
Mixture of Clustered Bayesian Neural Networks for Modeling Friction
Processes at the Nanoscale
Martha A. Zaidan,*,†,‡ Filippo F. Canova,†,‡ Lasse Laurson,‡ and Adam S. Foster‡,§

†Aalto Science Institute, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
‡COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
§Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan

ABSTRACT: Friction and wear are the source of every
mechanical device failure, and lubricants are essential for the
operation of the devices. These physical phenomena have a
complex nature so that no model capable of accurately
predicting the behavior of lubricants exists. Thus, lubricants
cannot be designed from scratch but have to be screened
through expensive trial−error tests. In this study we propose a
machine learning (ML) method that infers the relationship
between chemical composition of lubricants and their
performance from a database. Because no such database of
desirable size and completeness is publicly available, we
compiled one from molecular dynamics (MD) simulations of toy-model fluids nanoconfined between shearing surfaces. The
fluid-friction relation is modeled by a Bayesian neural network (BNN), trained to reproduce the results for a training set of fluids.
Due to the inhomogeneous data distribution it was necessary to carefully pick fluids for training and validation from the database
with advanced clustering algorithms, rather than using the standard random selection. Different BNNs were then trained on the
data clusters and their predictions combined into a mixture of experts. The model provides a prediction of lubricants
performance as well as an error bar, at a fraction of the cost of MD. Because most values agree with the actual MD simulations
within the estimated error σ, we conclude that the model is satisfactory. This method addresses the challenges brought by noisy,
badly distributed, high-dimensional data that are likely to appear in reality as well, and it can be extended to real fluids, if a
database could be provided.

1. INTRODUCTION

Friction and wear are the main cause of failure in every
mechanical system, having quite a measurable economic
impact.1 Since ancient times, the problem has been partially
solved with lubricants. However, as technology scales down
toward the nanoscale, the effects of friction become more
dramatic,2 to the point where nanodevices cannot work at all.
Specialized lubricants suitable to operate in such systems are
then necessary. Theoretical models for friction and lubrication
work in general at macroscopic scales, but none captures the
dominant effects at the nanoscale.3−6 Thus, we are left to
explore a vast chemical space only through expensive trial−
error laboratory tests, to search for optimal lubricants. A reliable
theory for nanoconfined lubricants could provide the guidelines
needed for lubricant design, speeding up the materials
screening process. However, the underlying physics involves
complex solid−liquid interactions that strongly depend on the
atomic details of the materials, and formulating a general model
seems an impractical task.
Researchers and practitioners have applied machine learning

(ML) to discover patterns or predict outcomes from prior
data,7 traditionally in the fields of image recognition, medical
diagnosis, robotics, and speech recognition among others.8 In
the last couple of years, ML has also gained attention from the

materials community,9 attracted by the promise of replacing
expensive models and experiments with accurate and much
faster ML models inferred from data,10−13 with applications
ranging from predicting materials properties14 to identifying
flow defects in disordered solids.15 With ML, it is in principle
possible to machine-learn away all the complexity of frictional
processes and approximate the relationship between the
chemical composition of a lubricant and its performance solely
from prior measurements.
In this work, we select artificial neural networks (NNs) as

ML models. NNs provide a robust approach to approximating
real-valued (prediction) and discrete-valued (classification)
target functions because they can mimic nonlinearity of the
functions and their learning methods are well-developed. NNs
have been a popular choice among ML methods for
approximating complex functions16 and have been adopted in
a wide variety of problems in many fields.17 NNs are structured
combinations of nonlinear functions with many parameters
(called weights). NN models are trained by adjusting their
weights so that the predicted outputs match the known ones
for all inputs in a database. The optimization can get stuck in
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local minima, or even overfit when the final model performs
well on the training inputs but does not generalize to other
cases. Ensemble learning18 combines several NNs with random
initial weights into a committee machine. This has been shown
to yield a model that typically performs better than the
individual NNs because it is less affected by local minima.19

