40Cu40(single) cluster was
used as the displayed test set

Fig. 5 Parity plot of predicted against calculated ΔEH/ΔGH together with a histogram of predicted (red) and calculated (black) energy
distributions. a The data set of multiple clusters MoS2(multi) was used as a training set and the data set MoS2(single) cluster was used as the
displayed test set. b The data set of multiple clusters MoS2(multi) was used as a training set and a data set of local minima on frozen clusters
was used as the displayed test set
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particularly challenging for conventional ab initio approaches and
could be systems of interest for ML optimization. In terms of the
DFT data generation itself, by including information about local
similarity encoded in the descriptors it should also be possible to
reduce the number of relaxation steps needed to find the local
minimum. In conclusion, our results demonstrate that the
approach of predicting properties based on descriptors alleviates
redundancy in a batch of similar nanocluster calculations—the
near-symmetric structures with repeating patterns offer many
similar local environments perfectly suited to descriptor methods.

METHODS
Density functional theory calculations
All electronic calculations were performed with the CP2K package35 at the
density functional theory (DFT) level, where orbitals and electron density
were represented by Gaussian and planewave (GPW) basis sets. The
exchange-correlation energy was approximated using the spin-polarized
GGA-functional by Perdew–Burke–Ernzerhof (PBE).36 Short-ranged double-
ζ valence plus polarization molecularly optimized basis sets (MOLOPT-SR-
DZVP)37 and norm-conserving Goedecker-Teter-Hutter (GTH) pseudopo-
tentials38–40 were assigned to all atom types. Van der Waals interactions
were taken into account with the D3 method of Grimme et al. with Becke-
Johnson damping (DFT-D3(BJ)).41,42 The energy cutoff for the auxiliary PW
basis was set to 550 Ry and the cutoff of the reference grid was set to
60 Ry. Atomic positions were optimised using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm until the maximum
force component reached 0.02 eV/Å. A gap of at least 8 Å vacuum was
added in all cartesian directions of the simulation box. The crystal
structures of bulk gold, copper and MoS2 obtained at this DFT-level were in
good agreement with experiments. In Supplementary Information, it is
shown that the double-ζ basis set performs in good agreement with
TZV2P.
Regarding relaxed hydrogen structures, we calculated the Gibbs free

energy of adsorbed hydrogen ΔGH as

ΔGH ¼ ΔEH þ ΔEZPE � TΔSH;

ΔEH ¼ EClusterþH � ECluster
� 1

2 EH2 þ EðBSSEÞ ;

where ECluster+H, ECluster and EH2 denote the total energy of adsorbed
hydrogen, the solitary cluster and molecular hydrogen in the gas phase.
The term EBSSE corrected for basis-set-superposition error. The term ΔEZPE
− TΔSH was approximated by values from literature at standard conditions;
in the case of MoS2, the zero-point energy minus the entropic term was
estimated as 0.29 eV in ref. 43. Considering the system AuCu, ΔSH was
approximated by 1

2ΔS
0
H2
, the entropy of H2 in the gas phase at standard

conditions as in ref. 43; The zero-point-energies of copper (0.17) and gold
(0.14) from ref. 44 differed only a little and were averaged as an
approximation, which resulted in ΔEZPE− 298 KΔSH ≈ 0.22 eV. This approx-
imation resulted in a constant shift in adsorption energy.

Nanocluster data sets
We created several DFT data sets based on nanoclusters of the 2D-material
MoS2 and the metal alloy AuCu. Two nanoclusters were fully scanned with
respect to the hydrogen position. They are as follows:

● a triangular MoS2 cluster with Mo-terminated edges
● a medium-sized near-spherical Au40Cu40 cluster

The structures are depicted in Fig. 1. The single-cluster data sets, named
hereafter MoS2(single) and Au40Cu40(single), comprised of 10,000 single-
point calculations of single-hydrogen atoms adsorbed on the surface.
Hydrogen was positioned randomly at a distance of 130–220 pm from the
cluster, where the random points were at least 0.1 Å from each other.
Furthermore, data sets containing hydrogen adsorbed on different
nanoclusters were produced in a similar fashion. Small-sized AuCu clusters
containing 13 atoms ranged from 4 to 9 gold atoms. We wanted to analyse
clusters of the same size, but with different compositions. For each of
those 24 clusters, we calculated 420 data points of adsorbed hydrogen.
The combined data set, named hereafter AuCu(multi), had a size of around
10,000 points. Analogously, the data set MoS2(multi) comprised of 91
different MoS2 nanoclusters, so that it also contained around 10,000 data
points. MoS2 clusters of different size (ranging from 4 to 11 Mo atoms at
the edge), shape and edge-termination were chosen based on ref. 22. In
order to create clusters of different shapes, ranging from triangular to
hexagonal, corners were capped, leaving behind 3 additional sulphur-
terminated edges. First, one Mo atom was capped, then 3, then 6, until the
cluster had a hexagonal shape. Different edge types were also present in
the data set, with sulphur coverages of 0, 25, 50 and 100% equally
represented. A few examples are shown in Fig. 7, otherwise edge
structures can be found here.22

Structural descriptors
In general, with a large enough data set containing nanocluster structures,
the location of the hydrogen adsorption site and their corresponding ΔGH,
it is fairly straightforward to develop a predictive model with the help of
ML. ab initio calculations require only atomic types and relative positions
of atoms as input. Hence, cartesian coordinate or Z-matrix formats contain
all information in order to calculate the total energy of a nanocluster and
then derive ΔGH. Those formats, however, have a disadvantage when it
comes to interpolation of data or ML. The same structure can be
constructed in many different ways—as a result, similar structures might
not be treated as similar by the ML algorithm, and discontinuities appear.
ML in general requires the input data to be in compact form and in a
smooth feature space.
Another structural representation (descriptor) is needed which fulfils

several criteria, summarised here.45 A good structural descriptor is:

● invariant with respect to rotation, translation and homo-nuclear
permutation

● unique—there should be only one way to construct a descriptor for
any given structure

● non-degenerate—no two sets of descriptor features are identical for
structures with different relevant properties

● continuous in the spanned feature space

Efforts to develop efficient descriptors in materials science have led to a
family of approaches successfully applied to molecules and crystals.46,47 In
particular, we consider the following popular descriptors (a detailed
description of each of the descriptors is available in Supplementary
Information):

● CM is a global descriptor based on pairwise coulomb repulsion of the
nuclei.48

● ACSF49—for each atom in a system, ACSF express distance and
angular interactions with neighbour atoms in symmetry functions.

Fig. 7 Four example MoS2 clusters illustrate different sizes, shapes and edge-terminations: a small triangular cluster, b hexagonal cluster with
a sulphur coverage of 50%, c triangular cluster with capped corners, terminated by 100% sulphur, and d triangular and Mo-terminated
(sulphur coverage 0%)
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● SOAP47,50—SOAP represents the local environment around a center
atom by gaussian-smeared neighbour atom positions made rotation-
ally invariant.

● MBTR51—MBTR is a global descriptor which groups interactions by
atomic type and puts them into a tensor.

Descriptor hyper-parameters. The structural descriptors CM, ACSF, MBTR
and SOAP have method-specific parameters which can be fitted to the
investigated system. A few performance tests showed that the mean
absolute error (MAE) was sensitive to a few of those hyper-parameters. The
radial cutoff of the local CM was optimised to 6 Å. The rows and columns of
the matrix were sorted with respect to the L2-norm. Regarding ACSF, only
the radial cutoff Rc was optimised. For other parameters, all combinations
of sensible values inspired by Behler,49 were used to construct symmetry
functions. Table 1 shows the values used for the parameters ζ, κ, η, λ and Rs,
which in combination formed symmetry functions from Supplementary
Eqs. (S2)–(S5). ACSFH denotes the symmetry functions with hydrogen as
the center atom.
The performance of MBTR depended on several hyper-parameters,

namely the gaussian broadening parameters σ(k2), σ(k3) as well as the
decay exponent d. The other parameters, such as σ(k1)= 5 Å and the grid
fineness n(k1)= 100, n(k2)= 900, n(k3)= 360 were kept constant for all
data sets. SOAP can in principle be made global by matching local
environments with each other, but we used it only locally in this work. The
performance of the SOAP descriptor was to a small degree sensitive to the
radial cutoff Rc. Other parameters, such as the highest angular contribution
lmax= 9 and the highest radial contribution nmax= 10 were kept constant.
The aforementioned descriptor parameters were scanned and evaluated
on around 1000 data points, a subset of the training set. The optimal
parameters are listed in Table 2.