However, ensemble learning is not always suitable to produce a
robust ML model, especially when the training data sets are
complex, leading to overfitting or underfitting issues.20,21 With
the implementation of Bayesian inference into NNs, known as a
Bayesian neural networks (BNN),22,23 a regularisation term is
added to the NN performance function. This steers the training
toward simpler NNs, thus countering overfit. Moreover, BNNs
automatically provide a degree of belief on the estimated
output, which can be used to assess the quality of the
predictions.
In this study we combine several ML methods into a novel

approach to approximate the frictional behavior for a relatively
simple set of model fluids. Because a consistent database of
friction measurements of suitable size (>1000 samples) is not
publicly available, we first compile one from molecular
dynamics (MD) simulations of model liquids confined between
simple shearing surfaces. The nontrivial relationship between
the high-dimensional fluid descriptor and its shear rate is
approximated by a modified committee machine of Bayesian
neural networks, to avoid the issues of local minima and
overfitting.
Because most fluids give low, similar shear rates despite being

different, and only a few show high shear rate, the data
distribution is not homogeneous, and conventional training
schemes failed to produce reasonable models. We then
partition the fluids into clusters according to their descriptors
and train an expert BNN for each cluster, ensuring all categories
are equally represented in the training and validation data sets.
The final shear prediction is obtained by appropriately mixing
all the BNNs with a nonlinear combiner, depending on the
input descriptor.24−26

This paper is organized as follows. Section 2 explains the
generation of our friction data set and the challenges on data
modeling complexity. A novel ML strategy as well as the
algorithms involved are described in the section 3. Section 4
presents and discusses the obtained results as a validation of the
proposed approach. Data analysis was carried out with
Wolfram’s Mathematica 10.4.27 Finally, the paper is concluded
in section 5.

2. SIMULATED DATABASE
Because no database of sufficient size containing molecular
descriptors for lubricants and their performance is publicly
available, we calculated one using classical MD simulations of
model fluids, nanoconfined between solid surfaces. Given the
large amount of computation required, we can only consider
simple toy models to represent the system. The confining
surfaces are modeled by slabs of a FCC lattice, including 10 ×
10 units cells in the xy plane and three atomic layers along z.
Their atoms interact with each other via a Morse potential. The
lubricant is composed of random chains of particles held
together by harmonic bonds. A three-body harmonic potential
keeps the chains linearly aligned. Particles of the liquid interact
with each other via a Lennard-Jones potential (nonbonded),
whereas Morse is used for liquid−surface interactions. The
simulation is performed in reduced units; however, we made
them consistent with standard ones. The unit cell size of the

surfaces is 2.86 Å and atomic mass is 30 amu. Each bead of the
liquid has a mass of 20 amu and the harmonic potential in the
chain keeps them at 1.5 Å. We considered 8000 such systems,
with different molecular compositions of the lubricant. All
systems include 4000 liquid particles, connected in chains of
random length, according to predesigned, random distributions.
The chain length distribution is given by a sum of Gaussian
functions; the number of these functions, their mean, and
variance are randomized for each system, with the constraint of
maximum chain length of 25 particles. A snapshot from a
typical system is shown in the inset of 1a. A constant normal

load of 0.1 kcal/(mol Å) is applied to both surfaces, keeping the
system confined. Shear motion is enforced by applying a
constant lateral force of 0.01 kcal/(mol Å) in opposite
directions to each surface. The simulation temperature was
kept constant at 350 K by a Langevin thermostat. After an
initial relaxation time of 3 ns, the systems reach a steady state,
and production runs of 6 ns start. The overall sliding distance of
the two surfaces during the run is related to the average friction
force exerted by the liquid, and thus it measures the
performance of the lubricant. Even with this simple model
and a simulation time step of 3 fs, the equilibration and
production run of one lubricant takes up to few hours on a
single GPU.
The overall shear distance of each system is plotted against

the average chain length ⟨L⟩ of the liquid in Figure 1. Despite
the fact that ⟨L⟩ is a quite reductive descriptor, it is useful to
show the trends in our results. Liquids made of light chains
shear for as much as 1450 Å, and friction increases linearly up
to ⟨L⟩ ≈ 8. The increased viscosity with chain length is simply
explained because longer chains will give stronger intermo-
lecular interactions that oppose shear motion. Similar behavior
can be seen in hydrocarbons.29,30 For 8 ≤ ⟨L⟩ ≤ 22 the shear is
only about 600 Å and increases slightly with ⟨L⟩; most data
points fall into this range. When ⟨L⟩ ≥ 22, the shear increases,
reaching about 1000 Å. We found that fluids with mostly long
chains solidify under nanoconfinement, and their molecules
cease to shear against each other, thus dissipating less energy.
Other high-shear mixtures can be seen around ⟨L⟩ = 10. The
chain-length distribution of these liquids resembles that of a
base fluid of longer chains with an additive of short ones. The
small chains contribute to lower the viscosity of the dense base
fluid. Figure 2a shows the average thickness of the liquid and its
relationship with ⟨L⟩. Mixtures of mostly short chains have

Figure 1. (a) Shear distance of all fluids as a function of their average
chain length. The inset shows the snapshot of a system rendered with
VMD:28 blue particles belong to the liquid, and gray ones are in the
shearing surfaces. (b) Density of the collected data points along the
shear axis.
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weaker intermolecular interactions and thus tend to occupy
more volume; a similar effect is observed for mixtures where
short chains are added to a base fluid of longer chains. As ⟨L⟩
increases, the liquid film becomes denser. Shear and thickness
follow two main trends, visible in Figure 2b. In most liquids, the
two are linearly correlated; however, when ⟨L⟩ increases above
22, the fluid thickness and shear become uncorrelated.

3. MACHINE LEARNING MODEL

The main difficulty in modeling the lubrication performance is
the statistical imbalance of available data, illustrated by the
histogram in Figure 1b. Most of the generated shear are
concentrated on the values between 550−650 Å, whereas there
is only a small number of mixtures with shear values lying
anywhere else. Unlike many other ML applications where more
diverse data can be gathered with relatively small effort, it is not
so easy to design a mixture with a specific shear performance
and get a more uniform histogram. Moreover, the mixtures that
include only long chains are only a small subset of all possible
combinations. In this situation, the standard subdivision of the
data set into 70−30% for training and testing is not effective
because there is a large possibility that sparse high-shear
systems will be overshadowed by the more abundant low-shear
ones during training, and the final model will not be general.
Another issue is the stochastic nature of friction, bringing
uncertainty and outliers in the data sets. Capturing the
uncertainty as well as dealing with the outliers are nontrivial
modeling tasks.

3.1. Iterative Gaussian Mixture Model (iGMM). We use
the Gaussian mixture model (GMM) clustering to address the
imbalance in the MD data set. The GMM expresses the
probability of measuring a shear value s given a set of
conditions λ as

∑λ γ| = | ̅ Σ
=

p s p s s( ) ( , )
j

T

j j j
1 (1)

where γj for j = 1, ..., T, are the mixture weights and p(s| sj̅,Σj) is
a multivariate Gaussian distribution with mean sj̅ and covariance
matrix Σj. By setting T = 2, GMM effectively approximates the
density of data points with a sum of two smooth Gaussian
distributions: one with high and one with low density of shear
measurements. The parameters λ = {γj, sj̅, Σj} are estimated
using the expectation-maximization algorithm.23 The high-
density cluster is ready to be partitioned into 70% training and
30% testing data sets through random selection. The low-
density cluster goes through another GMM iteration as long as
enough data points remain. By applying this procedure,
summarized in Figure 3a, on our database, we obtained the
four clusters illustrated in Figure 3b.

3.2. Bayesian Neural Network. We use a Bayesian neural
network23 (BNN) to model the unknown relationship s = f(x)
between the system x and its shear response s (Figure 4a). For
our purpose, the input layer consists of a 25-dimensional array x
= {x1, x2, ..., x25}, containing the concentration xi of chains of
length i. Because 25 particles is the longest chain allowed in our
simulations, this descriptor is enough to characterize the fluid
completely. The output is just one number, the shear distance s,

Figure 2. (a) Dependence of the mixture’s thickness on the average chain length and (b) its correlation with the shear distance.

Figure 3. (a) Iterative Gaussian mixture model algorithm for selection of training and testing data. (b) Resulting clusters in our database.
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normalized by the maximum so that the resulting values are
between 0 and 1. Using cross-validation methods, we
determined that the optimal amount of hidden layer neurons
is 15. The jth neuron in the Lth layer computes its output zj

L as

∑σ= +z w x b( )j
L

i
ji
L

i j
L

(2)

where wji
L is the weight of connection between the computing

neuron and its ith input in the preceding layer, and bj
L is an

additional bias parameter. The activation function is σ(x) =
tanh(x) in the hidden layer and σ(x) = x for output layer
neurons. Once a training data set {x, y}̃ with reference inputs x
and their corresponding outputs y ̃ is given, it becomes possible
to find a suitable set of weights w by minimizing the cost
function