Kernel ridge regression
For medium-sized data sets (1000–10,000) kernel ridge regression is a fast
and accurate ML method. In ref. 52, KRR performed best with the descriptor
HDAD (histograms of distances, angles and dihedrals) at predicting
atomization energies, a conceptually similar descriptor to the ones we
used which supported our choice of KRR. Of the ML models in ref. 52, graph
convolution neural networks were not applicable to the descriptors, hence
only random forest regression was another sensible choice. However, as
shown in Supplementary Information, its performance is significantly

worse than KRR in our case. In order to predict the properties of new data
points, the descriptor features of the training set x are compressed into the
kernel matrix K

K ¼
K x1; x1ð Þ ¼ K x1; xNð Þ

..

. . .
.

K xN; x1ð Þ K xN ; xNð Þ

2
664

3
775;

where x1, …, xN are feature vectors of N training points and K(xi, xj) is a
symmetric positive semi-definite kernel function (e.g., Gaussian kernel).
The property y of a new data point xpred is predicted by inverting the
kernel matrix

y xpred
� � ¼ kTpredðK þ λIÞ�1ytrain;

and regularising it by λ. The vector ytrain consists of the properties y1,…, yN
of the training set. The kernel vector kpred is defined as:

kpred ¼
K xpred; x1
� �

..

.

K xpred; xN
� �

2
664

3
775:

The method benefits from a continuous feature space and a unique
descriptor-property relation. It is worth mentioning that it works well even
with large descriptor sizes and small training sets. The computational cost,
however, scales with O N3ð Þ, which makes it computationally expensive or
infeasible for large data sets (>10,000).
The calculated adsorption energies of the training sets were interpolated

by kernel ridge regression using the radial basis function kernel

Kðx; x0Þ ¼ exp �γ x � x0k k2
� �

Based on a comparison of different kernels in Supplementary
Information, the RBF kernel performs on par with the SOAP-kernel.50 The
resulting kernel matrices were used to predict the (free) adsorption
energies of the test sets. The exponent of the radial distribution function γ
and regularization parameter α were optimised by fivefold cross-validation.
When the features of MBTR and SOAP were combined to a new

descriptor, they were weighted within the kernel:

Kðx; x0Þ ¼ exp �γ xMBTR � x0MBTR

�� ��
2þq xSOAP � x0SOAP

�� ��
2

� �� �

where q ¼ nMBTR
nSOAP

is the quotient of the number of features in MBTR and
SOAP. This accounted for different descriptor sizes and thus ensured equal
weigthing of the descriptors.

Data availability
The DFT data that support the findings of this study are available in the
NOMAD repository with the identifiers https://doi.org/10.17172/NOMAD/
2018.06.12-2 and https://doi.org/10.17172/NOMAD/2018.06.12-1.53,54 The
structures and adsorption energies of the data sets can be found as
Supplementary Material.
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Table 1. List of parameters of ACSF

ζ κ η Rs λ

1 0.5 5.0 4.0 −1

2 1.0 2.5 3.0 1

3 1.5 1.0 2.0

4 2.0 0.4 1.5

5 2.5 0.2 1.0

6 0.1 0.5

7 0.06

0.03

0.01

Table 2. Optimised descriptor hyper-parameters for different data
sets

Data set SOAP ACSF MBTR

Rc Rc σ(k2) σ(k3) d

MoS2(single) 6.0 5.0 0.078 0.075 0.3

Au40Cu40(single) 6.0 6.0 0.078 0.075 0.3

MoS2(multi) 8.0 8.0 0.015 0.05 0.3

AuCu(multi) 8.0 10.0 0.015 0.05 0.7
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