∑ ∑β α= − ̃ +E f y wx w
2

( ( , ) )
2n

n n
i

i
2 2

(3)

where f(xn,w) is the output of the BNN from training inputs xn.
The first term is the prediction error of the model on the
training data, and its minimization leads to a model that fits the
data. The second term comes from the application of Bayesian
inference in the training and effectively gives a penalty to
complex models with larger weights, thus impeding overfit. The
two contributions are weighted by hyper-parameters α and β,
iteratively updated during the training.
The accuracy of single BNN in our preliminary studies was

not satisfactory, and for this reason we tried with a committee
machine of BNNs.18 The main idea, as illustrated in Figure 4b,
is to divide the fluids in the training set into separate groups
depending only on their descriptors, train expert networks
separately for each group, and combine their outputs with a
gating network to obtain the shear prediction.24,25,31 The
training set is subdivided with k-means clustering algorithm,32

applied to the 25-dimensional input vectors. The total number
of clusters k was determined by calculating the Davies−Bouldin
index33 after running the clustering with k = 1, 2, ..., 16: we
found that k = 11 gives the lowest index. The most populated
cluster contains 876 training samples, whereas the smallest has
178. Two other small clusters include about 300 samples, and
all others have more than 500. The gating network is a GMM,23

whose parameters are optimized with the expectation-max-
imization algorithm, once the BNN experts were trained.

4. RESULTS
Figure 5a shows the regression plot for the test data. The black
line represents the perfect fit, where predicted shear and the

MD calculations coincide, whereas the gray area shows the
range between the prediction and ±2σ, where σ is the
estimated error. Even though some estimated shear values
deviate considerably from the perfect line, the error histogram
in Figure 5b shows that almost all estimation errors are below
0.05, corresponding to about 55 Å.
Figure 6 shows a more detailed bar chart of the errors

distribution. About 83.3% of the predictions are less than σ off,

and there are approximately 14.8% as bad as 2σ. It is noted that
there is only 0.2% estimated shears that lie outside of 3σ. This
bar chart suggests that the developed ML model is very
accurate because 99.75% of estimates lie within the 3σ region.
Table 1 lists the performance of progressively more complex

models in terms of root-mean-square error (RMSE) and
Pearson product-moment correlation coefficient R2. The first
entry corresponds to the simplest linear model. This model
does not give satisfactory performance because it is not flexible
enough to cope with the nonlinearity of the data. The second
entry is the average performance of individual NNs trained

Figure 4. (a) Schematic representation of a NN with one hidden layer.
(b) Mixture of expert model.

Figure 5. (a) Performance of the model on the test data set. The gray
area marks the ±2σ range. (b) Error histogram.

Figure 6. Accuracy of the model on the test data set.
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from different random initial weights. The prediction error is
slightly reduced by averaging the output over all the NNs in a
committee machine (third entry). We also tested kernel ridge
regression (KRR), because it has been successfully applied to
quantum chemistry.12 The performance metrics suggest that
KRR (fourth line) is better than the standard NN or NN
committee. Switching to BNNs gives a more significant
performance improvement. The NN weights can get stuck in
local minima during training, depending on their initial values:
this limits the efficacy of training. The problem is partly solved
in committee machines, leading to better performance in
general. The BNN mixture model implements a gating network
to mix the BNN outputs; however, all BNN are trained with the
same database and only differ in their random initialization.
After training, the gating network of the mixture performs
effectively the same operation as the averaging in the
committee, thus giving similar performances. In our final
model, BNNs are separately trained on the different clusters,
and combined by a gating network into a mixture of experts.
This brings an additional small performance improvement. We
also trained different KRRs on the clustered data and combined
them in the same fashion; however, the results are even worse
than a single KRR (last entry). To check whether the different
performance values from the metrics are statistically mean-
ingful, we calculated the Wilcoxon signed rank tests for all pairs
of models. The resulting p-values are listed in Table 2. The

worst performance of the linear model is a solid result, as p ≤
0.05 when compared to all other models. This was expected
given the simple nature of the model and the high complexity
of the data. The rank test, however, suggests that most models,
from NN (2) to BNN mixture (7) could effectively be
equivalent, because the high p-value indicates a significant
probability that the observed differences are random. The poor
performance of a KRR mixture of experts can be caused by
underfitting for small clusters of data: all of the KRR experts
gave larger RMSE than the corresponding BNN experts. It is

possible that the kernel function we chose (L1 norm) is not as
flexible as a NN.
Based on the information given in Table 1 and the small p-

values from the rank test, it can be concluded that the mixture
of all BNNs outperforms all other tested strategies. To confirm
whether our strategy is robust and there is no overfitting, we
trained the model using only half of the data in each cluster and
used the other half for testing. The training and testing halves
were also switched, and the model trained again. The two
models obtained this way have similar performances, giving
RMSE of 0.0248 and 0.0252, which indicates that the method is
stable.

5. CONCLUSIONS
We demonstrated how it is possible to approximate complex
physical phenomena such as friction using ML models. The
proposed method tackles the challenges posed by the nature of
the system and the availability/quality of data. Iterative GMM
ensures that the sparse data is partitioned between training and
test sets in a balanced way. Without this step, the trained
models could only make the most statistically obvious
prediction that all fluids would give the same shear of about
60 nm. BNNs are chosen as the main modeling algorithm due
to their ability to deal with uncertainty in the data and to
prevent overfitting. Fluids in the training set are divided into
clusters with the k-means algorithm, and a BNN expert is
trained on each one. The final shear prediction is obtained by
weighting the response of the experts appropriately depending
on the fluid descriptor. The model not only predicts the shear
but also provides standard deviation around its mean
prediction, which can point out poorly sampled regions of
the chemical space in the training set. As expected, the largest
uncertainty as well as fail rate of the model occur for outlier
systems with very low or high shear. However, most predictions
are within the estimated standard deviation, making the model
predictive.
Even if the method might seem complicated, the perform-

ance results indicate that the proposed ML strategy outper-
forms all the simple methods we tested. The ML model takes
only a fraction of a second to calculate the answereven the
whole training process does not exceed 5 min on a
conventional desktop computer with our Matlab implementa-
tion.34

On the contrary, MD simulations of one fluid takes more
than 2 h, and a real experiment may take even longer, so the
real bottleneck is the generation of the database. Although the
accuracy of a ML model is mathematically bound to be lower
than that of the MD simulation or experiments used to train it,
and it is unable to provide physical insight into the nature of
frictional processes, it enables much faster lubricant screening.
The toy model we employed to simulate the shear response

of the fluids is not realistic; however, it can be argued that many
lubricants consist of a mixture of polymers of different lengths
and types, and they might show similar behaviors. It should be
noted that simulating our database with more accurate
atomistic models for hydrocarbon chain mixtures would require
an exceedingly long time. Nevertheless, if such a database was
calculated or, even better, compiled from experimental
measurements, the ML method presented here would still be
applicable and be a powerful tool for lubricant optimization.
The drawback of this method is in the use of k-means

clustering to group different training data. Due to high-
dimensional data, k-means may not be very optimal to obtain

Table 1. Performance Metric Comparisons of Different ML
Strategies Using RMSE and 1 − R2

Method RMSE 1 − R2

1 linear model 0.0381 0.2997
2 NN 0.0262 0.1297
3 NN committee 0.0260 0.1284
4 KRR 0.0258 0.1254
5 BNN 0.0251 0.1182
6 BNN committee 0.0250 0.1173
7 BNN mixture 0.0250 0.1175
8 BNN mixture of experts 0.0240 0.1144
9 KRR mixture of experts 0.0320 0.1585

Table 2. Wilcoxon Signed Rank Test Results (p-Value)

1 2 3 4 5 6 7 8 9
1 0.03 0.05 0.05 0.02 0 0 0 0
2 0.84 0.86 0.74 0.76 0.76 0.0005 0
3 0.98 0.59 0.62 0.62 0.0002 0
4 0.61 0.64 0.64 0.0002 0
5 0.97 0.97 0.0015 0
6 0.99 0.0012 0
7 0.0012 0
8 0
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robust and accurate clusters that really reflect the lubricant
characteristics. Our proposed ML method also requires more
training data. As shown in Figure 1, most shear data points (i.e.,
obtained data from MD) concentrates on 600 Å shear. As a
result, the model is better in the low-shear regime whereas on
the high-shear regime is not as good (see regression plot in
Figure 5). The future direction of this work is to apply different
clustering strategies and evaluate more data points using MD,
where the optimal chain-length distributions are suggested by
our developed ML models.
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